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Abstract— Reader antennas’ configuration for two wheeled
robots were evaluated to estimate their posture from floor-
installed RFID tags. RFID systems where IC tags are installed
under/on floors have widely been utilized in recent years as the
next positioning infrastructure. The reader antennas should be
properly placed on a robot so that such an environment can give
full play to its potential capabilities of positioning the robot.
This problem calls for guidelines in designing the configuration
of reader antennas. Experiments using actual robots cannot
offer sufficient data because of time and physical limitations,
which prevent helpful and reproducible evaluations. We over-
came this problem by constructing a simulation environment
using a localization model and by evaluating the effects of
configurations on positioning accuracy using computations. Of
particular note, we found a “forward-backward configuration
effect” from the results and had a detailed a discussion on how
it occurred. Finally, a simple experiment using an actual robot
validated the effect.

I. BACKGROUND

There has been an urgent need in recent years to standard-
ize the technology for positioning robots to enable them to be
introduced into public spaces. A more compatible positioning
infrastructure needs to be designed to construct systems with
a high degree of interoperability. There is a model room
called “the Human and Robot Symbiotic Space for Near-
term Future Living” in our laboratory, where many RFID
tags have been installed to estimate robot states (Fig. 1),
simulating future home environments where robots interact
symbiotically with humans[1]. IC tags can play the role of
landmarks for moving robots by allowing them to refer to a
table that lists these IC tag codes and their global positions.
RFID technology has become very popular in studies of
robots because it is robust against disturbances by such as
lighting and obstacles, which adversely affect conventional
methods that use cameras and ultrasonic waves. The decrease
in the cost of these tags has also promoted this tendency.

Environments where IC tags are installed on/under the
floor have widely been adapted in the field of positioning
studies using the RFID system[2][3][4][5][6]. There are
some advantages to arranging tags on/under the floor. First,
we can easily arrange the tags in regular patterns and can
easily manage all their global positions. Second, we do not
need to take the effects of obstacles into account, which can
be crucial problems in radio-wave sensing, when a reader’s
antennas are installed in the base of the robot. In addition,
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Fig. 1. RFID tags in model room (During
Construction).

Fig. 2. Reader an-
tenna and a tile of a
cork mat with a tag Fig. 3. Reproduced environment

such a positioning infrastructure can be freely moved and
reproduced by adopting a resourceful approach in which
tags are stuck to the tiles of a mat that can be connected to
the same kind of mat. Actually, we could easily move and
reproduce our positioning infrastructure in a remote location
(e.g., exhibitions) and allow robots to operate in the same
way as in our model room by sticking RFID tags to the tiles
of a cork mat and connect them in any location (Fig. 1-3).
In the light of these advantages, we think an environment
with a floor equipped with regularly arranged RFID tags is
one of the most probable positioning infrastructures.

How tags are arranged and where reader antennas (notated
hereafter as RAs) are placed play an important role as envi-
ronmental parameters in robot positioning. These parameters
have been determined depending on the physical limitations
of robots or the intuition of designers in most of the studies
we cited. Positioning is generally more accurate if tags
are arranged more densely and more readers are installed.
However, arranging small tags densely over a wide space
incurs expensive labor costs in having to install them and
register their positions, and a reader system generally cost
much more than tags. Therefore, it is very important to
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improve the potential positioning resolution where there are
limited resources for a RFID system when designing the
infrastructure.

Kulyukin et al.[7] discussed a method of arranging a lim-
ited number of tags to prevent situations where a robot could
not detect any tags when it navigated from point-to-point.
However, their results indicated it was not simple for users
to arrange the tags and it was quite impractical. Our previous
study proposed a method of estimating the poses of robots
using a particle filter[8][9]. We demonstrated in the study that
positioning accuracy differed between several kinds of RAs’
configurations. For example, orientation errors are not well
predicted by rotating movement when RAs are placed near
the center of the robot’s rotation. The reason for this type
of dead-zone, which is comparatively easy to understand,
is that RAs cannot detect tags more than one very often
in such situations. Also in case of straight movements, we
could find an example where the predicting performance got
worse when a single RA was placed backward in the robot.
However, we could not collect enough our experimental data
because of time and physical limitations, which prevented us
from identifying the cause in detail.

This paper offers guidelines on how RAs should be
placed in robots, thereby enabling us to obtain helpful and
reproducible evaluations of configurations. We constructed a
simulation environment that implemented the previously pro-
posed method of localization and evaluated the configuration
though computation. We especially picked up a “forward-
backward configuration effect” in the result and have a
detailed discussion on how it occurred. Finally, a simple
experiment using an actual robot validated the effect.

This paper is organized as follows. Section II defines the
RFID infrastructure we targeted in this paper. We describe
how the pose of the robot was estimated using a particle filter
in Section III. We present the simulation results in Section
IV, and discuss these in Section V. Section VI describe
an validation experiment using an actual robot. Finally, we
conclude the paper in Section VII.

II. TARGET ENVIRONMENT

The section describes the properties of the RFID environ-
ment we targeted. As previously mentioned, it is practical to
arrange RFID tags regularly in constructing a positioning
infrastructure that has a high degree of interoperability.
Therefore, we targeted an environment with a lattice of RFID
tags, which seemed to be the simplest arrangement.

Here, let us define IT as the arrangement interval and LT

as the tag antenna’s width of a square (LT ≤ IT ), where a tag
is placed on the center of a unit in the arrangement (see Fig.
4). For example, an interval of IT = 300 mm and a width of
LT = 260 mm were used in our model room where about
350 RFID lattice-shaped tags (Hitachi Industrial Equipment
System), each of which was 260 mm square, were placed
at 300 mm intervals as shown in Fig. 1 (Note that the unit
“mm” will be omitted from here on). Next, the configuration
of the RAs is expressed as

ρ = {XRi
|XRi

= (xRi
, yRi

)T }1≤i≤NR
(1)
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In this equation, NR denotes the number of RAs, and XRi

represents the position of each RA in the robot’s coordinates
where the origin corresponds to the center of the robot’s
rotation and the X-axis positive direction corresponds to the
forward direction of the wheels (Fig. 4). A RA is modelled
as a circle whose diameter is notated as DR (Fig. 5).

Here, we introduce an important assumption on detecting
condition in the following.

Assumption on the detecting condition:
A necessary condition for a reader to detect a tag
is that both the antennas have a common portion
on a two-dimensional plane.

We have so far tried to use several kinds of RAs and tags
and have found empirically that the above assumption is
applicable approximately when the RA is enough close to a
floor equipped with tags within less than about 50 mm. We
construct a simulation environment based on the assumption
in the following. It is generally difficult to formulate a detec-
tion probability with the detecting condition satisfied since
the rate is quite changeable among situations. Therefore, we
do not define a prior probability with an undetection event
as a sensor model described in the next section.

In addition, we assume the following limitation for two
kinds of antenna’s sizes in the paper.

DR ≤ IT − LT (2)

The limitation means that a RA cannot detect more than one
tag. Although the RFID system is claimed to be able to detect
multiple tags simultaneously, not many current technology
has a collision-avoidance mechanism and no tags are read
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as a result. We adopt the limitation so as to avoid such a
situation.

We define a filling rate (FR) as a probability of satisfying
with the detecting condition when a robot is randomly placed
on a lattice of RFID tags (Fig. 5). The more FR is, the more
chances of detection a RA has. FR is gotten by the simple
geometrical calculation using both antenna’s sizes as shown
in the following,

FR =
(LT + DR)2 − φD2

R

I2
T

, (3)

where φ = (4 − π)/4 = 0.214 · · · . Since neighboring FR
value’s environments generate almost the same shapes of the
possible detecting region for the RA, we can approximately
estimate the potential infrastructure capabilities (excluding
RAs configuration) through following only the values of IT

and FR. Note that each antenna’s size itself has no significant
meaning in a predicting performance.

III. LOCALIZATION MODEL (PARTICLE FILTER)

This section describes an algorithm that is used to estimate
a robot’s pose on a lattice of RFID tags using Monte Carlo
localization (MCL)[10], which has already been presented in
our previous paper[8]. Typical process of updating particles
is illustrated in Fig. 6 for an intuitive understanding.

Fig. 6. Particles updating process.

A. MCL’s procedure

Let xt = [xt, yt, θt]T be the robot’s state vector at the
global coordinate at time t, and ut and zt be the vector of
the encoder’s value and detected tags at time t. The following
steps are repeated to generate samples of Np proportional to
the distribution of p(xt|z1:t, u1:t).

1) Update particles by prediction using move model of
P (xt|ut,xt−1).

2) Update particles by correction using sensor model.
a) Update weights of particles using P (zt|xt).
b) Mix random particles using P (xt|zt).
c) Update particles by resampling.

In this process, mixing random particles are especially useful
for restoring from kidnapped conditions but we will not mix

the random particles in the following simulation experiments
because we only focused on factors related to the RAs
configuration.

B. Move model

The odometry model adds noise to the actually derived
signal of the encoder from t − 1 to t notated as ut =
[Wr,Wl]T in the following,

út = [rand(γ|Wr|), rand(γ|Wl|)]T + ut, (4)

where rand(•) generates a sample from a triangular distri-
bution whose mean is zero, and whose standard deviation is
•[11]. In the equation, γ is closely related to the expected
quality of the encoder. We will call γ odometry noise
rate in the following. Each particle calculates its rotating
distance according to Eq. 4, the corresponding robot posture
is updated using an odometry with a tread value of the
robot. The move model plays an important roll in making
compensation to uncertainty of the robot movement. We can
find that the model magnifies a possible region where a robot
(and an RA) might be, as shown in Fig. 6.

C. Sensor model

The sensor model is designed based on the assumption
of the detecting condition. When the prior probability is
designed as a discrete function, which is exactly faithful to
the detecting condition, all the weights of the particles out of
a detected tag are set to zero. Such a design easily cause a
kidnapped condition if environmental disturbance has occur
or few number of particles are used. Therefore, we use the
following sigmoid function as the sensor model.

The ith reader’s position vector in the global coordinate
system is given by

x(2)
Ri,t

= x(2)
t +

[
cos θt − sin θt

sin θt cos θt

]
XRi , (5)

where x(2)
t represents a two-dimensional positioning vector

at time t and XRi is defined in the Eq. 1. We approximate the
posterior probability of the measurement of tagni,t detected
by the ith reader using

P (tagni,t|xt) = Sg(D(tagni,t,x
(2)
Ri,t

, DR)) (6)

Sg(l) =
2

1 + exp(λl)
(7)

where D(tagni ,x
(2)
Ri

, DR) represents a minimum distance
from the edge of the tag to the ith RA (which returns 0
if they are sharing common areas), and Sg(l) is a discrete
sigmoid function.

Assuming that the measurements of detection by the RA
are independent, the resulting likelihood function can be
calculated using

P (zt = {tagni,t}|xt) =
NR∏
i

P (tagni,t|xt) (8)

If a RA cannot detect any tag (tagni,t = φ), the prior
probability has a constant value, irrespective of what is the
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robot coordinate system when FR is 1.0 (error(xR1 , yR1 )).

particle hypotheses. Resampling is done using low variance
resampling[12] after normalizing the weights of the particles.

Intuitively speaking, these calculations correspond to an
operation that clips out a RA’s positioning region by a
“window” of a detected tag, as shown in Fig. 6. Then λ
in Eq. 7 functions as an important variable that determines
how many particles out of the window survive. We have
analyzed ranges of model parameters that can cope with the
disturbances to some extent without failing regular accuracy,
in the paper[9]. There we clarified that it is desirable that λ
is set to around 10−1 and 10−2 with γ fixed to the actual
encoder’s quality. So we use λ as λ = 10−1 in all the
following experiments.

IV. SIMULATION

This section reports simulation experiments using the
sensor model for the purpose of clarifying what effect the
placement of RAs has on the resolution of positioning.

A. Experimental Design

We explain the environmental design. A two-wheeled
robot with a tread of 400 mm is operated to move on a lattice
of RFID tags, whose interval is fixed as IT = 300, for 100
seconds from the initial posture given by x0 = (0, 0, 0). The
way of moving follows Table I. The actual rotation distance

TABLE I
WAY OF ROBOT MOVEMENT

time way of moving absolute wheel speed
1 ≤ t ≤ 5 Right rotating 60 ∼ 90 (mm/s)
6 ≤ t ≤ 25 Forward moving 60 ∼ 90 (mm/s)
26 ≤ t ≤ 30 Left rotating 60 ∼ 90 (mm/s)
31 ≤ t ≤ 50 Forward moving 60 ∼ 90 (mm/s)
51 ≤ t ≤ 100 1 ≤ t ≤ 50 is repeated

at each wheel from (t−1) to t is notated as ut = [Wr,Wl]T

and the encoder’s values are determined according to an
encoder noise rate notated as γE .

ut = [rand(γE |Wr|), rand(γE |Wl|)]T + ut (9)

One reader was placed somewhere among 21∗21 points in
the robot coordinate such as {(xR1 , yR1) = (30 ∗ i, 30 ∗

j)|i, j = −10,−9,−8, · · · 10}. The RA was modelled as a
point and three tag widths were used (LT = 100, 200, 300).
Then, the corresponding FR is 0.11, 0.44 and 1.0.

In this experiment, 10 % encoder noise was assumed and
the odometry noise rate was set to the same value with the
encoder noise rate (γ = γE = 0.1). 1000 particles, which
are enough amount not to fall into a kidnapped condition,
were used. Each particle had the correct hypothesis for
the initial posture when the robot started to move. The
detecting condition exactly follows the assumption described
in Section II. The RA detected the tag satisfying with the
condition without missing, if any, every second and the
particles were simultaneously updated. The mean positioning
error in the latter half of the motion was recorded for various
50 time series of the encoder’s signal.

B. Results

Figure 7 plots the mean positioning errors in placing one
RA. You can see an explanation on each figure in the caption.

Firstly, we can confirm that the more FR’s value is, the
better predicting accuracy is obtained. The errors do not
change much when the placement of RAs moves along the Y-
axis (middle). On the other hand, the change along the X-axis
greatly affects the prediction performance with a negative in-
clination (left). We can see about double difference between
the configurations of xR1 = IT and xR1 = −IT , which
should not be ignored in an actual implementation. We name
the effect “forward-backward (FB) configuration effect”
and discuss a cause of the effect in the following section.

V. DISCUSSION

A. Analysis of experimental data

Figure 8 plots the robot and particles trajectories for the
forward and backward configuration (FC and BC) during
movement, as one of the experimental examples. We can see
that the distribution of BC particles is more dispersed than
that of FC. We analyzed the experimental data in detail and
confirmed that the distribution of BC particles was largely
spread out vertically against the moving axis even when the
particles keep high weights. This implied that, for BC, high
weights were allocated to many particles placed in the wrong
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Fig. 9. Errors around the maximum weight. Each sample indicates a relation between mean error and weight at each time in the latter half of the
movement and each figure collects the samples when xR1 equals 300 (left), 0 (middle) , and -300 (right).

position, which prevented efficient resampling. To investigate
this further, we collected positioning errors at weights around
the maximum (0.99 ∼ 1.0) in Fig. 9. We can see that
maximum weight are frequently given to particles with errors
of even about 100 mm in BC cases, while they are given to
errors of less than about 50 mm in FC cases. This means that
the region for the possible existence of the robot increases
when BC is used.

In the following, we clarify the cause of this phenomenon
based on our examination of the move model and provide a
schematic proof of the FB configuration effect.

B. Schematic-proof of FB configuration effect

1) Wheel kinematics leads to “Expansion or Contraction
effect” : A relation between the position and orientation
of the robot updated during movement is not random but
somewhat correlated depending on its own kinematics. We
assumed each encoder’s value to contain probabilistic error
due to a triangular distribution (Eq. 4), which gives a regular
uncertainty to changes in the robot’s posture. This operation
spreads out the robot’s distribution (notated after this as
X ) in the shape of a fan from the past position if there
is no feedback from the sensor model (the middle of Fig.
10). Such spreads are the most common in move models of
mobile robots because their characteristic is also caused by a
universal designs where the error parameters of straight and
rotating velocities are not significant different[12].

Here, we express the RA’s positioning distribution mapped
from the robot’s distribution X as R = Ψ(X ). Then, the
degree of dispersion Ψ(X ) changes depending on the RA’s
configuration, as shown in Fig. 10. That is, the FC makes
the distribution expand while the BC makes it contract.
We will call this the Expansion or Contraction (EC) effect
later and schematically represent it with the expression

σ(X ) > σ(ΨB(X )), σ(ΨF (X )) > σ(X ) (10)

2) Reduction in EC effect by resampling: Figure 11 plots
the degree of dispersion of X and the corresponding RA’s
distribution R, where we have used the length of the major
axis of a probability ellipse as the dispersion index, with
the Mahalanobis distance fixed to 1. First, let us focus
on the RA’s distribution. We can see that the degree of
dispersion expands slightly when its configuration changes
from backward to forward. It is quite noticeable, however,
that the changes are much less than those expected from
the EC effect shown in Fig. 10. This is because the sensor
model is a direct description of the topological relationship
between the RA’s positioning hypotheses and the detected
tag. The sensor model clips out a possible positioning region
for the RA by using a detected tag’s window of an uniform
size as shown in the Fig. 6, this does not depend on the
configuration, i.e., the resampling functions to unify the
dispersion of R. This means the difference in the dispersion
size due to the EC effect is reduced by the resampling effect.
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robot postures

200mm

300mm

300mm

Probabilistic trajectories 

with odometry noise

Fig. 10. Expansion or Contraction effect. Robot distri-
bution X and corresponding RA distribution ΨF (X ) for
configuration of ρ = {(300, 0)T } and ΨB(X ) for that
of ρ = {(−300, 0)T } when robot moves straight ahead
for 10 s at speed of 100mm/s, using same odometry noise
rate as that in the experiment. The corresponding proba-
bility ellipses (D = 2) have also been illustrated. The
σD(ΨF (X ))/σD(ΨB(X )) is around 2.5 where σD means
the length of the major axis of the ellipse.

We describe such coupling effects using expression

σ(ΨF (Ψ−1
B (R(B))))

σ(R(B))
≫ σ(R(F ))

σ(R(B))
(11)

where R(F ) and R(B) indicate the RA’s distribution corre-
sponding to FC and BC.

3) Proof: By applying the EC effect to R(F,B), whose
dispersion differences have mostly been absorbed, we can
deduce the dispersion difference in the robot distributions
notated as X (F,B) that correspond to their configurations,
which is another result given in Fig. 11, in the following.

Eq.(11) ⇔ σ(ΨF (X (B))) > σ(R(F ))
⇔ σ(Ψ−1

F (ΨF (X (B)))) > σ(Ψ−1
F (R(F )))

⇔ σ(X (B)) > σ(X (F )) (12)
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Fig. 14. Model room’s layout and three kinds of moving lines of
robots. The floor was equipped with about 350 RFID lattice-shaped
tags (260×260 mm) placed at 300-mm intervals. Some blank spaces
were put in the tags to enable installation of a few kinds of plumbing.

Here, we can regard σ(X ) as a possible existence region
for where the robot is, and its increase results in making
the position indefinite. This indefiniteness also results in
increased error

error(X (B)) > error(X (F )) (13)

This is a schematic proof of the FB configuration effect.

VI. EXPERIMENT IN A REAL ENVIRONMENT

We created a simple experiment using a real robot to
determine the fitness of our discussion on the simulation
for a real environment. We used a two-wheeled robot called
WGH2 (Fig. 12), which has an encoder that monitors its
rotation and can be equipped with reader antennas (DR = 15,
Hitachi Industrial Equipment System, Co., Ltd.) in four
places (A-D, they simply depend on physical matter), and
we let the robot move in our model room (IT = 300, LT =
260, FR = 0.84, see Fig. 1). Each configuration in the robot
coordinate system is as shown in Fig. 13

The robot was manually controlled in the experiment
so as to shuttle on the same line for a comparison of
the prediction accuracy between the forward and backward
configuration (FC and BC) on nearly the same condition.
The backward-moving (BM) condition can be identi-
fied with the forward-moving (FM) with the X-axis of
installed RAs converted to inverted values. Therefore,
we can determine the difference in performance between
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the FC and BC by comparing data on the FM and BM.
Moreover, we can achieve a quality control experiment by
such a shuttle movement because each (forward or backward)
movement enables the RA to detect potentially the same
series of tags on the same moving line. The experiment
used four RA configurations - ρ =A, B, D, BC - and the
robot started from a point P (Fig. 14) and moved forward
and backward (3 times) or back and forth (3 times) on
each of three kinds of moving lines (LINE1, LINE2, and
LINE3, see Fig. 14), at speed of ±150mm/sec. (LINE2
was shifted laterally by 150 mm when A’s configuration
was used because the RA cannot detect any tags on such
a condition.) Measuring accurate positioning errors during
the movement is difficult, so the mean dispersion size of
the particle’s distribution was recorded instead. The ratio of
the dispersion size (DS RATIO) between the FM and BM
in a single shuttle movement was calculated as an accuracy
indicator, as shown in the following,

DS RATIO = log2(σ(ρ)/σ(ρ̄)), (14)

where σ(ρ) and σ(ρ̄) are the length of the major axis of a
probability ellipse of the distribution during FM and BM with
ρ’s configuration, respectively. As mentioned previously, the
distribution size reflects a possible region where the robot
might be. Therefore, a positive DS RATIO implies the BM’s
positioning accuracy is better than the FM’s positioning
accuracy, and a negative value implies the opposite.

In this experiment, we added an algorithm of mixing
random particles so as to enable the initial particles to obtain
hypotheses properly and to avoid kidnapped conditions. The
mixing rate was followed by the sensor resetting method[13],
where the threshold of the mean weight of particles for
mixing was set to 10−1. The particles were updated every
half second with NP = 200, λ = 10−1, γ = 0.15.

Figure 15 indicates each configuration’s average
DS RATIO for 18 shuttle movements (9 forward and
backward / 9 back and forth). On the whole, we found that
the dispersion size increases where the RA can be regarded
as being placed backward (D, B̄, Ā, BC), and the tendency
increases when the RA’s absolute value of the X-axis is
magnified. Specifically, the ratio is about double when D’s
configuration is used. The results support the validity of our

simulation discussion.

VII. CONCLUSION

This paper discussed how RAs should be placed for
accurate positioning on floor-installed RFID tags. A sim-
ulation experiment extracted the forward-backward config-
uration effect, which can be important clues to designing
a single RA’s configuration. Moreover, we discussed the
cause of the problem in detail and clarified that it results
from coupling effects between the “EC effect” based on the
wheel kinematics and the resampling process that unifies the
dispersion of the RA’s distribution. Our experiment using the
actual robot supported the validity of the discussion.

This paper assumes a simple detecting condition. There-
fore, we think our discussions are widely applicable to
localization methods using landmarks on/under the floor.
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