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Fig. 1. Our algorithm recursively partitions the SLAM graph into a submap tree, and the optimization runs from the leaves to the root. Following
the treemap visualization [1], each rectangle represents a submap, and the sub-rectangles represent the submaps in the child level. The red and green dots are
robot poses and landmarks respectively. From left to right: 1). the finest level of submaps; 2). the coarsest level of submaps; 3). the optimized full map.

Abstract— We propose a novel batch algorithm for SLAM
problems that distributes the workload in a hierarchical way.
We show that the original SLAM graph can be recursively par-
titioned into multiple-level submaps using the nested dissection
algorithm, which leads to the cluster tree, a powerful graph
representation. By employing the nested dissection algorithm,
our algorithm greatly minimizes the dependencies between two
subtrees, and the optimization of the original SLAM graph can
be done using a bottom-up inference along the corresponding
cluster tree. To speed up the computation, we also introduce a
base node for each submap and use it to represent the rigid
transformation of the submap in the global coordinate frame.
As a result, the optimization moves the base nodes rather
than the actual submap variables. We demonstrate that our
algorithm is not only exact but also much faster than alternative
approaches in both simulations and real-world experiments.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has be-
come the key to numerous applications for autonomous
robots. Despite of the success of many SLAM projects,
there are still some challenging scenarios in which most of
the current algorithms are barely able to deliver an exact
solution fast enough. One of these challenges is the size of
SLAM problems, which has increased by several magnitudes
over the last decade, and a lot of work has been done
to push its limit, e.g. [2], [3], [4]. Another challenge for
SLAM problems is the large amount of noise baked in the
measurements, which often yields poor initializations and
slows or even fails the optimization [5].

The divide-and-conquer scheme is one of the possible
directions towards solving challenging SLAM problems,
especially in the large-scale environments. The scheme is
also referred as a submap based approach [6], [7], [8], [9] and
in general consists of three steps. In the first step, submaps
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are created such that the dependencies between submaps are
limited as small as possible. Next, each individual submap
is optimized independently of other submaps, in a manner
similar to non-submap approaches. At last, all the optimized
submaps are joined together in a global optimization step.

One advantage of submap based approaches is that the
computation can be done in an out-of-core manner. First,
submaps make it possible to distribute most of work over
multiple computation resources and increases the scalability
in terms of both CPU time and the memory. Second, a
lot of real data has different levels of noise from one
portion to another, and the divide-and-conquer scheme can
be easily used to allocate the computation resource smartly.
In contrast, non-submap based approaches spend the resource
evenly which leads to suboptimal workload scheduling.

The divide-and-conquer scheme also enable us to obtain a
good initialization to batch approaches, which is one of the
most crucial issues in nonlinear optimization. Compared to
incremental approaches, typical batch approaches suffer from
the bad initializations, e.g. those computed by composing
robot odometries. By employing a divide-and-conquer ap-
proach, we can recursively compute the initializations from
the optimized submaps, which are much accurate than those
from conventional approaches.

Compared to previous incremental approaches in the
same divide-and-conquer spectrum, we argue that a batch
algorithm enables us to achieve better submap partitioning,
which means less overlap between the submaps. A typical
incremental approach creates a new submap whenever the
size or the uncertainty of the current submap exceeds a
threshold. Although this scheme works for the exploration
scenarios, it becomes problematic and less efficient when the
robot visits old places. In this case, there may exist multiple
maps of the same area with possibly different estimations,
and it is not only inefficient but also difficult to compute a
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consistent solution due to the local minima. From a global
perspective, our batch algorithm is able to produce better
partitioning, which in turn results in a much more efficient
and robust approach compared to the traditional ones.

The divide-and-conquer scheme has been well studied
for various optimization problems, especially in the SLAM
community. As early as 1976, Brown [10] first employed
the submap scheme in the aerotriangulation and mapping of
city-scale areas. A recursive partitioning is used to exploit the
band diagonal structure of the linear system in the project,
and no nonlinearity is considered. The submap idea for
SLAM problems was also investigated in the hierarchical
SLAM [8] with a filtering-based local map building. How-
ever, their approach is carried out in two levels, and the map
joining in the global level tends to become expensive with
large maps. Later, Paz et al. [9] improved it by fusing the
local maps in a hierarchical way, but the overall submap
creating scheme is still suboptimal.

In both graph theory and linear algebra literature [11],
[12], it has been shown that the efficiency of linear system
solving depends heavily on the elimination ordering. More
recently the same idea was also applied to the SLAM
problem [13]. A good elimination ordering yields small
cliques during graph triangulation and introduces fewer non-
zero fill-ins during matrix factorizations. Although finding
an optimal ordering is NP-complete [14], there are two
successful schemes for finding a good ordering: minimum
degree (its variants include MMD [15] and AMD [16]) and
nested dissection [17], [18].

For submap based approaches, we found that nested dis-
section has more appealing properties than minimum degree.
Although both schemes generate elimination orderings with
comparable qualities, nested dissection tends to perform
better on large graphs, and its elimination trees are typically
lower and better balanced, which naturally fits our hierar-
chical partitioning. In addition, for solving SLAM problems
with planar graphs [19], nested dissection has seen proven
to be optimal. In the paper, we use the state-of-art hybrid
ordering [20] that combines the advantages of AMD and
nested dissection for small and large graphs respectively.

Graph-based SLAM algorithms, especially tree-based rep-
resentations has recently gained in popularity but still lack
on some aspects. Paskin [21] first employed a tree-based
data structure, so called junction tree, to capture the belief
state of robot poses and landmarks in SLAM problems. The
algorithm is referred to as thin junction tree filter (TJTF). To
speed up the inference, the tree gets “thinned” periodically
by variable contraction, which is proven to minimize the KL
divergence before or after the edge removal. Frese [2], [22]
introduced another fast algorithm, called treemap, as a back-
end for solving large-scale SLAM problems. In addition,
treemap applies a sophisticated hierarchical tree partitioning
(HTP) to re-balance the binary tree and reduce the cost of
propagating the information from leaves to the root. Note that
HTP during the run-time does not produce a junction tree,
and hence its optimization is not necessary most efficient.
Both TJTF and treemap marginalize the nodes to keep the

tree sparse, such that the algorithms become inexact for
the same reason as the other filtering approaches. We argue
that the marginalization should be rather prevented for better
accuracies. Our work also shares the same hierarchical idea
as HOG-Man [23], but our algorithm is free of the overhead
introduced by making virtual measurements and explicitly
propagating the changes between successive levels. There-
fore, it is more efficient as demonstrated in the experiments.

II. TECTONIC SAM

Previously we introduced Tectonic Smoothing and Map-
ping (TSAM) [24], which is a two-level submap based
approach. However, TSAM does not have the ability to main-
tain hierarchical maps hence does not scale well enough. In
addition, TSAM uses edge separators to partition the SLAM
graph and generates fully connected separators, which slows
down the computation for large maps. TSAM also requires
multiple iterations between the submaps and the separator to
converge to exact minima. Our motivation is to address these
issues in a new algorithm we are going to introduce.

In this paper, we propose TSAM 2, a novel multi-level
SLAM approach that employs the nested dissection algo-
rithm [17], [18] to solve SLAM problems in an efficient,
robust, and exact manner. After recursively partitioning the
original SLAM graphs (Figure 1), we can represent the
decoupled SLAM problem by a cluster tree. As defined in
[25], a cluster tree is a directed tree of clusters in which the
running intersection property holds, and each factor in the
original graph is associated with a cluster. In fact, the cluster
tree is more general than the junction tree or the clique tree
[12], which have already been widely used in the graphical
model based inference. Here we simply use the cluster tree
to organize our SLAM computation.

We also introduce base nodes to speed up the convergence
of nonlinear optimization and fully exploit the power of the
submap representation. The intuition here is rather straight-
forward: if individual submaps have been optimized properly,
they only need to move by some unknown rigid transforma-
tions with respect to each other in the global optimization
step. Such an effect can be achieved by introducing a base
node for each submap. Instead of optimizing over all the
variables as in the traditional approaches, we move all the
variables in the submaps as bundles represented by their base
nodes, hence our algorithm is able to work on a much smaller
set of unknown variables and run faster.

III. PROBLEM FORMULATION

In this paper, we use the same formulation as used by
Dellaert and Kaess in [13]. We denote the robot poses as
X = {xi} with i ∈ [0,M ] and the landmarks as L = {lj}
with j ∈ [1, N ]. The joint probability of the robot poses and
the map can be then formulated as:

P (X,L,Z) ∝
M∏
i=1

P (xi|xi−1, ui)

K∏
k=1

P (zk|xik , ljk) (1)

where ui is the control input at step i, and zk is the
measurement of landmark ljk at robot pose xik .
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Fig. 2. Recursive partitioning with nested dissection. (a). The input factor graph is partitioned using nested dissection. For each partitioning, the
separator, highlighted by the shadow, partitions the subgraph into two pieces, which correspond to the two children in the cluster tree. (b) The resulting
cluster tree representation of the original factor graph. Note that all the factors are captured by the clusters of the resulting cluster tree.

We employ factor graphs [26] to represent the SLAM
problem. As illustrated in Figure 2.a, the factor graph G
is a bipartite graph and can be denoted as a tuple (F ,Θ, E),
where F is the factor nodes corresponding to the constraints
(odometers or landmark measurements), Θ is the variable
nodes corresponding to unknowns X and L, and E is
the edges connecting F and Θ. Indeed, the factor nodes
define the joint probabilities over their involving variables in
Equation 1, and the factor graph G defines its factorization:

P (X,L,Z) ∝ f(G) =
∏
i

fi(Θi) (2)

where Θi is the set of variables connected to factor fi.
Furthermore, we assume Gaussian noise in measurement

models as is standard in SLAM literature, and the SLAM
problem can be converted to a least square problem [27]:

− log (f(Θ)) ∝
∑
i

‖qi(xi−1, ui)− xi‖2Λi
(3)

+
∑
k

‖hk(xik , ljk)− zk‖2Σk

where qi is the motion model, and hk is the measurement
model. Both the models have zero-mean Gaussian noise with
covariance matrices Λi and Σk respectively. Here ‖e‖2Σ

∆
=

eT Σ−1e denotes the squared Mahalanobis distance given the
covariance matrix Σ.

The maximum a posteriori (MAP) estimate Θ∗ of the robot
poses X and the landmarks L can be obtained by maximizing
the joint probability P (X,L,Z), which is equivalent to
minimizing the negative log-likelihood in Equation 3:

Θ∗ = argmin
Θ

− log(f(Θ))

IV. PARTITIONING WITH NESTED DISSECTION

To create a hierarchical set of submaps, we recursively
partition the SLAM graph using nested dissection. More
specifically, we use METIS [28] to find a nested dissection

ordering at the global level and then order the resulting
subgraphs locally using AMD algorithm [16].

The basic idea of nested dissection is to recursively find
small vertex separators such that at each level the remaining
two subgraphs are disconnected. In other words, given the
original graph G, nested dissection continuously partitions
as follows: each time the current subgraph Gi is split into
three sets Ai, Bi, and Ci, such that no vertex in Ai is
connected to any vertex in Bi. Note that nested dissection
does not guarantee that Ai or Bi is a connected graph. In
the disconnected case, we simply make each disconnected
component as a new subgraph. Hence the tree induced by
nest dissection is usually a K-way tree rather than a binary
tree. Without loss of generality, we use the nested dissection
notations above and assume we always obtain two-way cuts.

The partitioning yields an ordering called a nested dissec-
tion ordering. The sets Ai, Bi are referred to as the frontal
variables, and Ci is called the separator of Ai and Bi.
The nodes in submap Ai and Bi are grouped together and
ordered first, the separator nodes in Ci are ordered last. By
ordering the variables in this manner, we can perform a graph
elimination or the corresponding sparse matrix factorization
in each submap and then in the separator. Because submap
variables do not have connections to variables in other
submaps, the inference tasks in individual submaps can be
carried out in parallel.

In the context of the SLAM problem represented by a
factor graph G, nested dissection distributes all the factors
F along a cluster tree T [25], as shown in Figure 2.b. The
recursive partitioning starts from the root and continuously
builds the child subgraphs. For a certain subgraph in the
cluster tree, let us assume that we have the remaining factors
F0, the frontal variables Θ0, and the separator ΘS inherited
from its parent (in the case of the root node, F0 = F
and ΘS = ∅). The nested dissection algorithm groups the
variables Θ0 into three sets ΘA, ΘB and ΘC , such that no
variable in ΘA shares any factor with variables in ΘB .
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Algorithm 1 Recursively partition the input factor graph
G = (F ,Θ, E) and build a cluster tree which encapsulates
all the factors. The recursive algorithm starts by calling
root=Partition(F ,Θ, ∅).
Function: M=Partition(F0, Θ0, ΘS)
if size(G) > α or G0 is not fully connected

(ΘA,ΘB ,ΘC) =Nested_Dissection(Θ0);
F0 −→ FA ∪ FB ∪ FC ;
find ΘAC and ΘBC ;
M = (FC ,ΘC ,ΘS);
M.left_child=Partition(FA,ΘA,ΘAC));
M.right_child=Partition(FB ,ΘB ,ΘBC));

else
M=(F0,Θ0,ΘS);

end
return M;

Based on the frontal variables ΘC , we define submap M
as a tuple of factors, the frontal variables, and the separator:

M = (FC ,ΘC ,ΘS) (4)

where FC are the factors in F0 not connected to any variable
in ΘA and ΘB , notated as E(FC ,ΘA) ∪ E(FC ,ΘB) = ∅.
The frontal variable set of the new submap M is ΘC , and
the new separator of M is ΘS . The remaining factors can
be grouped into two sets FA and FB with respect to ΘA

and ΘB , such that E(FA,ΘA) 6= ∅ and E(FB ,ΘB) 6= ∅.
We may find the separators of two child nodes as ΘAC ⊂
ΘC ∪ΘS with E(FA,ΘAC) 6= ∅ and ΘBC ⊂ ΘC ∪ΘS with
E(FB ,ΘBC) 6= ∅. Such a factorization can be written as

f(G0) = f(ΘA)f(ΘB)f(ΘC)

The recursive partitioning exits when the size of the
current subgraph is below a certain threshold α (α = 40
in our experiments). As all the factors in the original factor
graph G have been distributed to the nodes of cluster tree
T , we may format Equation 2 in terms of a cluster tree:

f(G) =
∏
i∈T

∏
fj∈Fi

fj(Θjk)

where Θjk are the variables associated with the factor fj .
All the nodes in the subgraphs can be further ordered
using AMD. The pseudo-code is listed in Algorithm 1. The
collection of all the clusters (submaps) forms the cluster tree.

V. CLUSTER TREE INFERENCE

The main idea of submap based approaches is divide-
and-conquer: first the submaps are optimized locally, and
their relative positions and orientations are determined when
optimizing their parent submap. The same idea applies to our
cluster tree representation: the inference is first done locally
inside each submap by eliminating frontal variables and then
finished by a back-substitution step. For linear systems, this
technique is also referred to as a multifrontal method [20].

Algorithm 2 The elimination of the frontal variables FM
in the submap M using AMD orderings. The recursive
algorithm generates a set of new factors FS propagated to
the parent cluster of M.
Function: FS=EliminateNode(M)
with M = (FM, FM, SM)
if M.hasChildren()
FA =EliminateNode(M.left_child);
FB =EliminateNode(M.right_child);
(clique, FS)=Triangulate(FM ∪ FA ∪ FB);

else
FS =Triangulate(FM);

end
return FS ;

A. Leaves-to-Root Elimination

First, we apply an elimination algorithm to the partitioned
subgraphs obtained from Algorithm 1 in leaf-to-root order.
The frontal variables FM (ΘC in Equation 4) are eliminated
for each submap graphM, which yields a directed subgraph
as shown in Figure 3. The pseudo-code is in Algorithm 2.

The elimination is indeed refactorizing the factor graph
contained in submapM, and it is equivalent to applying the
chain rule to the joint probability of the frontal variables FM
and the separator variables SM (ΘS in Equation 4) :

P (FM, SM) = P (FM|SM)P (SM) (5)

Note that P (SM) corresponds to the new factors between the
separator variables and is propagated to the parent submap,
shown as squares in Figure 3. For each cluster M, as
P (FM|SM) is a Gaussian density, eliminating frontal vari-
ables is equivalent to factorizing the corresponding matrix:

P (FM|SM) ∝ exp−1

2
‖RMFM +AMSM − dM‖2ΣM

(6)
in which

[
RM AM

]
is the factorized matrix with RM

being upper triangular. dM is the corresponding right-hand
side (RHS), and ΣM is the covariance matrix. The matrix
factorization is currently done using SuiteSparseQR [29].

B. Root-to-Leaves Back-Substitution

Once the elimination step is done, the optimal values
of all the variables can be obtained by performing back-
substitutions in the root-to-leaf order. The process starts
from the root cluster and recursively solves the children. For
each cluster M with frontal variables FM, as all the parent
clusters have been solved, we may compute frontal variables
FM using the estimate of separator variables SM:

FM = R−1
M (dM −AMSM)

VI. NONLINEAR OPTIMIZATION

In this section, we extend the algorithm for linear systems
we introduced in the last section to the nonlinear case. Due
to the nonlinear nature of the SLAM problems, linearization
errors prevent the system from converging within one pass

2561



 Frontal                      

 Separator                      

 Frontal                      

 Frontal                      

 Separator                      

 Separator                      

M1

M2 M3

M4 M5 M6 M7

b1

b2 b3

b4 b5 b6 b7

b2 b3

b4 b5 b7

(a) (b)
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submap M1 are greyed out. For the active factors, since we will only move the two frontal variables of M1 and its base nodes b2 and b3, all the other
variables stay fixed , labelled with anchor labels. (b): By removing all the uninvolved factors and variables on the left, we have the actual factor graph
used for optimizing submap M1.
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Fig. 3. The elimination on the partitioned factor graphs (left) in Figure
2 yields the corresponding cluster tree (right). Note that the square factors
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subtree of the cluster tree T in Figure 2 is illustrated here.

of elimination and back-substitution, hence iterative methods
are often employed to tackle the linearized system at the
latest estimate. Below we show how such nonlinear opti-
mization adapts to the multiple-level submaps.

A. Subtree Optimization with Base Nodes

In the hierarchical context, the subtree optimization mainly
serves two purposes. Assume the subtree with root clusterM
is denoted as TM, and TM =M∪TM1

∪· · ·∪TMs
in which

s is the number ofM’s child clusters. First, subtrees {TMk
}

are aligned together. Second, the relative positions between
the frontal variables FM ofM are determined. The first task
can be done by using the factors propagated from {TMk

},

and the second task can be achieved by using the factors
stored locally in the cluster M. One of such examples is
shown in Figure 4.a. In practice, All those factors constitute a
new nonlinear factor graph used for the submap optimization.

One naive way to optimize over the resulting nonlinear
factor graph is to optimize over the child variables CM in
{TMk

} and FM together. However, this approach does not
exploit the fact that each subtree TMk

has usually been well
recovered during the previous optimization. If the size of
variable set CM is large, such an optimization process is not
only inefficient but also tend to get stuck in local minima.

In this paper, we solve the problem by introducing base
nodes and exploiting the local structure of the submaps. For
each submap Mk, we assign a base node bk that represents
the position and the orientation of the submap in its parent’s
coordinate system. Considering the structure of the cluster
tree, if the submaps between the submap Mk and the root
are Mp,Mp+1, · · · ,Mk−1, we may see that a robot pose
xi in the submap Mk satisfies the following relationship:

xi = bp ⊗ bp+1 ⊗ · · · ⊗ bk−1 ⊗ bk ⊗ x̃i
where x̃i is the robot pose xi in the local coordinate system
of submap Mk. The similar chained rigid transformation
also applies to all the landmarks in submap Mk.

In this way, the resulting optimization process only works
on FM and the base nodes of the child clusters, as shown
in Figure 4. The variable set CM will stay fixed as anchor
variables (labelled by anchor icons in the figure). Note that
only the base nodes of direct child submaps are movable
(b2 and b3 in Figure 4), since the base nodes of other child
submaps (b4, b5, and b7) have already been optimized when
optimizing maps M2 and M3.

The complexity of the new submap optimization is greatly
reduced with respect to the naive approach. The complexity
of the method without base nodes is O(|CM ∪ FM|2). By
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Fig. 5. The optimization of one submap in Victoria Park data-set. The rectangle stroked in blue corresponds to the current submap. The intensity of
the black lines indicates the amount of residuals on the corresponding measurements. From left to right: 1). Three child submaps that have been optimized
before. 2). The new submap is created by aligning three child submaps using base nodes. Note that the three submaps are roughly aligned together, and
a few constraints (black lines) are not satisfied very well. 3). The submap after the relaxation step. Nearly all the constraints are perfectly satisfied now.

introducing the base nodes, we limit the complexity to
O((|FM|+ s)

2
) considering that there are s base nodes

involved. In the experiments, we will show that |FM| is
usually much smaller than |CM| and almost stays constant
due to the minimized sizes of vertex separators. On the other
hand, |CM| increases with respect to the number of clusters
in TM. For the large-scale SLAM problems, |CM| of the
submaps close to the root is almost equal to the number of
total variables and consequently dominates |CM ∪ FM|.
B. Subtree Relaxation

Once the subtree alignment is finished, we may invoke a
“relaxation step” to further balance all the variables in the
subtree whose root is the current submap. In the relaxation
step, all the base nodes stay fixed, and the resulting opti-
mization is equivalent to the traditional SAM [13] approach.
As both the local structure of child submaps and the current
submap are well optimized, we found at most two iterations
of the full optimization suffices for all clusters except the
root. For the root cluster in cluster tree, we don’t constrain
the number of SAM iterations, i.e. using the same termi-
nation as SAM, which guarantees that TSAM 2 and SAM
converge to the exactly same minimum.

VII. EXPERIMENTAL RESULTS

A. Victoria Park Data-set

We first tested our algorithm on the public Victoria park
data-set, which contains about 6900 laser scans with corre-
sponding odometry readings. All the results reported in this
paper were produced on a Macbook Pro with 2.8GHz CPU.

As shown in Figure 1, the SLAM graph is recursively
partitioned into multiple submaps, and one of the submap
optimization steps is illustrated in Figure 5. The advantage
of using a nested dissection based recursive partitioning is
shown in Figure 6. We can see that, despite of more than
seven thousand nodes in the entire graph, the sizes of most
submaps are between 10 to 60. In fact, the average size of
all the submaps is 38.3, which is only 0.52% of the total
size. The root submap, i.e. the vertex separator between three
coarsest-level submaps only contains 19 nodes. Given those
19 nodes, the three submaps are statistically independent.
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Fig. 6. The histograms of submap sizes for the Victoria Park data-set.
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Fig. 8. The optimized map of W-10000 data-set by TSAM 2.
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Fig. 9. The comparison of timing results on W-10000 between TORO,
HOG-Man, and TSAM 2.

When assembling those submaps, we only need to optimize
over those 19 nodes as well as the three base nodes.

In terms of efficiency, we compared our algorithm with
SAM [13] and D&C SLAM [9], which is one of the fastest
submap based algorithms available there. As the initial
estimate is quite off due to the noisy measurements, we found
that SAM does not converge if directly applied to the entire
map. Hence we gradually increased the size of the active
map and applied the algorithm sequentially. Also note that
the timing of D&C SLAM was originally reported in [9] with
2.8GHz CPU and did include data-association overhead. The
final comparisons are plotted in Figure 7. TSAM 2 was able
to finish the entire optimization in less than 5 seconds.

In terms of accuracy, we observed that TSAM 2 converged
to the exactly same minimum as SAM. In the relaxation
steps of non-root clusters, our algorithm ran two iterations
of full subtree optimization. For the root submap, it took one
additional iteration, i.e. 3 iterations of SAM, to converge to
the optimal point. This result verified that TSAM 2 is exact.

B. W-10000 Data-set

Another public data-set we used to verify our algorithm is
W-10000 included in the HOG-Man release [23], a SLAM
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Fig. 11. The histograms of submap sizes in the block-world simulation.

algorithm that also exploits the hierarchical idea. The final
map produced by TSAM 2 is illustrated in Figure 8. We
found that the HOG-Man code ran a little faster in our
experiments than what was reported in [23] due to the
hardware difference. Overall, TSAM 2 is 1.4 times faster
than HOG-Man (Figure 9), and the residual of HOG-Man
after the convergence is 3% higher than our algorithm.

We also compared the results with another state-of-the-art
batch algorithm, TORO [30]. We ran the batch version of
TORO for 300 iterations, and its final residual is 6% higher
than that from TSAM 2. Our algorithm not only produced
better maps but also converged 2.3 times faster than TORO
as shown in Figure 9.

C. Block-world Simulation

To further verify the performance of the proposed algo-
rithm, we created a block-world simulation that contains a
trajectory with 2640 robot poses and 3200 landmarks, as
illustrated in Figure 10. We observed similar submap sizes
as those found on the Victoria Park data-set, as shown in
Figure 11. Since the map of the block-world simulation is
more structured than the map of Victoria Park, the submap
sizes are more consistent. Overall in both data-sets, the sizes
remain small compared to the total map size. For example,
the root submap contains 29 nodes, i.e. 0.50% of the total
nodes. Having such small vertex separators is the key for
our algorithm to achieve the high efficiency. We refer [19]
to interested readers for more theoretical proofs.

We compared the efficiency of our algorithm to SAM. For
each submap including the root submap, TSAM 2 ran two
iterations of full optimization. TSAM 2 took 13.6 seconds
to converge, while SAM took 67.9 seconds to finish. Both
algorithms again converged to the same minimum point.

VIII. CONCLUSIONS

The main contribution of this paper is introducing an
nested dissection based SLAM approach, which yields a hier-
archical set of submaps. In this framework, the optimization
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Fig. 10. The block-world simulation in which the robot poses are rendered in red and the landmarks are rendered in green. The high-lighted nodes
are the variables being optimized, and the other inactive nodes are rendered in the washed-out colors. From left to right: (1). The original block-world
simulation. (2). The optimization of a certain submap Mk . (3). The high-lighted part is the vertex separator between submap Mk and another submap
Mk+1 on the right. (4). The one-iteration relaxation for the quarter-size map. Note that there is no visible change between the third figure and the fourth
figure, hence one iteration is suffice to re-balance all the nodes in the quarter-size map.

can be carried out efficiently and exactly on the cluster tree
representation. The usage of the base nodes further speeds
up the computation by optimizing the submaps as bundles.

The future work includes the full exploitation of the
parallel computation power introduced by the cluster tree
representation as well as applying the algorithm to 3D
problems. We also plan to make an online variant of the
algorithm that incrementally builds the cluster tree and re-
balance it whenever necessary.
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