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Abstract—Robot-assisted rehabilitation has only recently 
begun to be applied to improvement of hand function after 
stroke. In a preliminary study, involving 4 post-stroke subjects, 
more than 2 years following the stroke, we have been able to 
show that 8 weeks of robot-assisted training leads to changes in 
patterns of arm and finger muscle activation. The patterns were 
quantified in terms of synchronous muscle synergies which 
allowed for comparison with muscle activation patterns of 
healthy age-matched subjects. We found that the muscle 
synergies of the post-stroke subjects became more similar to 
those of the healthy subject group following training. 

I. INTRODUCTION 

Weakness, spasticity and abnormal patterns of muscle 
activation are common after stroke. The greatest weakness 
relative to normal occurs in wrist and finger flexor muscles 
[1]. Hemiparetic stroke is usually also accompanied by 
abnormally high muscle tone (identified as spastic hypertonia 
or spasticity) and abnormal patterns of synergistic muscle 
activation, in the form of compulsory co-activation of either 
anatomical flexors or extensors at multiple joints, although 
synergistic activation of flexors is more common [2]. 
Subjects with finger flexor spasticity were found to have 
difficulty in extending the fingers both because of reduced 
voluntary activation of extensor muscles and coactivation of 
finger flexors [3]. Thus, apparent weakness may be partly due 
to an inability to inhibit antagonist muscles. Such abnormal 
antagonist activation may increase weakness by limiting 
agonist muscle activation.    

Strength [1] and spasticity [3] of the affected hand can be 
quantified to provide comparative measures of the 
effectiveness of rehabilitation prior to and after treatment. 
However, it is less straightforward to quantify changes in 
muscle activation patterns. Wrist and finger muscle activation 

 
Manuscript received March 10, 2010. This work was supported in part by 

the National University of Singapore (grant R265-000-168-112) and the 
Natural Sciences and Engineering Research Council of Canada.  

*These two authors contributed equally to the study. 
Berna Salman, and Theodore Milner were with Simon Fraser University, 

Burnaby, BC Canada  (e-mail: bernasal@ gmail.com). Theodore Milner is 
now with McGill University (email: theodore.milner@mcgill.ca). 

Shahabeddin Vahdat is with McGill University, Montreal, QC Canada. 
(e-mail: Shahabeddin.vahdat@mail.mcgill.ca). 

Olivier Lambercy, Ludovic Dovat and Etienne Burdet were with National 
University of Singapore. Olivier Lambercy is now with ETH Zurich, Zurich, 
Switzerland (email: olambercy@ethz.ch), Ludovic Dovat is with Gotech, 
Switzerland (email: ludovic.dovat@nus.edu.sg), and Etienne Burdet is with 
Imperial College of Science, Technology and Medicine, London UK (email: 
e.burdet@imperial.ac.uk). 

patterns during functional activities following stroke, 
abnormalities in these patterns resulting from the stroke and 
changes in these patterns from pre- to post-rehabilitation have 
yet to be described in quantitative terms. To be meaningful, 
these descriptions should include activity from multiple 
muscles, recorded during movements which are relevant to 
activities of daily living. 

Several robotic devices have been developed recently for 
hand rehabilitation, which require subjects to perform 
movements of the hand that are functionally relevant to ADL 
[4]-[12]. Because both motion and force can be accurately 
measured by robotic devices, rehabilitation exercises can be 
rigorously controlled, ensuring that muscle activation can be 
compared for virtually identical tasks before and after 
training. Using two new rehabilitation robots, the 
HandCARE [11] and the Haptic Knob [12], we have 
conducted a pilot study with stroke survivors in which we 
examined changes in patterns of activity of hand and arm 
muscles following 8 weeks of specialized training. To 
determine whether muscle activation patterns become more 
like normal activation patterns following training we 
compared pre- and post-training EMG of stroke survivors 
with that of age-matched control subjects using the concept of 
muscle synergies. 

Muscle synergies have taken on different meanings in the 
context of theories of motor control and neurorehabilitation 
[13]-[16]. In the context of motor control, synergies are the 
building blocks of movements. Each synergy comprises a 
muscle activation pattern, i.e. a specific relative activation for 
each muscle. In the context of neurorehabilitation, synergies 
are stereotyped movements of a limb resulting from loss of 
independent control of muscles at different levels, e.g. joints. 
They are typically classified as flexor or extensor depending 
on which muscle group is dominant. Despite these 
differences in the way synergies have been defined the 
analysis techniques developed for determining synergies in 
the context of normal motor control [13], [14] can be used to 
address the issue of changes in muscle activation following 
rehabilitation. 

Two different models for re-constructing muscle activation 
patterns have been proposed using the concept of muscle 
synergies [3],[17]. In one case, instantaneous muscle 
activation patterns are re-constructed by combinations of 
time-varying muscle synergies which are independently 
scaled in amplitude and shifted in time. In the other, 
time-varying combinations of nonnegative constant vectors 
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are used instead (synchronous muscle synergies). Using the 
latter method we were able to show that muscle activation 
patterns more closely resembled those of age-matched 
healthy subjects after than before robot-assisted rehabilitation 
of hand function. We selected synchronous versus 
time-varying muscle synergies for our analysis because of 
two reasons: i) by using synchronous muscle synergies we 
were able to investigate at each time step which muscles are 
added (activated concurrently) or eliminated from a normal 
pattern of muscle synergy and ii) synchronous muscle 
synergies do not depend on the duration of the movement, 
unlike time varying muscle synergies. Since the duration of 
movements performed by post-stroke subjects was highly 
variable across trials and subjects, it would not be possible to 
determine common time-varying synergies across trials and 
subjects. 

 

II. METHODS 

A. Subjects 

Four right-handed chronic stroke subjects (1 female, 3 
male; mean age 68 ± 13 y [min 54 y, max 83 y] with right 
hemiplegia and 8 healthy right-handed subjects (4 female, 4 
male; mean age 67 ± 13 y [min 50, max 87]; one 
ambidextrous) participated in this study. The healthy subject 
group was composed of one female and one male subject 
from a matching 10-year age range for each chronic stroke 
subject, i.e. there were 8 healthy subjects..  

Only right hemiplegic subjects, who were more than 2 
years post-stroke, participated in the study. Three of the 
subjects had only one ischemic stroke (S1: two years 
post-stroke, S3: six years post-stroke, S4: eighteen years 
post-stroke). The fourth subject (S2: four years post-stroke) 
had two consecutive strokes within the same year. Two of the 
subjects had the ischemic stroke in the internal capsule (S1: 
posterior limb of the internal capsule, S2: anterior limb of the 
internal capsule and caudate nucleus). One of the subjects did 
not provide a medical report (S3), and the other subject (S4) 
had the stroke in the white matter along the distribution of the 
left middle cerebral artery. The initial impairment levels of 
individual subjects were second and third stage for two 
subjects (S1 and S3, respectively) and fifth stage for the other 
two subjects (S2 and S4) based on Chedoke McMaster 
Impairment Inventory/ Stages of Hand. All subjects provided 
informed written consent and the experimental protocol was 
approved by Simon Fraser University, Office of Research 
Ethics. 
 

B. Training 

Subjects participated in robot-assisted rehabilitation for 8 
weeks, twice a week performing selected exercises based on 
the degree of impairment and hand functions which the 
subject desired to recover. The rehabilitation program 
involved two to three exercises performed using the 

HandCARE [11] and Haptic Knob [12] robotic systems 
during a one-hour training session. The amount of training 
depended on the performance and physical condition of the 
subject, but each exercise was practiced for at least twenty 
times.  

The exercises with the HandCARE were designated as 
Isometric (HC1), Sensorimotor (HC2) and Elastic (HC3). In 
the Isometric exercise (HC1) subjects were instructed to exert 
isometric force with a specific finger and to relax the other 
fingers. Their performance scores depended on achieving and 
briefly maintaining the force within a target window and 
keeping the force exerted by the other fingers below a 
specified threshold. Visual feedback of the force exerted by 
all fingers was provided continuously. HC1 was designed to 
train independent control of individual fingers. The 
Sensorimotor exercise (HC2) was similar to the Isometric 
exercise except that subjects were not given visual feedback. 
Instead they were provided with tactile feedback in the form 
of vibration. A small vibrating motor was placed on the finger 
being trained. When the subject’s force was in the target 
window the motor was turned on. If the subject exerted too 
little or too much force the motor was switched off. The 
exercise could be performed with one or more fingers to train 
coordination. HC2 was designed to improve the ability to use 
tactile sensation for controlling finger force and for 
coordinating finger forces. In the Elastic exercise (HC3), 
subjects moved all of the fingers in a coordinated fashion 
against an elastic load created by a torque motor. The 
objective was to coordinate the applied force and motion so 
that all of the fingers exerted the same force throughout the 
movement. Subjects were provided with a visual display 
related to the force being exerted by each finger. HC3 was 
designed to improve coordinated actions of the fingers. 

The exercises with the Haptic Knob were designated as 
Open/Close (HK1), Twisting (HK2), which we have also 
referred to as pronation/supination and Proprioception (HK3). 
In all exercises, the subjects grasped a disk which was split in 
two such that the two halves could move apart. The 
Open/Close exercise (HK1) consisted of two epochs. During 
the first epoch the Haptic Knob assisted the subject in 
opening the hand by increasing the separation between the 
two halves of the disk. During the second epoch, the subject 
had to close the hand against resistance using visual feedback. 
HK1 was designed to improve the control of grasp force. The 
Twisting exercise (HK2) involved rotating the disk between a 
start and target position while maintaining grip force. HK2 
was designed to improve the coordination of grip force and 
hand rotation. The Proprioception exercise (HK3) required 
that the subject maintain the grip force within a target window 
without visual feedback. If the grip force was less than the 
minimum of the target window the disk rotated in one 
direction, whereas if the grip force was greater than the 
maximum of the target window it rotated in the opposite 
direction. HK3 was designed to improve the ability to process 
proprioceptive sensation of position and force. 
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If the subject reached a plateau in performance of an 
exercise during the 8-week training period, either the level of 
difficulty of the exercise was increased or a different exercise 
was substituted. The healthy age-matched subjects had only 
one training session in which they performed the same 
exercise program as their age-matched stroke subject had 
performed in the first training session. Table I summarizes the 
exercises that each post-stroke subject performed and lists the 
number of training sessions for each exercise. 
 
Table I: Number of training sessions performed by each 
post-stroke subjects for each exercise 

 

Subject S1 S2 S3 S4 

Isometric (HC1) 0 0 16 0 

Sensorimotor (HC2) 0 12 16 11 

Elastic (HC3) 16 4 0 5 

Open/Close (HK1) 16 0 0 0 

Twisting (HK2) 16 7 16 4 

Proprioception (HK3) 0 9 0 12 
 

C. Protocol 

Surface electromyography (EMG) was recorded on the 
first and last day of the robot-assisted rehabilitation from nine 
hand and forearm muscles, representative of the hand 
functions being trained. The muscles included extensor carpi 
radialis brevis (ECR), extensor digitorum communis (EDC), 
flexor carpi ulnaris (FCU), flexor digitorum superficialis 
(FDS), pronator teres (PT), biceps brachii (BI), first dorsal 
interosseus (1DI), and abductor digiti minimi (ADM). 
Electrodes were placed over the belly of the selected muscles, 
aligned with the direction of the muscle fibers, based on 
anatomical landmarks [18]. In addition, test movements were 
performed to ensure that the electrodes were appropriately 
placed to record activity from the selected muscle and not 

from neighboring muscles.EMG was recorded using custom 
active bipolar electrodes (3 mm diameter stainless steel 
contacts, 13 mm center-to-center distance between contact, 
bandwidth 20 Hz to 500 Hz), and sampled at 2 kHz. 

EMG was recorded during maximal voluntary contraction 
(MVC) in sixteen different functional movements at the 
beginning of the session. The maximum value of the mean 
rectified EMG in a 0.25 s moving window across all 
movements was determined for each muscle and used 
subsequently for normalization. EMG for each trial during 
the training session was processed by first subtracting the 
mean to remove any DC offset and then rectifying and 
normalizing. The normalized EMG was low-pass filtered 
(Butterworth filter; 4 Hz cutoff; zero-phase lag) and 
re-sampled at 20 Hz using nearest-neighbor interpolation. An 

example of the unprocessed EMG signal, the 
rectified-normalized signal, and the low-pass filtered EMG 
envelope is shown in Fig. 1. 

 
Figure 1: A) An example of an unprocessed EMG signal recorded from the 
FDS muscle during performance of the Elastic exercise with the HandCARE 
for a healthy subject. B) The processed zero-mean, rectified, normalized 
signal (blue) and the low-pass filtered EMG envelope (red) for the signal 
depicted in A 

D. Analysis 

Parameters of the synchronous synergies were determined 
using a non-negative matrix factorization (NMF) algorithm 
[19] in which the recorded muscle activation vector m(t) is 
represented by the following equation:  
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where ci(t) are time-varying coefficients, wi, are fixed element 
muscle vectors (synergies) with the elements representing the 
relative activation of each muscle, and N is the number of 
synergies. As a measure the goodness of reconstruction, we 
used the “total variation” [18], defined as the trace of the 
covariance of the muscle activations, to define a multivariate 
R2 measure as follows: 
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where mn(tk) is the recorded EMG signal vector on trial n at 
time tk and m  is a vector representing the average EMG level 
of each muscle across all trials. Thus, R2 represents the 
fraction of total variation accounted for by the synergy 
reconstruction [14]. 

We ran the NMF algorithm with the number of synergies 
ranging from 1 to 8 (total number of recorded muscles).  We 
used a method similar to [14] to determine the optimal 
number of synergies: In [14], the number of synergies was 
selected based on the dependence of R2 (the amount of total 
variation explained) on N. Suppose that N* synergies are 
sufficient to explain the variation. Then any additional 
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synergy should only explain variation attributable to noise. 
Under the assumption that for N > N* each additional synergy 
captures an equal amount of noise-generated variation, we 
expect the R2 curve to be linear for N ≥ N* [14]. To determine 
where this occurred we fit a line to R2 plotted against N for 
different possible ranges of N, i.e., N = 1 … 8, N = 2 … 8, N = 
3 … 8, etc., each time testing whether the mean squared error 
was < 5*10-4. We selected this as being the point where the R2 
curve became linear, using the value of N at the beginning of 
the line as representing the optimal number of synergies, N*. 

To investigate whether the synergies identified for each 
exercise were consistent among healthy subjects, the set of 
optimal synergies was first found to describe the muscle 
activation patterns for each group of healthy subjects who 
performed a given exercise, using the procedure described 
above. The set of optimal synergies was then found for each 
subject in a group and compared for similarity with the set of 
optimal synergies for the group. As each muscle synergy is a 
unit vector, the cosine of the angle between two synergies can 
be used as a measure of their similarity. For each subject who 
performed a specific exercise, we defined the average 
similarity of his/her synergies with the corresponding group 
synergies as follows: 
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where G
iw is the vector of the ith synergy of the group and 

j
iw is the vector of the ith synergy for subject j. N* is the 

optimal number of muscle synergies for the group. 

III. RESULTS 

The optimal number of synergies for each exercise for the 
healthy subjects is listed in Table II along with R2 values. The 
average value of R2 was 0.92, indicating that it was possible 
to accurately reconstruct the muscle activation patterns with 3 
or 4 synergies. The synergies obtained for individual subjects 
gave similar results with an average R2 value of 0.94. When 
the individual synergies were compared to the group 
synergies, the average similarity across all exercises was 
found to be 0.78 (Fig. 2). 

 
 
 
Table II: Optimal number of synergies for healthy subjects 

 
Exercise HC1 HC2 HC3 HK1 HK2 HK3
N* 4 4 3 3 4 4 
R2 0.92 0.93 0.94 0.93 0.90 0.92

 
To evaluate changes in the pattern of muscle activation 

from pre- to post-training in post-stroke subjects, we found 
the set of optimal synergies for each exercise for each subject 

before and after the 8 weeks of training. It is possible i) that 
the optimal number of synergies could change and/or ii) that 
the structure of the synergies themselves could change, i.e. 
the relative amount of activation of each muscle in the 
synergy could change. To investigate the first possibility i), 
we found the optimal number of synergies pre- and 
post-training. Table III lists the optimal number of synergies 
required to reconstruct the EMG for each subject.  The 
average R2 values for pre- and post-training were 0.91 and 
0.92, respectively. In 6 cases, the optimal number of 
synergies was the same pre- and post-training, in 3 cases the 
optimal number of synergies increased and in one case the 
optimal number of synergies decreased. The difference in the 
number of muscle synergies pre- and post-training was not 
statistically significant (p=0.505, t(18)=0.46).  
 
Table III: Optimal number of synergies pre- and post-training 
for post-stroke subjects 
 
 

S1 
pre

S1 
pos

t 

S2 
pr
e 

S2 
pos

t 

S3 
pre 

S3 
pos

t 

S4 
pre

S4 
pos

t 
HC1 * * * * 3 3 * * 
HC2 * * 4 4 3 3 2 3 
HC3 4 3 * * * * * * 
HK1 2 2 * * * * * * 
HK2 2 3 * * 3 3 * * 
HK3 * * 3 4 * * 3 3 
* Subject did not perform this exercise. 
 

To investigate the second possibility ii), we found the 
similarity of the optimal synergies pre- and post-training for 
each post-stroke subject with respect to those of the group of 
healthy subjects. In all cases, the average similarity across 
subjects for each exercise increased from pre- to post-training. 
The mean value of similarity over all the subjects and 
exercises was 0.68 (standard error 0.02) pre-training which 
increased to 0.78 (standard error 0.01) post-training. Thus, on 
average, the optimal synergies of post-stroke subjects 
following training were as similar to those of the healthy 
subject group as those of the individual healthy subjects. The 
largest increment in average similarity (0.20) was observed 
for the Open/Close exercise performed with the Haptic Knob 
(HK1 in Fig. 2). The largest increment in average similarity 
for exercises performed with the HandCARE (0.15) was 
observed for the Elastic exercise (HC3 in Fig. 2). 
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Figure 2: Similarity pre- and post-training for each exercise compared to the 
healthy subject group. The mean similarity index for the individual healthy 
subjects is shown by the solid horizontal line. The dotted horizontal lines 
represent the standard error of the mean for the individual healthy subjects. 
The filled squares connected by dashed red lines show the mean similarity 
index pre- and post-training for the post-stroke subjects who performed each 
exercise (Table I). 

 
An example of the type of change in the optimal muscle 

synergies observed from pre- to post-training, is shown for 
one post-stroke subject (S1) in Fig. 3. The comparative 
muscle synergies obtained from the group of healthy subjects 
performing the same exercise is shown in the first column. 
The robot-assisted training had two effects. First, the 
independent control of individual muscles appears to improve 
since superfluous activity in several muscles (relative to the 
healthy group) is reduced post-training, e.g. BI and PT in 
Synergy 1 and BI in Synergy 2. Second, activity in some of 
the primary muscles of the synergy increases post-training, 
e.g. EDC in Synergy 1 and FCU in Synergy 2). 

 

 
 
Figure 3: Comparison of the 3 optimal synergies for exercise HC3 for the 
healthy group with those of subject S1 pre- and post-training. Synergies 1 and 
2, in particular, show changes in the relative activation of certain muscles that 
result in synergies that better resemble those of the healthy group 

post-training than pre-training. 

 

IV. CONCLUSIONS 

 
We have previously reported the benefits of training with 

the Haptic Knob on improvements in hand function in 
post-stroke subjects [20]. In this study, we have also been 
able to demonstrate that patterns of muscle activation for arm 
and finger muscles more closely resemble those of 
age-matched healthy subjects following training than before 
training. Given that the post-stroke subjects had experienced 
their stroke more than 2 years prior to participation in the 
study, these results suggest that neural plasticity in the brain 
can be exploited long after the stroke has occurred to modify 
muscle activation patterns. Furthermore, this plasticity exists 
even in elderly individuals. Although our study does not 
permit us to state definitively whether the observed changes 
in the structure of the optimal muscle synergies was primarily 
due to a relative increase in excitation or increase in inhibition 
of different muscle pairs, there is evidence that both occur. 
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