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Abstract— We investigate the path finding problem to a
target whose position is known in an unknown and unbounded
environment. We present a novel motion planning algorithm
which uses a group of heterogeneous robots to search for the
path to the target. The algorithm assigns the robots in pairs,
each two robots within a pair have the same velocity, and are
cooperating to search for the path to the target. The algorithm
artificially bounds each pair’s search to an ellipse whose focal
points are the start and the target points. Each robot pair has
a different velocity, thus each pair is assigned to an ellipse
with an area corresponding to the search time according to its

velocity. The algorithm’s performance is analyzed using time
competitiveness definitions, and its upper bound is proved to
be quadratic in the optimal off-line solution. The algorithm is
complete and robust.

I. INTRODUCTION

The problem of searching by autonomous mobile robots

receives a lot of attention in recent years, both in academic

research and in industry. Mobile robots already play a

significant role in our lives and their applications are growing

rapidly. For example, at home, the iRobot Roomba household

totally autonomous vacuum cleaner [1] searches and cleans

dirt. In space, the partially autonomous Rovers on Mars

searching for specimens and exploring its surface [2] can

find their way to a predefined target avoiding local obstacles.

At the service of police and army forces there are bomb

disarming robots, and in industry, AGVs transfer materials

in production plants avoiding dynamic obstacles [3].

The advantages of employing multiple robots rather than

a single robot in such applications are numerous, the most

important are increased efficiency, shorter task duration,

and robustness [4]. The use of heterogeneous robots is

taken under considerations in cases where different roles

are needed for each robot [5], or in cases where a group

of robots is formed out of different types of robots due

to inventory constraints. Heterogeneity can appear in many

flavors, different types of sensors, various sizes, speeds,

power units types, loading capabilities, end-effectors, and so

on.

It is common to distinguish between searching, exploration

and coverage missions, where searching [6] is done for

a target whose position is unknown or in an unknown

environment. Exploration [7] usually comes together with

mapping (SLAM [8]), where an unknown area needs to be
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explored and mapped for future applications. Coverage tasks

[9] deals with moving all over a certain area with some tool,

e.g. lawn mowing, vacuum cleaning etc.

This work focuses on searching for a target whose po-

sition is known, in an environment which is unknown and

unbounded, thus, a path to the target must be searched and

found. We use multiple heterogeneous robots, which differ

only in their velocities. The robots use tactile sensors and

each robot knows its position.

Based on CBUG [10] for a single robot search and

MRBUG [11] for homogeneous group of robots we intro-

duce HMRBUG algorithm. HMRBUG , Heterogeneous Multi

Robot BUG algorithm uses a modified BUG1 [12] technique

to search for a path to a known target in an unknown

environment. Since BUG1 can have very bad performance

in certain situations, such as long obstacles and unbounded

environments, HMRBUG bounds BUG1 search in ellipses

whose focal points are the start and target positions. The

uniqueness of the ellipse is that it is the locus of all points

in the plane whose distances to the two focal points add

to a constant. Using ellipse means searching with equal

chance for all paths from start to target with the same

lengths. HMRBUG utilizes multiple heterogeneous robots,

by deploying pairs of robots in ellipses whose areas and

search times are growing until reaching the target. In each

step the robot pair’s search is bounded to an ellipse, however,

eventually, the search area is growing until reaching the

target.

The structure and contributions of this paper are as fol-

lows. First we introduce the problem of path finding by a

group of robots which are heterogeneous in their velocity,

and their search environment is unknown and unbounded. In

the next section setup definitions are presented, including the

robots’ size, and the notion of time complexity, which is used

later for performance analysis. In section III HMRBUG , a

novel algorithm for the problem of path finding by hetero-

geneous robots is introduced and explained. In the following

section HMRBUG performance is analyzed, we find its upper

bound to be quadratic in the optimal off-line solution and

prove HMRBUG is complete and robust. Section V shows

execution example for two robot pairs in an office like

environment, and last, we conclude and discuss future work.

II. SETUP AND DEFINITIONS

Before introducing HMRBUG algorithm and analyzing it,

we present some definitions regarding performance measures

and basic setup of the robots. The robots are assumed to

be of size D, which can be considered as the width of

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4590



the robots, a property which will serve us later in analyz-

ing HMRBUG performance. The robots have tactile sensors

which detects obstacles in close proximity, and optimal self

positioning system.

Definition 1 (Generalized Time Competitiveness [13]):

An on-line algorithm solving a task P in time T is

f(Topt) time competitive when T is bounded from above

by a scalable function f(Topt) over all instances of P ,

and Topt is the optimal off-line solution achieved while

knowing all the information about the environment’s

geometry. In particular, T ≤ c1Topt + c0 is the linear time

competitiveness, while T ≤ c2T
2
opt + c1Topt + c0 is a

quadratic time competitiveness, where the ci’s are positive

constant coefficients that depend on the robot size D, the

robots’ velocity, the number of robots, and the geometry of

the environment.

The meaning of scalability is as follows. When performance

is measured in time units such as seconds, one must ensure

that both sides of the relationship T ≤ f(Topt) posses the

same units, so that change of scale would not affect the

bound. For instance, if T is measured in sec, the coefficient

c2 in the relationship T ≤ c2T
2
opt + c1Topt + c0 must have

units of sec−1, c1 must be dimensionless, and c0 must

have units of sec. Note that the definition of f(Topt) time

competitive focuses on a particular algorithm solving the task

P .

The following conditions assure the search area and time

of each consequent robot pair will grow in order to prevent

redundant search and to eventually reach the target.

Condition 1: (Search ellipse area ratio) The area of each

consequent search ellipse is greater than the area of the

previous search ellipse.

During the same period of time, robots with different

velocities will travel unequal path lengths, and the ratio of the

traveled path lengths is the same as the ratio of the velocities.

Consequently, a fast robot might finish searching the next

search ellipse before the slow robot finished searching in the

previous ellipse, thus, for HMRBUG , condition 1 does not

suffice, and the following condition completes it.

Condition 2: (Search time ratio) The time of search within

each consequent search ellipse is greater than the time of

search within the previous search ellipse.

III. HMRBUG MOTION ALGORITHM TO A KNOWN

TARGET

We now introduce HMRBUG algorithm for reaching

a known target. HMRBUG uses 2n robot pairs with

n different velocities, vj = βjv, j = 1, . . . , n, where

βj+1 ≥ βj ≥ 1, j = 1, . . . , n− 1 and v is the velocity of

each of the robots in the slowest robot pair and βj is the

ratio between the velocity of robot pair j and the velocity of

the slowest robot pair, v.

HMRBUG , solves the problem of finding a path to a

known target using a group of robots. HMRBUG deploys

each pair of robots to search for the target in a virtual

bounding ellipse, and inside uses PBUG1 algorithm [11]

as a sub procedure. PBUG1 algorithm is described in the

following section.

A. PBUG1 Motion Algorithm for a Pair of Robots [11]

We now review PBUG1, a version of BUG1 [12] for a

pair of robots which uses the same problem’s definitions

as BUG1. In PBUG1 a pair of robots that start from a

common start point S needs to find a path to a target T
whose position is known, in an unknown planar environment.

The pair of robots will move together toward the target

in a straight line until they hit an ith obstacle at a point

marked as Hit point Hi, i = 1, 2, ... . At that point they

split, robot RL turns left and robot RR turns right, and they

circumnavigate the obstacle from different directions. On that

account, each robot encircles half of the obstacle’s perimeter.

While moving, each robot calculates and remembers the

closest point on the obstacle’s boundary to the target. Upon

meeting, the robots compare the recorded information, decide

which point is the closest to the target, join and again move

together to that closest point which they mark as Leave

point Li, i = 1, 2, . . . . Finally, the robots continue to move

together toward the target.

1) Setup and Definitions of PBUG1: The basic setup and

definitions of PBUG1 are the same as in [11]. PBUG1 uses

two mobile robots, RL and RR, each has a different pre

defined local direction for moving around an obstacle, left

and right accordingly. The hit and leave points are common

for both of the robots. The procedure PBUG1 needs only

one register for each robot, Reg1, which is used to store

the coordinates of the current point, Qm, of the minimum

distance between the obstacle’s boundary and the target. The

robots compare their Qm points and go together to the one

with the shorter value.
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Fig. 1. A pair of robots, RL and RR executing PBUG1. The dense dashed
lines mark a mutual path of the two robots
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B. Target Reachability Test

PBUG1 determines that the target is unreachable and

trapped inside an obstacle using BUG1 method [12], which

checks the direction to the target after circumnavigating an

obstacle. If this direction points into the last obstacle, the

target is surrounded by that obstacle, since the leaving point

is the closest point to the target on the obstacle’s boundary.

C. HMRBUG Algorithm for a Group of Robots

HMRBUG algorithm launches n pairs of robots from a

common starting point S and assigns each pair Rj to a

different ellipse to search for a path to the target T in it,

each ellipse’s focal points are S and T .

The first pair of robots R1 is designated to the ini-

tial ellipse of search time T0, and each of the follow-

ing robots starts its search in an ellipse of search time

larger than the previous ellipse’s search time by a factor of

αj , αj > 1, namely, the search times of the ellipses will be

T0, α2T0, α2α3T0, α2α3α4T0, . . . . For example, in Fig. 2,

robots 1L and 1R are initially assigned to search for a path

to the target inside an ellipse of search time T0 and robots

2L and 2R are assigned to search inside an ellipse of search

time α2T0. The search for the path inside an ellipse is done

by the pair of robots assigned to that ellipse using PBUG1.

In HMRBUG , the execution of PBUG1 regards the ellipse

as a virtual obstacle’s boundary. If the target is detected, the

algorithm terminates, otherwise, the pair of robots repeats the

process on the next unassigned ellipse in the series. A formal

description of the basic algorithm appears in Algorithm 1.

Before analyzing the time competitiveness of the algo-

rithm, we make the following remarks. First, during initial-

ization, after getting the values of n, T0,S, and T , each robot

is assigned to a number j and to a local direction, Left
or Right and thus can calculate its future search ellipses

parameters, which means that after a pair of robots has

finished searching for a path in an ellipse, it can immediately

continue to search in the next ellipse regardless of the state

of the other robots. Second, the method PBUG1 used to

determine that the target is unreachable and trapped inside an

obstacle in step 2 is discussed in subsection III-B. HMRBUG

assures in step 2a that the robots were not bounded by the

ellipse and thus guarantee that the target is unreachable.

Third, regarding the memory requirements, in HMRBUG ,

each robot executing PBUG1 uses the same amount of

memory as in BUG1 with a little modification, plus a con-

stant amount of memory. Namely, the target position T , the

current obstacle’s hit point, the distance of the closest point

on the current obstacle’s boundary to the target and the two

distances to that point along the obstacle’s boundaries from

its current position which are BUG1 necessities. PBUG1

memory modification is in the last requirement, where these

two distances to the leave point are not necessary and should

be recorded by each robot, as was discussed in Subsection

III-A.1. HMRBUG additional memory requirements are the

start position S and the current ellipse’s parameters ap, bp.

Algorithm 1: HMRBUG

Sensors: A position sensor.

An obstacle detection sensor.

Input: Position of a start S and a target T points.

An initial ellipse with focal points S and T
An initial search time T0

n pairs of robots {1L, 1R, 2L, 2R, . . . , nL, nR}
with different velocities, vj = βjv, j = 1, . . . , n
βj+1 ≥ βj ≥ 1, j = 1, . . . , n− 1, β1 = 1

Initialization: For each robot pair Rj , j = 1, . . . , n:

Set global step p = 1
Set initial leave point L0

ej
= S ,

Set multiplication factor αj =
(n+1)(

1
n

)β
n−1
n

j−1

∏
n
k=2,k 6=j−1 β

1
n
k

,

where βj−1 = βn when j = 1
Set initial search ellipse parameters:

focal points are S and T ,

semi major axis1 a0 = a0(αj , T0,S, T , βj, v),
semi minor axis1 b0 = b0(a0,S, T ).

For each robot pair Rj , Repeat:

Initialize PBUG1 with the following parameters:

Create an outer virtual obstacle’s boundary

with current search ellipse.

Start point is S, target is T .

Set i = 1.

Leave point is L0.
Execute PBUG1 until one of the following occurs:

(1) PBUG1 terminates at T : STOP, target is found.

(2) T is trapped inside an obstacle:

(a) If the obstacle does not intersect the eRj

ellipse: STOP, the target is unreachable.

(b) Else, move to the next unoccupied ellipse:

Set p = p+ 1.

Set current search ellipse parameters:

semi major axis1 ap = ap(a0, αj , p),
semi minor axis1 bp = bp(a0, ap).

Set L0 at PBUG1 termination point.

End of Repeat loop
1Calculations of a0, b0, ap, bp is presented in section IV.

IV. PERFORMANCE ANALYSIS

In this section, the performance of HMRBUG is analyzed

and an upper bound on the traveling time to reach the

target is formed. First, two conditions regarding the ellipses

areas and search times are formulated. Those conditions

assist the calculations and the convergence of the upper

bound of HMRBUG . Then, using the ellipse geometrical

properties and the optimal off-line solution, the upper bound

is achieved.

In the following two lemmas we use terms related to

Configuration Space. The configuration space (or C-space)

of a disc shaped robot is IR2, and the C-space obstacle CBi

consist of all robot configurations where it intersects the
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obstacle Bi.

Definition 2 ([10]): Let CBi be the C-space obstacle

induced by an obstacle Bi for a disc robot of size D. The

traceable obstacle induced by Bi, denoted Bi, is obtained

by filling any internal holes in CBi and then shrinking CBi

inward by a distance of D/2.

Lemma 4.1 ([10]): Let a planar environment contain z
disjoint traceable obstacles Bi, i = 1, . . . , z. Let a disc

robot of size D trace the ith obstacle’s boundary, and let

qi be the total area swept by the robot during tracing

of the ith boundary. Let C be any simple closed curve

which surrounds the z regions swept by the robot. Then
∑z

i=1 qi ≤ 4A(C), where A(C) is the area of the traceable

obstacle-free points enclosed by C.

Note that the regions swept during tracing of the individual

boundaries may overlap, so that in general the sum
∑z

i=1 qi
may be larger than A(C). The following lemma is written in

the spirit of [11].

Lemma 4.2: The path travel time tji of the the ith ellipse

traversed by each robot of the jth pair searching for the path

to the target is bounded by

tji ≤ 4
Ai

βjvD
+ (||L0

i − T || − ||L0
i+n − T ||)/(βjv),

where Ai is the area of the ith ellipse, D is the size of each

robot, βjv is the velocity of each robot of the jth’s pair. L0
i

is the start point at the ith ellipse, n is the number of robot

pairs, L0
i+n is the start point at the next ellipse of the pair of

robots, and ||γ− δ|| denotes the Euclidean distance between

γ and δ.

Proof: When moving toward the target in the

ith ellipse, each robot of the pair of robots assigned by

HMRBUG to that ellipse is executing PBUG1. The regions

swept by the robots during circumnavigation of obstacles in

this ellipse (including the ellipse itself) are surrounded by

the ellipse’s boundary. Identifying the latter boundary with

the curve A(C) from Lemma 4.1, the total path length of

the two robots during circumnavigation of the obstacles is

at most 4Ai/D, where Ai is the ith ellipse’s area. Since

each robot travel exactly half of the way, the path length

of one robot is not more than 2Ai/D. Recall now that

under BUG1 the robot circumnavigates the boundary of each

obstacle at most 1.5 times, here each of the two robots will

circumnavigates the boundary of each obstacle only one time

at most. Hence, the total length of each robot’s path during

boundary following is at most 4Ai/D. Recall, too, that under

BUG1 motion between obstacles is always directly to the

target. The total length of these motion segments equals to

the net decrease of the distance of the robot from T , which is

||L0
i −T ||−||L0

i+n−T ||. Adding the two terms and dividing

by the robots’ velocity gives the result.

The following lemma states that the last ellipse search

time is bounded from above. This lemma and its proof are

inspired by [11].

Lemma 4.3: Let T be reachable from S. If the initial

ellipse contains no path from S to T , robot pair j in

HMRBUG reaches the target in an ellipse whose search time

Tfj is bounded by,

Tfj ≤ παjβntopt
4βj−1D

√

(βnvtopt)2 − ||S − T ||2, (1)

where, topt is the travel time of the optimal off-line path

from S to T by the fastest robot pair, αj is the multiplication

factor of the robot pair which reached the target, βj is the

velocity factor of robot pair j, and for j = 1, βj−1 = βn, v
is the slowest robot’s velocity and D is the robots’ width.

Proof: An ellipse with focal points S and T satisfies

the inequality ε = {x : ||x − S||+ ||x− T || ≤ 2a}, where

2a is the length of the ellipse’s major axis. Consider now the

optimal off-line path from S to T of length lopt. Every point

x along this path satisfies the inequality ||x−S||+||x−T || ≤
lopt. It follows that the entire optimal off-line path lies in an

ellipse with focal points S and T and major axis 2a ≤ lopt.
Next recall that the area of an ellipse is given by πab, where

2b is the length of the ellipse’s minor axis. In ellipse with

focal points S and T ||S − T ||2/4 + b2 = a2. Hence,

b ≤ 1
2

√

l2opt − ||S − T ||2, where we used the inequality

a ≤ lopt/2. Let Aopt denote the area of the smallest ellipse

with focal points S and T which contain the optimal off-line

path. Substituting the expressions for a and b in πab gives

the upper bound:

Aopt = πab ≤ π

4
lopt

√

l2opt − ||S − T ||2. (2)

By assumption the initial ellipse contain no path from S
to T . Hence, HMRBUG multiplies the search time of the

ellipse by a factor of αj at least once. In worst case scenario,

robot pair Rj−1 searched for a path in an ellipse whose

area is Aopt − ǫ and search time Toptj−1
− ǫ, substituting

topt = lopt/(βnv) and (2) into Toptj−1
= Aopt/(βj−1vD),

yields Toptj−1
≤ πβntopt

4βj−1D

√

(βnvtopt)2 − ||S − T ||2.
Robot pair Rj−1 could not reach the target in the current

ellipse. Consequently, Rj is assigned afterwards to search

for it in an ellipse whose search time satisfies the inequality

Tfj ≤ αjToptj−1
. Substituting for Toptj−1

in the inequality

Tfj ≤ αjToptj−1
gives the result.

The following proposition establishes a quadratic time

competitive upper bound on HMRBUG .

Theorem 1: (Quadratic time competitive complexity) As-

sume target T is reachable from S. Let HMRBUG use n
robot pairs with velocities: vj = βjv, ∀j, j = 1, 2 . . . n,
βj+1 ≥ βj ≥ 1, ∀j, j = 1, 2 . . . n− 1.

Then the traveling time of robot pair j which reached the

target:

TRj
<

παjβn (
∏n

i=1 αi) topt
√

(βnvtopt)2 − ||S − T ||2
4Dβj−1 (

∏n

i=1 αi − 1)
.

Proof: The path to the target is assumed to lie within

an ellipse whose area is given in (2) and search time (1).

First, we will inspect the case in which robot pair no. 1, R1

reaches the target. In worst case scenario, the last robot pair,

Rn, searched for a path in an ellipse whose area is Aopt − ǫ
and search time Toptn

− ǫ thus could not reach the target.
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Consequently, R1 is assigned afterwards to search for it in

an ellipse whose area is (1)

Tf1 ≤ πα1topt
4D

√

(βnvtopt)2 − ||S − T ||2. (3)

The sum of the ellipses’ search times of R1 is,

TR1 ≤ t1,1 + t1,1+n + t1,11+2n + · · ·+ t1,i

= T0 +

(

n
∏

k=1

αk

)1

T0 +

(

n
∏

k=1

αk

)2

T0

+ · · ·+
(

n
∏

k=1

αk

)( i−1
n )

T0 (4)

This series of times is a converging geometric series, which

its sum is,

TR1 ≤ (
∏n

k=1 αk)
( i−1

n
+1) − 1

∏n
k=1 αk − 1

T0 <
(
∏n

k=1 αk)
( i−1

n
+1)

∏n
k=1 αk − 1

T0

(5)

Comparing the two expressions for the time to cover the last

ellipse, t1,i from (4), and Tf1 from (1), T0 can be calculated,

T0 =
πα1topt

√
(βnvtopt)2−||S−T ||2

4D(
∏

n
i=1 αi)

( i−1
n )

. Substituting T0 into (5)

and simplifying yields,

TR1 <
πα1topt

√

(βnvtopt)2 − ||S − T ||2 (∏n

i=1 αi)

4D (
∏n

i=1 αi − 1)
.

Accordingly, for R2, in worst case scenario, R1 covered

an ellipse whose search time Topt1
− ǫ and thus did not find

target. Consequently, R2 is assigned afterwards to search for

it in an ellipse whose search time is according to Lemma 4.3

Tf2 ≤ α2Topt1
=

πα2βntopt
4Dβ1

√

(βnvtopt)2 − ||S − T ||2.
(6)

The sum of the search times by R2 is,

TR2 ≤ t2,1 + t2,2+n + t2,2+2n + · · ·+ t2,i

= α2T0 + (
∏n

k=1 αk)
1
α2T0 + · · · + (

∏n
k=1 αk)

( i−2
n ) α2T0

Following the calculations used for robot pair no. 1, this

sum equals,

TR2 <
α2 (

∏n
k=1 αk)

( i−2
n

+1)
∏n

k=1 αk − 1
T0 (7)

Comparing the two expressions for the time to cover the

last ellipse, t2,i, and Tf2 from (6) T0 can be calculated,

T0 =
πβ

n
topt

√
(βnvtopt)2−||S−T ||2

4Dβ
1(

∏
n
i=1 αi)

( i−2
n )

. Substituting T0 into (7)

and simplification yields,

TR2 <
πα2βn (

∏n

i=1 αi) topt
√

(βnvtopt)2 − ||S − T ||2
4Dβ1 (

∏n

i=1 αi − 1)
.

Accordingly, for R3, the sum of the search times is,

TR3 <
πα3βn (

∏n

i=1 αi) topt
√

(βnvtopt)2 − ||S − T ||2
4Dβ2 (

∏n

i=1 αi − 1)
.

Accordingly, generally,

TRj
<

παjβn (
∏n

i=1 αi) topt
√

(βnvtopt)2 − ||S − T ||2
4Dβj−1 (

∏n

i=1 αi − 1)
.

Next, in order to find the optimal multiplication factors,

α′
js, a new objective function which combines all the sums

of times is formed,

Ttot = TR1 + TR2 + . . .+ TRn

<
πβn (

∏n
i=1 αi) topt

√

(βnvtopt)2 − ||S − T ||2
4D (

∏n
i=1 αi − 1)

·

·
n
∑

i=1

αi

βi−1

.

Differentiating Ttot according to each of the α′
js, com-

paring each function to zero and finding the common roots

yields,

αj =
(n+ 1)(

1
n
)β

n−1
n

j−1
∏n

k=2,k 6=j−1 β
1
n

k

, βj−1 =

{

βj−1 , j 6= 1
βn , j = 1

}

In order to calculate a0, b0, ap, bp, it is necessary to solve

the following set of equations, assuming ||S − T ||, T0, and

βj are given:

a2p = ||S − T ||2/4 + b2p,

Ap = πapbp,

tjp ≤ 4
Ap

βjvD
+ (||S − T ||)/(βjv),

tjp =

(

n
∏

k=1

)p−1( j
∏

k=2

)

T0.

Corollary 4.4: HMRBUG is complete.

Proof: The first important property established in

Theorem 1, is that if the target T is reachable, HMRBUG

will find a path to it. The second property is that HMRBUG

will find that path in a finite and limited time.

V. EXECUTION EXAMPLE

In the following example depicted in Fig. 2,

HMRBUG launches two pairs of robots, 1, 2 to search

for a path to the target in an office like environment. Each

robot pair is initially assigned to a bounding ellipse, e1, e2
to execute PBUG1 in it, and each robot in a pair is assigned

to a different local direction, Left, Right: 1L, 1R, 2L, 2R.

At first, the robot pairs are moving directly toward the

target, and as they encounter an obstacle they split, and

each robot moves in its local direction. It can be observed

that a part of the path is traversed by all the robots together

at the same time, and the robots will move together as long

as they are within the boundary of the first ellipse. While

robot pair no. 2 is traversing the second ellipse, robot pair

no.1 finishes traversing the obstacle’s boundary which lies

inside the first bounding ellipse and the ellipse itself. After

meeting each other, the robots of pair no. 1 move toward the

closest point to the target they encountered in their traverse,
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there they conclude that they cannot reach the target from

ellipse no. 1. In Fig. 2(a) robot pair 1 is just about to

execute PBUG1 in ellipse no. 3, and robot pair 2 already

meet on ellipse no. 2 and is on its way to the closest point

to the target. While robot pair no. 1 is busy with its search

in ellipse no. 3, robot pair no. 2 reaches the closest point

to the target (Fig. 2(b)). Next, robot pair 2 is assigned to

ellipse no. 4 and while searching in it robot pair no.1 meets

on ellipse no.3 (Fig. 2(c)). While robot pair no. 2 searches

in ellipse no. 4, robot pair 1 moves toward the closest point

to the target (Fig. 2(d)) and from there it continues without

any more obstacles in its way and reaches the target.

Fig. 2. Execution example of HMRBUG

VI. CONCLUSIONS AND FUTURE WORKS

We presented the problem of finding a path to a tar-

get whose position is known in an unknown and un-

bounded environment. HMRBUG , a novel algorithm for

a group of velocity heterogeneous robots was introduced.

HMRBUG performance was proved to be time competitive

with a function quadratic in the optimal off-line solution.

HMRBUG algorithm was proved to be complete and robust,

and an execution example exhibits its main principle.

We are currently working on proving that the problem’s

lower bound is quadratic in the optimal off-line solution and

then HMRBUG will be proved to be optimal since its perfor-

mance will be within the same class. Future work includes

using different velocities within each robot pair, and using

communication between the robots to share information e.g.

a common map of the obstacles in the environment and

thus to enhance the performance. Allowing the robots not

to follow the bounding ellipse after bypassing an obstacle,

i.e., when the way directly towards the target is clear is a

practical speedup that should be considered.
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