
SKYLINE2GPS: Localization in Urban Canyons using Omni-Skylines

Srikumar Ramalingam1∗ Sofien Bouaziz2∗ Peter Sturm3 Matthew Brand1

1Mitsubishi Electric Research Lab (MERL), Cambridge, MA, USA
2Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

3INRIA Grenoble – Rhône-Alpes and Laboratoire Jean Kuntzmann, Grenoble, France

{srikumar.ramalingam,brand}@merl.com, sofien.bouaziz@gmail.com, peter.sturm@inrialpes.fr

Abstract— This paper investigates the problem of geo-
localization in GPS challenged urban canyons using only
skylines. Our proposed solution takes a sequence of upward
facing omnidirectional images and coarse 3D models of cities
to compute the geo-trajectory. The camera is oriented upwards
to capture images of the immediate skyline, which is generally
unique and serves as a fingerprint for a specific location in a
city. Our goal is to estimate global position by matching skylines
extracted from omni-directional images to skyline segments
from coarse 3D city models. Under day-time and clear sky
conditions, we propose a sky-segmentation algorithm using
graph cuts for estimating the geo-location. In cases where the
skyline gets affected by partial fog, night-time and occlusions
from trees, we propose a shortest path algorithm that computes
the location without prior sky detection. We show compelling
experimental results for hundreds of images taken in New
York, Boston and Tokyo under various weather and lighting
conditions (daytime, foggy dawn and night-time).

I. INTRODUCTION AND PREVIOUS WORK

The skyline has long been a source of fascination for

photographers, thought to identify the city as uniquely as

a fingerprint. In this work, a step further has been taken

to investigate its uniqueness on omni-images for any given

geospatial location. Such an approach has several interest-

ing properties compared to existing techniques. First, the

skyline is compact, unique and extremely informative about

a location. Second, it is less prone to occlusions (trees,

lampposts, cars and pedestrians) and lighting variations than

other features. The main reason to use omni-images instead

of perspective ones comes from the fact that the stability

of the underlying pose estimation problem increases with

the field of view of the camera. It has also been proven

formally that omni-directional cameras can give much better

accuracy in motion estimation than perspective ones [6], [3].

In the case of small rigid motions, two different motions can

yield nearly identical motion fields for classical perspective

cameras, which is not the case for omnidirectional images.

In robotics and vision community, several promising si-

multaneous localization and mapping (SLAM) algorithms

have been developed in the last three decades and detailed

surveys are available [8]. Existing techniques in SLAM

can be classified into ones that use a motion model [2],

[4] and the approaches free of motion models [20], [26].

The basic idea in using a motion model is to smooth the

trajectory of the camera and constrain the search area for

∗joint primary authors

Fig. 1. On the top we show upward facing images of skylines. In the

middle, we show the matched skylines using the proposed algorithms. In

the bottom, we show the corresponding geo-locations on aerial images.

[Best Viewed in Color]

feature correspondences. On the other hand, the ones without

using a motion model reconstruct the scene coarsely using

3D reconstruction algorithms and estimate the pose of the

camera w.r.t the coarse model. In contrast to many methods

where both the 3D reconstruction and localization are solved

simultaneously or sequentially, our method attempts to solve

only the localization problem assuming that a coarse 3D

model of the city is already given.

In the last few years, there has been an increasing interest

in inferring geolocation from images without using SLAM-

style algorithms [25], [33], [13], [10]. Several recent image

based localization approaches have been proposed using

feature matching algorithms. The general idea behind most of

these approaches is to find the closest image to a given query

picture in a database of GPS-tagged images. Robertson and

Cipolla [25] showed that it is possible to obtain geospatial

localization by wide-baseline matching between a new image

from a mobile camera and a database of rectified building

facade images. Zhang and Kosecka showed accurate results

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3816

in the ICCV 2005 computer vision contest (”Where am

I?”) using SIFT features to search the closest images in a

database of GPS-tagged images [33]. Jacobs et al. [13] used

an interesting approach to geolocate a static outdoor webcam

by correlating its images with satellite weather imagery taken

at the same time of day or with other webcams’ images for

which the locations are known. The underlying idea is that

there is a consistent pattern in the manner in which these

images vary over time. Hays and Efros [10] used millions

of GPS-tagged images from the web for georeferencing a

new image. In order to match the query image with a large

collection of images (6 million images), several features

based on color histograms, texton histograms, line features,

gist descriptor, geometric context (labeling of the image

pixels into sky, buildings and ground), etc. are used. The

use of time-stamped photographs has also proved beneficial

for geo-localization [14].

In contrast to most of these approaches that leverage on

the availability of these georeferenced images, the approach

presented uses coarse 3D models downloaded from the web.

A large repository of coarse 3D models already exists for

major cities. There exist a few more related approaches that

use 3D models and/or omni-directional cameras for geolocal-

ization [16], [28], [18], [31], [5]. Koch and Teller proposed

a localization method using a known 3D model and a wide

angle camera for indoor scenes by matching lines from the

3D model with the lines in images [16]. In contrast to their

technique, this work relies on the skylines for geolocalization

of outdoor scenes. Although, the idea of using the horizon

or the skyline has been explored earlier in [28], [18], [1],

our approach is different from them in several ways. In

[28] a human user input is required to extract the skyline,

whereas this work uses an automatic graph cuts algorithm.

In addition, we also propose a method which does not need

prior sky detection. In [28] a hash table is precomputed to

match the unwrapped horizon with the 3D model, whereas

the algorithm presented in this work synthesizes fisheye

images on the fly for matching. This relaxes the requirement

of pre-processing and storing millions of synthetic skylines.

Our work is closest to [18], [1], where an omni-directional

infrared camera is used instead of an omnidirectional visible

camera or a prior sky detection is necessary for the algorithm

to work. This paper is an extended version of our previous

workshop paper [21].

II. OVERVIEW OF OUR APPROACH

We briefly explain the various building blocks of our geo-

localization system.

Calibration and fisheye synthesis. In this work we used a

fisheye lens with a field of view of about 183◦. However,

we would like to propose a method that could work with

all kinds of omni-directional cameras. For that reason, we

chose to use a generic calibration approach which treats every

camera as a mapping between a pixel and its corresponding

projection rays. It was recently shown that the generic

calibration algorithm outperforms standard parametric ap-

proaches in the case of very high distortions [23], [7]. We

are not aware of any work in vision which synthesizes omni-

directional images from 3D models for pose estimation. The

synthesis is done using a pixel shader program implemented

on a Graphics processing unit (GPU) for generating a large

number of fisheye images in real time.

Skyline matching using graph cuts and robust chamfer

distance. We propose a graph cuts based algorithm em-

bedded with parameter learning for robustly detecting sky

in omni-directional images. The most closely related work,

which already gives excellent results, is the geometric label-

ing problem to classify a given image into sky, buildings and

ground [12]. After detecting the sky, the skyline matching is

done using the chamfer distance embedded in a RANSAC

framework.

Skyline matching using shortest path algorithm. Through

a rigorous study we found that the sky detection method

proposed will not be robust for all weather conditions. In

order to handle difficult conditions due to weather and

lighting changes we also propose a max-min operator and

a shortest path algorithm to compute the location. Here we

relax the requirement of sky-detection for geo-localization.

On the other hand, we define a cost function that validates

the various skyline proposals from the 3D model.

Experiments. We show promising experimental results for

hundreds of images captured under various weather and

lighting conditions in different cities. We also show that our

method is capable of outperforming GPS measurements in

urban canyons.

Degeneracy analysis. Finally we show a minimal solution

for 3DOF pose estimation using the minimal number of

required features (points and lines) on the skylines. This

theory highlights the important connections of the 2D-3D

registration problem to our proposed skyline-matching and

clearly points out the possible degenerate cases and rarity of

such cases in practice.

A. Calibration and Fisheye Synthesis

Fig. 2. (a) A fisheye image with two pixels marked. (b) and (c) show the

projection rays corresponding to the two pixels from the hemispherical set

of rays computed using generic calibration.

We use a generic imaging model to calibrate our fisheye

lens [23]. According to this model, every pixel in the omni-

image is mapped to a 3D half-ray in space. This mapping

can be computed using images of calibration grids. It has

been shown recently that the use of generic imaging models

allows very precise distortion correction [23].

3817

In Figure 3 we show the various stages in synthesizing

a fisheye image. In order to synthesize a fisheye image we

first generate five binary perspective images, corresponding

to the views in the hemicube shown in Figure 3(c). As our

algorithm uses coarse 3D models without any texture, we

generate a cubemap simply by rendering a 3D model colored

entirely in white; the resulting binary image is black in sky

regions. We then use our calibrated ray-table to map the

cubemap to a fisheye image, as shown in Figure 3(c). The

black region is the predicted shape of the sky. Some of the

fisheye images synthesized at different places in a 3D model

of Boston’s financial center are shown in Figure 3(d).

As the previous section indicated, our ray-calibrated view

synthesis has the advantage that it does not “bake in” errors

that would arise from using a parametric lens model. In

addition, a pixel shader program is implemented in GPU to

generate these fisheye images at a very fast rate. This allows

us to generate accurate fisheye images on the fly; there is no

need to store images in a large database.

(a) (b) (c)

(d)

Fig. 3. Our algorithm to construct a fisheye image. (a) shows the 3D model

of an urban scene where we synthesize a fisheye image. (b) The cubemap

generated from a given point in the 3D model. (c) Fisheye image created

from the cubemap. (d) Examples of skylines extracted from fisheye images.

B. Sky Detection

Given an omni-directional image, which is circular in the

case of a fisheye model, we want to classify the pixels into

sky and rest. This can be seen as a segmentation problem

with two labels. The features that can be used for this

segmentation can vary from simple RGB colorspace com-

ponents to a wide variety of features like gradients, straight

lines, vanishing points, etc. Our approach has two modules:

a parameter learning method and a discrete optimization

algorithm. In our problem we use graph cuts, which is both

fast and highly successful in various vision problems like

stereo, segmentation, and image restoration [29]. An energy

function, involving binary variables in unary and pairwise

terms, is represented using a weighted graph whose minimum

cut (computed using the max-flow algorithm) yields an

energy-minimizing partition of the variables.

We briefly introduce the energy function, whose param-

eters we are interested in learning. Let xi ∈ B = {0, 1}
where i = 1, 2, .., n, represent boolean random variables.

(a) (b) (c)

Fig. 4. (a) Original image. (b) Likelihood for the sky. (c) Likelihood for the

rest of the image. Red and Blue correspond to higher and lower likelihoods

respectively. [Best Viewed in Color]

In our problem, each of these variables could represent

the boolean labels (sky and rest) of the pixels in the

omnidirectional images. We use quadratic pseudo-boolean

functions for representing our energy function. These are

nothing but energy functions of boolean variables that map

a boolean vector to a real value and thus the name pseudo-

boolean. Let θ denote the parameters in our energy function.

The parameter vector θ consists of the unary terms θi;a
and the pairwise terms θij;ab, where i, j = 1, 2, .., n and

a, b ∈ B. These parameters are also referred to as unary and

pairwise potentials. In contrast to many vision algorithms

where these parameters are manually fixed, we compute them

automatically. The unary parameter θi;a can be seen as a

pseudo-boolean function f : B → R that gives the cost when

xi = a. Similarly, a pairwise parameter θij;ab is a quadratic

pseudo-boolean function f : B
2 → R that gives the cost

when xi = a and xj = b. The function mapping partitions

to energies is then

E(x|Θ) =
∑

i∈V

{θi;0(1− xi) + θi;1(xi)}+

∑

(i,j)∈E

{θij;00(1− xi)(1− xj)

+θij;01(1− xi)xj + θij;10xi(1− xj)

+θij;11xixj} (1)

where V is the set of vertices and E is the set of edges

in the weighted graph G = {V,E}. Our goal is to learn

the parameters (θ′s) automatically for our problem. We

optimize the discriminating power of the model by estimating

parameters that maximize the difference between ground

truth labellings and all other labellings of a small number

of manually labeled examples. Our method is similar to

the maximum-margin network learning method using graph

cuts [30]; we generate “near-miss” labelings, then estimate a

parameter vector that maximizes the margin separating true

labellings from the near misses in a convex optimization.

Note that this parameter learning algorithm could also be

extended to multi-label variables by encoding them using

several Boolean ones [22].

In our current implementation we obtain the unary like-

lihood for sky and rest using their color values. We first

estimate a Gaussian model for the classes sky and rest and

compute the mean and covariance using manually segmented

ground truth images. For a new test image we obtain the

3818

unary likelihood by computing the Mahalanobis distance to

the sky and non-sky classes as shown in Figures 4(b) and (c).

In our experiments we used about 20 manually segmented

images for training. We will reformulate our energy function

by decomposing the unary parameters θi;a as follows:

θi;a = θpa + liθ
l
a (2)

Once we have the likelihood cost li for every node the unary

parameters θpa and θla are dependent only on the label a.

Similarly we assume that the pairwise parameters θij;ab are

also independent of the associated nodes i and j and replace

them by θab. Due to the problem nature, we assume that the

pairwise matrix is symmetric. i.e. θ01 = θ10. We denote the

new parameter vector which we want to learn as Θ.

Θ =
[

θ
p
0 θl0 θ

p
1 θl1 θ00 θ01 θ11

]

(3)

The parameter vector Θ is then estimated via the standard

convex program for linear SVMs, using vectors of unary

and pairwise statistics from true labellings and near miss

labellings as positive and negative examples. In order to

guarantee that the estimated model supports optimal infer-

ence, we augment the convex program with a constraint on

the pairwise terms in the parameter vector that guarantees

submodularity. In the binary case the constraint is simply

θ00 + θ11 ≤ 2θ01 (4)

The submodularity condition is the discrete analogues of

convex functions in continuous domains.

C. Skyline Matching

First we segment the sky in fisheye images and obtain

the skyline as shown in Figure 7. The predicted skylines

corresponding to different locations in the 3D model are

obtained using the method described in section II-A. Since

the real-image segmentation and the predicted images are

both high quality, a simple chamfer distance suffices to

score the skyline match. During the chamfer matching, we

vary the pose parameters of our virtual fisheye camera and

obtain new skylines at various locations in the 3D model.

The first skyline is manually matched for initialization. The

subsequent ones are matched by searching for various pose

parameters near the first skyline. By embedding the chamfer

matching in a RANSAC framework we can handle small

occlusions, e.g. due to trees as shown in Figure 5.

Fig. 5. Left: The skyline detected in a fisheye image with incorrect

chamfer matching. Right: Robust chamfer matching using RANSAC for

correct skyline matching.

D. Skyline matching using shortest path algorithm

In contrast to the earlier approach of sky detection using

graph cuts and skyline matching using chamfer distance, we

employ a joint strategy which proposes skylines from the

3D model and scores the matching with the omni-images.

The main idea is very simple. Generate a lot of proposal

skylines for various poses using the 3D model as described

in section II-A. For each proposal we define a cost function

which measures the similarity with the skyline in the omni-

image. It is important to note that this method does not need

a prior sky detection and is hence relatively more robust than

the previous algorithm using graph cuts. The main steps are

shown in Figure 6 and explained below:

Fig. 6. (a) The max-min operator idea. (b) Example of a fisheye image.

(c) Edge map on the fisheye image. (d) max-min operation on the fisheye

image. (e) Shortest path result. (f) The synthetic skyline that best matches

the real one.

• We detect Canny edges on the original omni-image.

• We compute the max-min operator for every pixel in

the image. For every pixel p in the image, the max-

min operator computes the ratio of the distance to the

farthest edge pixel r w.r.t the nearest edge pixel q as

shown below:

M(p) =
dmax

dmin

(5)

Note that this operator highlights the edge pixels on the

skylines and suppresses other unimportant edge pixels.

In other words, this emphasizes the boundaries close to

a large free space, i.e. sky in this case. Such free space

cues have been used for alignment of 3D point clouds

to overhead images by analyzing the possible camera

rays from a given point [15].

• A proposal skyline is generated from the 3D model and

superimposed on the omni-image.

• We dilate the proposed skyline into an area of interest

with an inner boundary and an outer boundary, as shown

in Figure 6.

• Next we use the intelligent scissors method to compute

the matching cost [19]. The basic idea is to construct a

graph using nodes that correspond to only the pixels

3819

inside the two boundaries. The edges between the

nodes have weights which are inversely proportional

to M(p). Strong max-min values induce smaller edge

weights. We compute a circular shortest path inside

these boundaries. The cost of the shortest path increases

with the number of discontinuities. In other words, a

correct proposal enables us to find a shortest path with

no discontinuities. In practice, occlusions, inaccurate 3D

models, discrete sampling issues in the search space,

produce discontinuities even in the correct path. How-

ever, the lowest cost shortest path is always very close

to the actual skyline.

The method described for skyline matching has connec-

tions to a wide variety of segmentation techniques using

shortest path and graph cuts [32], [11], [27], [9]. Efficient

algorithms are possible using dynamic versions of graph cuts,

shortest paths or even planar graph cuts.

III. EXPERIMENTS

Our real experiments were all carried out in New York,

Boston and Tokyo as shown in Figure 10 (a,b,c). In all our

real experiments we used a Nikon Coolpix E8 Fisheye lens

with a field of view of 183◦ to capture about 300 images each

in New York, Boston and Tokyo. We tested our algorithm on

more than 6 kms. All the 3D models were purchased from

a commercial website∗. We show one of the models used in

our experiments in Figure 9. These are plane approximated

coarse models of cities.

The day-time images taken in Boston were evaluated with

the sky detection (See Figure 7) and chamfer matching

algorithm. The sky detection algorithm failed for Tokyo

data (due to the presence of trees) and night time images

taken in New York. We used the more robust algorithm

(shortest path) for the New York and Tokyo images. The

geo-trajectories for the images captured in Boston, New York

and Tokyo are shown in Figure 10. The images were captured

approximately at an interval of 5 meters. We search for all 6

DOF for fine pose estimation using graph cuts/shortest path.

The accuracy of the algorithm is evaluated by comparing it

with a commercial GPS unit ”Garmin Nüvi 255W”. Upward

facing fisheye images and GPS measurements were collected

for 30 locations in a street in the financial district in Boston.

The average height of the buildings in this street is around

50 meters and the average width is 15 meters. The images

were collected at the boundary between the sidewalk and

the road. We register the real trajectory (boundary between

road and sidewalk), GPS measurements and our localization

results on an aerial image obtained from Google Earth.

In order to compare the result of our algorithm the aerial

map of the 3D model is registered over Google Earth by

manually clicking corresponding points and by computing

the transformation matrix with a least square solution. The

mean error for the GPS is 29 meters and the mean error

for our algorithm is 2.8 meters (cf. Figure 10). One of the

reasons for the degraded performance of GPS is due to poor

∗www.3dcadbrowser.com sells five 3D models for a price of 80$ for
several major cities of the world

satellite reception (because of tall buildings). By comparing

the heights of 20 buildings in our 3D model with the ones

in Google Earch a discrepancy up to 12 meters is measured.

Our algorithms were able to achieve good results even with

such imprecise 3D models. In the supplementary material we

show our geo-localization results for various images taken in

New York, Boston and Tokyo.

Fig. 8. On the left we show examples of fisheye images captured during

night time. In the middle, we show the max-min features highlighting the

boundary near an open region. On the right, we show the matched skyline

with minimum cost in the shortest path algorithm.

Fig. 9. 3D model of Boston’s financial district: One of the coarse 3D

models used in this paper.

IV. DEGENERACY ANALYSIS USING 2D-3D

REGISTRATION

The skyline-based geo-localization is nothing but a 2D-

3D registration using points and lines that are disguised in

3820

Fig. 7. Sky detection results: Original and segmented fisheye images are shown.

Fig. 10. On the top (a,b and c) we show the geo-trajectories obtained for

100’s of images using our algorithm. In (d) we show a comparison with the

GPS.

a piecewise non-linear curve in omni-images. If one realizes

this connection, it becomes obvious that the theory for

minimal pose estimation governs the limitations/degeneracies

of the proposed algorithm. We briefly show the minimal

solution for pose estimation using 2D-3D point/line corre-

spondences. We make few reasonable assumptions in order

to find the minimal solution. First, we assume that the omni-

camera is always facing upward along the Z axis. Small

misalignments could be easily corrected using vanishing

points [17]. Second, we assume that the images are all

taken at the same height (small variations are negligible

compared to the skylines). As a result there are only 3

degrees of freedom (DOF) between two consecutive images.

We show a simple pose estimation algorithm that could

be used to compute these 3DOF between two consecutive

images. Accordingly the rotation and translation matrices are

shown below:

R =

R11 R12 0
−R12 R11 0
0 0 1

T =

Tx

Ty

0

 (6)

As shown in Figure 11(a), the skyline is computed for the

left image using either the graph cuts or the shortest path

algorithm. Our goal is to obtain a location for the skyline in

the right image. Let p1 and q1 be two image pixels on the left

image and their matching pixels in the right image are given

by p2 and q2. The 3D points corresponding to pi and qi are

given by P and Q respectively. These 3D points are already

known from the skyline matching in the left image. Now

we have 3D-2D correspondences between the 3D model and

pixels on the right image - this can be used to get the pose

for the right image. Each point correspondence will give a

collinearity constraint, which in turn provides two equations.

We briefly explain the formulation of this constraint. As

shown in Figure 11(b), the camera center for the right image

C2, a point on the projection ray of p2 given by C2 + ~d1
and the 3D point P are all collinear. Accordingly any 3× 3
subdeterminant of the following matrix vanishes.

3821

C2,x C2,x + ~d1,x R11Px + R12Py + Tx

C2,y C2,y + ~d1,y −R12Px + R11Py + Ty

C2,z C2,z + ~d1,z Pz

1 1 1

(7)

Although we obtain four equations by removing one row

at a time, the total number of independent equations is only

two. By using the collinearity constraint for the second point

Q, we can obtain two other equations. Using these equations

it is straight forward to compute the 3DOF.

Similarly it is possible to identify two coplanarity con-

straints from a single line correspondence. Let L1 and L2 be

two projected image lines on the left and the right images

respectively. Let the corresponding 3D line be given by

L1L2, the 3D location of it is already known using the

skyline matching in the left image. As a result, the second

camera center C2, two points on the projection rays for L1

and L2 given by C2 + ~d1 and C2 + ~d2 respectively, and

two arbitrary 3D points L1 and L2 are all coplanar. This

results in two coplanarity constraints using the quadruplets

[C2, C2 + ~d1, C2 + ~d2, L1] and [C2, C2 + ~d1, C2 + ~d2, L2]
respectively. We show the coplanarity constraint for the first

quadruplet:

C2,x C2,x + ~d1,x C2,x + ~d2,x R11L1x + R12L1y + Tx

C2,y C2,y + ~d1,y C2,y + ~d2,y −R12L1x + R11L1y + Ty

C2,z C2,z + ~d1,z C2,z + ~d2,z L1z

1 1 1 1

(8)

The coplanarity constraint makes the determinant of the

above matrix to vanish. In the same way, we can obtain

two equations from the second 3D line M1M2. Overall, it

is possible to get the pose from two feature correspondences

(2 points, 2 lines, 1 point and 1 line).

The degenerate cases are listed below:

• Less than two distinct points on the whole skyline.

• Only one line with no distinct point on it.

• Only two parallel lines with no distinct points on them.

It is easy to observe that such cases are extremely rare to

happen even in perspective images. The use of omni-images

makes it almost impossible. However, the real problem is

to obtain the 2D-3D correspondence, which can always

be improved further as it belongs to the class of NP-hard

problems. Since the degenerate cases are very rare to occur,

the use of better shape matching algorithms may robustify

the proposed algorithms in the following difficult conditions:

• Missing buildings - The algorithm can still work as

shown in Figure 12(c).

• Inaccurate 3D models - Our experiments were all tested

using coarse 3D models which were plane-based and

having a height discrepancy of up to 12 meters.

• Occlusion from trees - A small amount of occlusion

can be easily handled with a RANSAC based chamfer

matching (See Figure 5) although the sky detection itself

fails as shown in Figure 12. The shortest path algorithm

can handle larger occlusions from trees.

• Repeated patterns in the skylines - The approach will

fail only if the patterns repeat between two consecutive

images. Note that while estimating the geo-trajectory

(a)

(b) (c)

Fig. 11. In (a) we show the point and line matches between two images

where the skyline is matched for the left one. In (b) we show the two camera

positions for the two images shown above along with the projection rays

corresponding to the two point matches. In (c) we show the projection rays

corresponding to the line matches that lead to coplanarity constraints (See

text).

with a good initialization, the skyline only needs to be

unique locally.

• Sharp turns in the skylines - This sometimes degrades

the performance a little as shown in Figure 12.

• Short buildings - Our preliminary experiments suggest

that the method seems to work better for short buildings

than tall ones because the skyline captures more lines

and points.

V. DISCUSSION

Existing approaches for geo-localization use either a

SLAM or recognition based techniques. This work could be

seen as a method that overlaps with both these paradigms

and extends to formulate the geo-localization problem as a

shape matching one. This enables us to apply the existing

wide variety of discrete optimization/shape matching results

to this problem. Our experiments clearly demonstrate that

it is possible to outperform GPS measurements in urban

canyons, which are known to be extremely problematic for

commercial GPS units.

The main limitation of the proposed method is that the

skylines are sometimes very far away from the camera.

This affects the overall accuracy of the geo-localization.

However, the other advantages from skylines are numerous:

easy recognition due the presence of open space or blue

sky, fewer occlusions from street signs, pedestrians, cars,

etc. are so overwhelming that such an approach is still very

3822

(a) (b) (c) (d)

Fig. 12. A few failure cases for sky detection and shortest path algorithms. (a) and (b) show the errors in sky detection due to the occlusion from sun and

trees. (c) The shortest path algorithm can handle and predict the missing buildings as shown. Mismatches in some part of the skyline while the rest matches

very precisely, indicate changes in the scene. In (d) we show the short circuit problem when the boundaries for the shortest path algorithm overlap. This

can result in degradation in the performance of the algorithm when the skyline takes sharp turns.

beneficial. In this work, our goal was to investigate the use

of only skylines for geo-localization and we believe that it

is already very good for a localization of about 2 meters.

To improve the localization to a few centimeters we can use

other vision features: vanishing points [17], interest point

matching/tracking between consecutive frames [33], [25],

3D points reconstructed using SfM can be registered with

the building walls [24], SLAM algorithms [16], [31] and

maybe even priors learned from image databases [10]. It is

important to note that the current GPS systems have been

improved and robustified for several years by addressing

various complicated issues that even include the theory of

relativity.

In a few years, we believe that it will be possible to build

an inexpensive, robust and accurate vision based GPS.

Acknowledgments: Srikumar Ramalingam would like to

specially thank Jay Thornton for all the motivating dis-

cussions and valuable feedback throughout the project. We

would also like to thank Keisuke Kojima, John Barnwell,

Joseph Katz, Haruhisa Okuda, Hiroshi Kage, Kazuhiko

Sumi, Ryo Kodama, and Daniel Thalmann for their valuable

feedback, help and support.

REFERENCES

[1] J.-C. Bazin, I. Kweon, C. Demonceaux, and P. Vasseur. Dynamic
programming and skyline extraction in catadioptric infrared images.
In ICRA, 2009.

[2] T. Bonde and H. Nagel. Deriving a 3-d description of a moving rigid
object from monocular tv-frame sequence. In J.K Aggarwal and N.I.

Badler, editor, Proc. Workshop on Computer Analysis of Time Varying

Imagery, 1979.
[3] T. Brodsky, C. Fermüller, and Y. Aloimonos. Directions of motion

fields are hardly ever ambiquous. In ECCV, 1996.
[4] T. Broida and R. Chellappa. Estimation of object motion parameters

from noisy image sequences. PAMI, 1986.
[5] F. Cozman, E. Krotkov, and C. Guestrin. Outdoor visual position

estimation for planetary rovers. Autonomous Robots, 2000.
[6] K. Daniilidis and H. Nagel. The coupling of rotation and translation

in motion estimation of planar surfaces. In CVPR, 1993.
[7] A. Dunne, J. Mallon, and P. Whelan. A comparison of new generic

camera calibration with the standard parametric approach. MVA, 2007.
[8] H. Durrant-Whyte and T. Bailey. Simultaneous localisation and map-

ping (slam): Part i the essential algorithms. Robotics and Automation

Magazine, 2006.
[9] D. Farin and P. de With. Shortest circular paths on planar graphs. In

Information Theory in the Benelux, 2006.

[10] J. Hays and A. Efros. Im2gps: estimating geographic images from
single images. In CVPR, 2008.

[11] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shorterst-
path algorithms for planar graphs. In Journal of Computer and System

Sciences (Selected Papers of STOC 1994), 1997.
[12] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout

from an image. IJCV, 75(1):151–172, 2007.
[13] N. Jacobs, S. Satkin, N. Roman, R. Speyer, and R. Pless. Geolocating

static cameras. In ICCV, 2007.
[14] E. Kalogerakis, O. Vesselova, J. Hays, A. Efros, and A. Hertzmann.

Image sequence geolocation with human travel priors. In ICCV, 2009.
[15] R. Kaminsky, N. Snavely, S. Seitz, and R. Szeliski. Alignment of 3d

point clouds to overhead images. In IEEE Workshop on Internet Vision

- CVPR, 2009.
[16] O. Koch and S. Teller. Wide-area egomotion estimation from known

3d structure. In CVPR, 2007.
[17] J. Kosecka and W. Zhang. Video compass. In ECCV, 2002.
[18] J. Meguro, T. Murata, H. Nishimura, Y. Amano, T. Hasizume, and

J. Takiguchi. Development of positioning technique using omni-
directional ir camera and aerial survey data. In Advanced Intelligent

Mechatronics, 2007.
[19] E. Mortensen and W. Barrett. Interactive segmentation with intelligent

scissors. In Graphical Models and Image Processing, 1998.
[20] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry for ground

vehicle applications. Journal of Field Robotics, 2006.
[21] S. Ramalingam, S. Bouaziz, P. Sturm, and M. Brand. Geo-localization

using skylines from omni-images. In S3DV, 2009.
[22] S. Ramalingam, P. Kohli, K. Alahari, and P. Torr. Exact inference in

multi-label crfs with higher order cliques. In CVPR, 2008.
[23] S. Ramalingam, P. Sturm, and S. Lodha. Towards complete generic

camera calibration. In CVPR, 2005.
[24] S. Ramalingam, Y. Taguchi, T. Marks, and O. Tuzel. P2π: A minimal

solution for registration of 3d points to 3d planes. In ECCV, 2010.
[25] D. Robertson and R. Cipolla. An image-based system for urban

navigation. In BMVC, 2004.
[26] E. Royer, M. Lhuillier, and M. Dhome. Monocular vision for mobile

robot localization. IJCV, 2007.
[27] F. Schmidt, E. Toppe, D. Cremers, and Y. Boykov. Efficient shape

matching via graph cuts. In EMMCVPR, 2007.
[28] F. Stein and G. Medioni. Map-based localization using the panoramic

horizon. In IEEE Transactions on Robotics and Automation, 1995.
[29] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,

A. Agarwala, M. F. Tappen, and C. Rother. A comparative study
of energy minimization methods for Markov random fields. In ECCV,
volume 2, pages 16–29, 2006.

[30] M. Szummer, P. Kohli, and D. Hoiem. Learning crfs using graph cuts.
In ECCV, 2008.

[31] J. Tardif, Y. Pavlidis, and K. Daniilidis. Monocular visual odometry in
urban environments using an omnidirectional camera. In IROS, 2008.

[32] N. Xu, R. Bansal, and N. Ahuja. Object boundary segmentation using
graph cuts based active contours. In CVPR, 2001.

[33] W. Zhang and J. Kosecka. Image based localization in urban environ-
ments. In 3DPVT, 2006.

3823

