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Abstract— This paper addresses the coordination and tra-
jectory tracking control design for a multiple mini rotorcraft
system. The dynamic model of the mini rotorcraft is presented
using the Newton-Euler formalism. Our approach is based on a
leader/follower structure of multiple robot systems. A nonlinear
controller based on nested saturations and a multi-agent con-
sensus control are combined to obtain a flight formation control
for a multiple mini rotorcraft system. The centroid of the
coordinated control subsystem is used for trajectory tracking
purposes. The analytic results are supported by simulation tests.

I. INTRODUCTION

Unmanned Aerial Vehicles have become a vital platform
in a wide variety of applications because they reduce cost
and human life risk. Multiple spacecraft flying in formation
has been intensively investigated during the last decades [1]-
[4]. Different approaches for multiple spacecraft flying in
formation have been proposed in the literature for coor-
dination of multiple autonomous robot systems. There are
mainly three approaches: Leader/Follower, Virtual Structure
and Behavioral Control.

In the leader/follower architecture, one agent is designated
as leader while the others are designated as followers which
should track the leader. Leader/follower approaches are de-
scribed in: [1], [2]. The virtual structure approach considers
every agent as an element of a larger structure [3] and [4].
Finally, the behavioral control in [S] and [6] is based on
the decomposition of the main control goal into tasks or
behaviors. This approach also deals with collision avoidance,
flock centering, obstacle avoidance and barycenter.

Generally, to analyze the communication between agents,
directed or undirected graphs are used. Every node in a
graph is considered as an agent which can have informa-
tion exchange with all or several agents. In [4], [7], [8],
and [9], the authors use algebraic graph theory in order
to model the information exchange between vehicles. By
using this technique, several control strategies have been
developed, e.g. [9], [10], [11], [12] and [13]. In [9], the
authors present several algorithms for consensus and obsta-
cle avoidance for multiple-agent systems. [10] presents an
algorithm for trajectory tracking of a time varying reference
for a single integrator multi-agent system. [11] and [12]
presents a passive decomposition approach for consensus
and formation control. In [13], the authors present a bilateral
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teleoperation control approach for the multi-agent trajectory
tracking problem.

We are interested in the problem of multiple mini rotor-
craft flying in formation using a nonlinear control based
on nested saturations and a coordination control strategy.
A coordination algorithm assumes that there are m-agents
which have some kind of information exchange between
them. In this approach, every mini rotorcraft is considered
as an agent in the multi-agent system with an information
exchange topology. We propose a decoupled lateral dynamics
coordination. Similarly, a decoupled longitudinal dynamics
coordination is desired. Thus, the lateral and longitudinal
dynamical systems of each mini rotorcraft are considered as
agents to be coordinated and to follow a desired trajectory.
To do this, combined with a nonlinear control, we use an
algebraic graph theoretical approach to model information
exchange between mini rotorcrafts. The work reported in
the literature is by now quite vast and addresses different
approaches for mini rotorcraft stabilization [14], [15], [16],
[17], [18], [19], [20] and [21] among others. In [14] a
nonlinear control based on nested saturations is presented.
In this approach, the dynamics is decoupled into lateral and
longitudinal dynamical subsystems. Thus, nested saturations
control was used to stabilize each subsystem. In [20], the
authors propose a robust linear PD controller considering
parametric interval uncertainty. Here, the authors present a
robust stability analysis and computes the robustness margin
of the system with respect to the parameters uncertainty. In
[21] a flight formation control based on a four integrators
coordination control is presented. This approach is based
on a forced consensus algorithm to achieve a multiple mini
rotorcraft flight formation and tracking.

Fig. 1. Multiple mini rotorcraft flying in formation

This work addresses the nonlinear control for multiple
mini rotorcraft flying in formation, shown in Figure 1, based
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on nested saturations and a single integrator coordination
control strategy. In this approach we consider every mini
rotorcraft as agents to be coordinated and follow a virtual
reference. The proposed control scheme is based on the
idea that lateral and longitudinal subsystems are decoupled
which enable us to implement a decoupled coordination of
the lateral and longitudinal subsystems. In this way, the
multiple mini rotorcraft platoon can hover and thus keeping
the desired formation by following a constant zero-reference.
Another contribution of this work is that the centroid of a
virtual center of mass can be used to follow a given smooth
trajectory.

This paper is organized as follows: Section II presents
some preliminary results on algebraic graph theory. Section
IIT presents the dynamical model of the proposed architec-
ture. In section IV the nonlinear control design is presented.
Simulation results are presented in section V. Section VI
presents the conclusions and future work.

II. GRAPH THEORY

The interaction between mini rotorcraft can be modeled
as a group of dynamical systems which has an information
exchange topology represented by information graphs. A
graph G is a pair G(N, &) consisting of a set of nodes
(agents) N = {n;: n; € N,Vi =1, ..., n} together with their
interconnections £ on A [22]. Each pair (n1,ns) is called
an edge e € £. An undirected graph is one where agents
1 and j can get information from each other. In a digraph,
the i*" agent can get information from the ;" agent but
not necessarily viceversa. One important characterization of
graphs is their connectivity. A graph is said to be connected
if for every pair (ni,n2) of distinct nodes or agents there
is a path from n; to no. A connected graph allows the
communication between all agents through the network. A
directed graph is said to be strongly connected if any two
vertices can be joined by a path. A graph is said to be
balanced if its in-degree (number of communication links
arriving at the node) is equal to its out-degree (number of
communication links leaving the node).

III. DYNAMIC MODEL

To obtain the vehicle dynamical model, it will be assumed
that it flies over a local area in the Earth. Then, the Flat-
Earth model equations will be used [25]. The equations
representing the kinematic and the moments are written as

b = H(®)wp, e

@2/6 = (Jb)il [Mb - QZ/erwg/e} 2

The vehicle center of mass, CM, is coincident with the
body frame origin, F;. The angular velocity in terms of
the body system is given by wg/e = [ P Q R }T and
its cross product matrix is denoted by QZ Jer The angular
velocity in the local inertial system has components & =
[ 6 9 }T. The matrix of rotation from the inertial
frame Fe to F} is denoted by Cy .

Fig. 2. Vehicle schematic for vertical flight mode

The set of attitude equations can be obtained using the
equations (1) and (2). The transformation of the components
of the angular velocity generated by a sequence of Euler
rotations from the body to the local reference system is
written as follows:

1 ths¢p  tlco
H(@®) =|0 cp —s0¢ 3)
0 s¢/ch co/ch

where s, ¢ and t are used to denote the sin, cos and the
tan respectively.

The term J® in (2) represents the inertia matrix. Since the
X-4 prototype is symmetrical in the zz-plane and the xy-
plane, the products of inertia J,,, J,. and J,. vanish. Then
J? and its inverse can be written by

J. 0 0
Jb=10 J, 0 )
0 0 J,

The aerodynamics and thrust moments can be denoted by
Mb = [ £ m n }T, and are shown in Figure 2.
Then differentiating (1) we get

¢ =1 () wy, + H (P)dy), (5)
Introducing the RHS of (2) into (5),
. . -1
b=H (@)}, +H (@) (J) [Mb - Qg/GJ%g/e} (6)
It is proposed that

M2 Qb JPwp, + JPH (®)7 [% — H (@) wé’/e} )

where 7 = [ To To Ty ]T. Then (5) can be rewritten
as

o = Ty (8)
6 = 7 9)
o= Ay (10)

Newton’s second law is used to obtain the equations of
translational motion in the inertial frame of reference as
Fb
(11

PemyT Cn/bE +g"
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where the position of C'M in the North-East-Down (NED)
coordinate system with respect to F, is given by ps,, =

[ T Yy z2 }T. The aerodynamic and thrust force vector in
the body system is represented by F* = [ X Y Z |T.
The aerodynamic and thrust forces in the body frame of
reference is given by

4

F*=>"FZz (12)
i=1
Then (11) can be rewritten as
i = —Fbsin# (13)
= FPcoslsing (14)
2 = F’cosbcosp — 1 (15)

where the constant ”-1” is the normalized product of the
vehicle mass and the gravitational acceleration.

IV. NONLINEAR CONTROL DESIGN
A. Vehicle Stabilization
In this section, a nonlinear controller with a coordination
control strategy is developed. It will be proved that the
proposed control scheme stabilizes the rotorcraft in hover

flight. In order to stabilize the position for (13)-(15) and (8)-
(10), the following control input is proposed

—a1? —as(z — 2% +1
cos ¢ cos 6

—azh — as(¥ — ¢?)

where a1, as, az and ay4 are positive constants; 2% and ¢
are the desired altitude and heading respectively.bad

Using (16) in (13)-(15) the lateral dynamic model is
represented by the following set of equations:

F* £

(16)

~ L

T a7

(18)
19)

iy = tan¢
¢ = T
Similarly, the longitudinal dynamic model is represented
by
—tané
cos ¢
0 = 7 Q1)

(20)

{:L.' =

It is assumed that pitch angle and roll angle are operated
in a neighborhood of the origin, i.e., |#] < w/10. Then, the
lateral dynamical system (18)-(19) is reduced to

g = ¢ (22)
o = T (23)
and the longitudinal dynamic model is reduced to
= —40 (24)
6 = 7 (25)

Since the control inputs are bounded, we start our analysis
introducing the following definition [26]

Definition 1: Given two positive constants L, M with L <
M, a function o : R — R is said to be a linear saturation for
(L, M) if it is continuous, nondecreasing function satisfying

1) so(s) > 0 for all s # 0;

2) o(s) =s when | s |< L;

3) |o(s) |< M forall se R

In order to introduce the consensus algorithm we will
review the longitudinal control design, which is a simplified
dynamic model consisting of four integrators in cascade.

Now, we introduce the following variables

& () £ —x—20+0 (26)
Lz) = &G+o-a 27)
E3(x) = &+0 (28)
G(x) = 0 (29)

To simplify the analysis, a recursive methodology is pro-
posed. To do this, it is assumed that

<n = gn (.I') +op-1 (Cn—l (.T)) (30)
G = &) (€19
and
u=—0n(Cn) (32)
Let us define the following positive definite function
Vi = (1/2)65(2) (33)
Differentiating V with respect to time, we obtain
Vo = €n(@)n () (34)
from the fact that &, () = —0,,(Cn), we have
Vi = &u(@)u = —&n(2)0n (Cn) (35)
due to equation (30) we get
Vn = —§n($)0n(§n($) + Un—l(<n—l($))) (36)

Using definition (1), we can see that M,,_; < 0.5L,, it
can be noted that if |£,| > 0.5L,, then V,, < 0. This means
that there exist a time 7, such that |¢,,| < 0.5L,, for vVt > T,
which implies that |€, 4+ 07,1 (Cr—1(2))| < 0.5L,+ M1 <
L,.

When n = 1 we have the base case of the recursion. This
case is treated a little different, let us propose

Vi = (1/2) (@) (37)
Differentiating V with respect to time, we obtain
Vi = & (2)6 () (38)

using (26)-(29) is possible to see that &, () = —o (€1 (),
then we have

Vi = —&i(2)01(G) (39)
due to equation (31) we get
Vi = —&i(2)on (6 () (40)

As in the recursive case, it can be noted that if |1 (x)| >
0.5L7 then V7 < 0. This means that there exist a time 7}
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such that |£;(x)] < 0.5L; for V¢t > Tj. It is important to
note that T,, < T}, for all n > 2.

Since V; < 0 then, from equations (31) and (40) implies
that & () = (3 — 0. It can be noted that starting from ¢ = 2
until ¢ = n we have the following set of equations due to
the recursion of the method

Va = —&(2)02(&(x) + 01(C1(2))) 41)
Vs = —&(2)o3(&(x) + 02(C(2))) (42)
Vi = —&a(2)0a(a(@) + 03(Gs())) (43)
The recursion of equation (30) leads us to:
G =&(x)+01(G(x)) (44)
(3 = &(x) + 02(C2()) (45)
G = &u(x) + 03(G(2)) (46)

After a time T}y, it can be seen that from (41), &, — 0,
(44) implies that (; — 0, in a recursive way (42), {3 — 0,
from (45) (3 — 0, from (43), &4, — 0, from (46), (4 — 0.
This means that, from (29) 6 — 0, from (28) 8 — 0, from
(27) £ — 0, and finally from (26) z — 0.

Due to the fact that the lateral dynamic model is also
a four integrators in cascade, we use the same analysis to
obtain a control design. Then, the lateral and longitudinal
control laws are given by

T9 = —ou(@+o3(0+6 (47)
+02(6 420 — &+ 01(0 + 30 — 30 — ))))

7y = —ou(d+os(d+¢ (48)
+02(d+ 20+ 7+ 01(d+ 3¢+ 37 + 1))

B. Consensus Agreement

Now, we consider the case of having a multiple quadrotor
vehicle system with either a cyclic topology or a chain
topology of information exchange as shown in Figure 3.

TF ooemo

Fig. 3. Cyclic and chain topology of information exchange

The longitudinal kinematic model for the multi-quadrotor
system is given by

—Lx + bu

o (49)

i =

y =

where £ is the Laplacian matrix of the information ex-
change graph having the following properties:

1) L has a single eigenvalue at 0, A;(£) = 0 with right

eigenvector wi = [ 1 1 1],ie Lwy =0.

2) The remaining eigenvalues are all positive, i.e. \; (L) >

0 and Lw; = A\w; for i =2,..n, and w; € R™.

We assume that the information exchange graph is bal-
anced. Let us assume also that in the coordinating controller
the gains multiplying the signals in between agents are all
equal to 1. For the ¢ — th row of L, the entries [;; = —1 for

i # j correspond to the gains multiplying the signals from
other agents coming to agent ¢. For the ¢+ — th column of
L, the entries [;; = —1 for ¢ # j correspond to the gains
multiplying the signals going out of agent ¢ towards the other
agents. We then have the following property.

3) w; defined above is also the left eigenvalue of £
corresponding to the eigenvalue 0, i.e. w{ £ = 0.

It is worth to mention that dynamics (49) can also be
written as

Tp = Uy (50)

with multiple agent consensus achieved using the follow-
ing forced consensus algorithm

@iZ—Z(fEi—x]‘)-ﬁ-ui

JEN;

(51

where N; is the set of agents transmitting their information
to the agent 1.

Then, we next propose a simple strategy for the position
consensus of the multiple quadrotor vehicle system. We
will consider the use of a nonlinear control using a nested
saturations strategy which drives all the states to the origin.
Since we want to have consensus to the origin (on z and
y-axis) of a set of quadrotor vehicles, we propose a change
of variable on (47) and (48)

x 2N (F - i) (52)
JEN;

vE (G —) (53)
JEN;

Remark 1: On one hand a multiple mini rotorcraft con-
sensus can be achieved by means of a single integrator
consensus algorithm, then (52) provides a simple way to
solve the coordination problem. On the other hand, we
may think of the neighbors position of a mini rotorcraft as
the position reference and thus the stability of every mini
rotorcraft is guarantied using the nonlinear control based on
nested saturations.

As it was presented in the previous section, after a time
T, we have that x — 0. Then, (52) becomes

0="> (& —&)

JEN;

(54)

which implies that all £; — ;, similarly, ¥; — ;.
Therefore, the control laws 7y and 74 for the longitudinal
and lateral subsystems of the i‘”-minirotorcraft becomes

o0 =— 0a(0; + 03(0; + 0; + 02(0; +20; — i (55)
+o1(0; +30; — 30— Y (3 — i4)))))
JEN;
o = — 0a(di + 03(di + ¢ + 02(di + 20i + i
on(i 361 85— 3 (@ — )

JEN;

(56)
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C. Formation Control

In the practice, a coordination to the origin implies that
every mini rotorcraft will converge to the same position in
the 3D space. Then, we propose a leader-relative position
consensus (UAV formation) for the multi quadrotor system,
i.e. the quadrotor vehicles will converge to a position with
respect to the leader of the group. In this case, the following
geometric formations are proposed.

1) Triangular Formation: A triangular formation around
a circle of radius r for the team of three quadrotor vehicles is
proposed. Assuming a cyclic information exchange topology,
the relative position is given by

T1— Ty = rcos(n/6) (57)
I3 —11 = —rcos(m/6) (58)
To— T3 = rcos(n/2) (59)
g1 — Y2 = rsin(n/6) (60)
gs—41 = —rsin(n/6) (61)
U2 — U3 27 sin(m/6) (62)

Assuming a chain information exchange topology, the
relative position is given by

T1 — 2o cos(m/6) (63)
To— T3 = cos(m/2) (64)
71 —F2 = sin(n/6) (65)
g2 — g3 = 2sin(7/6) (66)

Therefore, we can use either (57)-(62) or (63)-(66) as a
relative position reference with respect to each other.

2) Line Formation: For the team of three quadrotor ve-
hicles assuming chain information exchange topology, the
relative position for a line formation over the y-axis is given
by

(67)
(68)

;i —z; = 0
Ui—y; = di
where d;; is a fixed distance between any two mini

rotorcraft. Similarly, the relative position for a line formation
over the x-axis is given by

Ty —&; = dy (69)

vyi—y; = 0 (70)
Therefore, we can use either (67)-(68) or (69)-(70) as a
relative position reference with respect to each other.

Using a relative position reference for the flight formation
of multiple mini rotorcraft, equations (55) and (56) are
rewritten as

700 = — 04(0; + 03(0; + 0; + 02(6; + 20; — i (71)

+01(0; +30; — 33 — (Y (& — &) — i)))))
JEN;
Tpi = — 0a(pi + 03(di + @i +02(di + 26 +9:  (72)
+ o1 (i + 3¢ + 30 — (D (5 — 6i) — )

JEN;

where jf and g;i represent the position reference of agent
1 as described in previous section. (71) and (72) are such that
the geometric flight formation of a multiple mini rotorcraft
system is guarantied.

D. X4 Trajectory Tracking Control

Now, we will consider the case of trajectory tracking of a
multiple vehicle system. It is assumed that the leader of the

group is always vehicle 1. Then, (49) is rewritten as
i=—LF+bu (73)

where b =[ 1 0 0 ] and w is the input given to

2

the leader. Define T¢opy = %
i

of agents in the formation. Let Z¢ ;,be the desired value for

Tcon- Assume for simplicity that agent 1 is the leader, i.e.

I=p"=[10 0 | and that the control law is

T; where N is the number
d

Il
=

u1(z) = Nko (i, — Tonr) (74)

where o(-) represents the saturation function and % is a
positive gain. Note that Z¢ s may not be directly measurable
for the leader (agent 1). It should be noticed that for cyclic
and chain topologies of information exchange the system is
observable from the input and output of the leader, see [27].
The state can therefore be observed from the input and output
of agent 1. Introducing (74) into (73) we get

{i‘cjw = ko (‘%dCM —i'C]\{[)

vz = —N@Iz)+olbuy;i=2,.,N

The modes in the last equation above are all stable. When
u; = 0, these modes converge to zero which means that
(#; — ;) — 0 for ¢ # j. This property is obtained by using
the coordinating control algorithm that leads the position
dynamics to (73). These modes are uncontrollable when
vI'b = 0. There is a trade-off in the choice of gain k in
(74). For smaller values of k, the speed of convergence of
xcum is slower, but the transient in the errors (Z; — &) for
i # 7, will be smaller.

Again, we can use the same control strategy for the lateral
dynamics by replacing the z position by the y position.

Then the trajectory tracking control for the leader of the
group is given by

To,1 :—04(9+03(9+0+02(9+29—:b+01(9
+30— 30— > (5 — ) — 2 —ui(x)))) (75)
JEN;
Fou = —0u(dp+03(d+ ¢+ 02(d+ 20+ 9 + 01 (d

+30+39— > (G5 —5) — vl —w(®) (76)
JEN;
V. RESULTS
A. Simulation
To illustrate the proposed methodology, this section
presents the simulation results concerning the multiple mini

quadrotor formation control. We consider three mini quadro-
tors evolving in the 3D space. Extensive simulations were
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run on a platoon of three rotorcrafts considering the 6-DOF
nonlinear dynamical model. Cyclic and chain topologies of
information exchange were considered. The initial conditions
for inertial position and velocity are [2,-1,0](m) and [-
0.1,-0.1,0.2](m/s) for the first vehicle; [-1,2,0](m) and [-
0.1,-0.2,0.3](m/s) for the second vehicle and [-1,-1,0](m)
and [0.2,0.3,-0.5](m/s) for the third vehicle The results of
simulation show that the proposed nonlinear control strategy
can be used to achieve a geometric formation as well as
formation flying of multiple mini rotorcrafts. Thus, using
control inputs (71), (72), (16) and (17) on the mini rotorcraft
acting as followers and (75), (76) (16) and (17) on the mini
rotorcraft acting as leader, on the 6-DOF nonlinear dynamical
model (13)-(15) in simulation, we get the results shown in
Figure 4.

Altitud

2

Position Y Position X

Fig. 4. 3D position

VI. CONCLUSIONS AND FUTURE WORK

A nonlinear dynamical model of the mini rotorcraft has
been presented using the Newton-Euler formulation. Nonlin-
ear control based on nested saturations and a single integrator
consensus control for flight formation of mini rotorcraft was
developed. The x-position and the y-position of each mini
rotorcraft were considered as dynamical agents with full
information access. Trajectory tracking for the group of mini
rotorcraft was achieved by using the virtual center of mass of
the agents formation. Extensive simulations were run in order
to show the performance of the developed control scheme.
Future work in this area includes experimental tests on mini
rotorcraft using real-time embedded control systems.
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