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Abstract— This paper addresses the coordination and tra-
jectory tracking control design for a multiple mini rotorcraft
system. The dynamic model of the mini rotorcraft is presented
using the Newton-Euler formalism. Our approach is based on a
leader/follower structure of multiple robot systems. A nonlinear
controller based on nested saturations and a multi-agent con-
sensus control are combined to obtain a flight formation control
for a multiple mini rotorcraft system. The centroid of the
coordinated control subsystem is used for trajectory tracking
purposes. The analytic results are supported by simulation tests.

I. INTRODUCTION

Unmanned Aerial Vehicles have become a vital platform

in a wide variety of applications because they reduce cost

and human life risk. Multiple spacecraft flying in formation

has been intensively investigated during the last decades [1]-

[4]. Different approaches for multiple spacecraft flying in

formation have been proposed in the literature for coor-

dination of multiple autonomous robot systems. There are

mainly three approaches: Leader/Follower, Virtual Structure

and Behavioral Control.

In the leader/follower architecture, one agent is designated

as leader while the others are designated as followers which

should track the leader. Leader/follower approaches are de-

scribed in: [1], [2]. The virtual structure approach considers

every agent as an element of a larger structure [3] and [4].

Finally, the behavioral control in [5] and [6] is based on

the decomposition of the main control goal into tasks or

behaviors. This approach also deals with collision avoidance,

flock centering, obstacle avoidance and barycenter.

Generally, to analyze the communication between agents,

directed or undirected graphs are used. Every node in a

graph is considered as an agent which can have informa-

tion exchange with all or several agents. In [4], [7], [8],

and [9], the authors use algebraic graph theory in order

to model the information exchange between vehicles. By

using this technique, several control strategies have been

developed, e.g. [9], [10], [11], [12] and [13]. In [9], the

authors present several algorithms for consensus and obsta-

cle avoidance for multiple-agent systems. [10] presents an

algorithm for trajectory tracking of a time varying reference

for a single integrator multi-agent system. [11] and [12]

presents a passive decomposition approach for consensus

and formation control. In [13], the authors present a bilateral
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teleoperation control approach for the multi-agent trajectory

tracking problem.

We are interested in the problem of multiple mini rotor-

craft flying in formation using a nonlinear control based

on nested saturations and a coordination control strategy.

A coordination algorithm assumes that there are n-agents

which have some kind of information exchange between

them. In this approach, every mini rotorcraft is considered

as an agent in the multi-agent system with an information

exchange topology. We propose a decoupled lateral dynamics

coordination. Similarly, a decoupled longitudinal dynamics

coordination is desired. Thus, the lateral and longitudinal

dynamical systems of each mini rotorcraft are considered as

agents to be coordinated and to follow a desired trajectory.

To do this, combined with a nonlinear control, we use an

algebraic graph theoretical approach to model information

exchange between mini rotorcrafts. The work reported in

the literature is by now quite vast and addresses different

approaches for mini rotorcraft stabilization [14], [15], [16],

[17], [18], [19], [20] and [21] among others. In [14] a

nonlinear control based on nested saturations is presented.

In this approach, the dynamics is decoupled into lateral and

longitudinal dynamical subsystems. Thus, nested saturations

control was used to stabilize each subsystem. In [20], the

authors propose a robust linear PD controller considering

parametric interval uncertainty. Here, the authors present a

robust stability analysis and computes the robustness margin

of the system with respect to the parameters uncertainty. In

[21] a flight formation control based on a four integrators

coordination control is presented. This approach is based

on a forced consensus algorithm to achieve a multiple mini

rotorcraft flight formation and tracking.

Fig. 1. Multiple mini rotorcraft flying in formation

This work addresses the nonlinear control for multiple

mini rotorcraft flying in formation, shown in Figure 1, based
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on nested saturations and a single integrator coordination

control strategy. In this approach we consider every mini

rotorcraft as agents to be coordinated and follow a virtual

reference. The proposed control scheme is based on the

idea that lateral and longitudinal subsystems are decoupled

which enable us to implement a decoupled coordination of

the lateral and longitudinal subsystems. In this way, the

multiple mini rotorcraft platoon can hover and thus keeping

the desired formation by following a constant zero-reference.

Another contribution of this work is that the centroid of a

virtual center of mass can be used to follow a given smooth

trajectory.

This paper is organized as follows: Section II presents

some preliminary results on algebraic graph theory. Section

III presents the dynamical model of the proposed architec-

ture. In section IV the nonlinear control design is presented.

Simulation results are presented in section V. Section VI

presents the conclusions and future work.

II. GRAPH THEORY

The interaction between mini rotorcraft can be modeled

as a group of dynamical systems which has an information

exchange topology represented by information graphs. A

graph G is a pair G(N , E) consisting of a set of nodes

(agents) N = {ni : ni ∈ N, ∀i = 1, ..., n} together with their

interconnections E on N [22]. Each pair (n1, n2) is called

an edge e ∈ E . An undirected graph is one where agents

i and j can get information from each other. In a digraph,

the ith agent can get information from the jth agent but

not necessarily viceversa. One important characterization of

graphs is their connectivity. A graph is said to be connected

if for every pair (n1, n2) of distinct nodes or agents there

is a path from n1 to n2. A connected graph allows the

communication between all agents through the network. A

directed graph is said to be strongly connected if any two

vertices can be joined by a path. A graph is said to be

balanced if its in-degree (number of communication links

arriving at the node) is equal to its out-degree (number of

communication links leaving the node).

III. DYNAMIC MODEL

To obtain the vehicle dynamical model, it will be assumed

that it flies over a local area in the Earth. Then, the Flat-

Earth model equations will be used [25]. The equations

representing the kinematic and the moments are written as

Φ̇ = H (Φ)ωbb/e (1)

ω̇bb/e =
(

Jb
)−1

[

Mb − Ωbb/eJ
bωbb/e

]

(2)

The vehicle center of mass, CM , is coincident with the

body frame origin, Fb. The angular velocity in terms of

the body system is given by ωbb/e =
[

P Q R
]T

and

its cross product matrix is denoted by Ωbb/e. The angular

velocity in the local inertial system has components Φ̇ =
[

φ̇ θ̇ ψ̇
]T

. The matrix of rotation from the inertial

frame Fe to Fb is denoted by Cb/n.

Fig. 2. Vehicle schematic for vertical flight mode

The set of attitude equations can be obtained using the

equations (1) and (2). The transformation of the components

of the angular velocity generated by a sequence of Euler

rotations from the body to the local reference system is

written as follows:

H (Φ) =





1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 (3)

where s, c and t are used to denote the sin, cos and the

tan respectively.

The term Jb in (2) represents the inertia matrix. Since the

X-4 prototype is symmetrical in the xz-plane and the xy-

plane, the products of inertia Jxy , Jyz and Jxz vanish. Then

Jb and its inverse can be written by

Jb =





Jx 0 0
0 Jy 0
0 0 Jz



 (4)

The aerodynamics and thrust moments can be denoted by

M b =
[

ℓ m n
]T

, and are shown in Figure 2.

Then differentiating (1) we get

Φ̈ = Ḣ (Φ)ωbb/e +H (Φ) ω̇bb/e (5)

Introducing the RHS of (2) into (5),

Φ̈ = Ḣ (Φ)ωbb/e +H (Φ)
(

Jb
)−1

[

Mb − Ωbb/eJ
bωbb/e

]

(6)

It is proposed that

Mb , Ωbb/eJ
bωbb/e + JbH (Φ)−1

[

τ̃ − Ḣ (Φ)ωbb/e

]

(7)

where τ̃ =
[

τ̃φ τ̃θ τ̃ψ
]T

. Then (5) can be rewritten

as

φ̈ = τ̃φ (8)

θ̈ = τ̃θ (9)

ψ̈ = τ̃ψ (10)

Newton’s second law is used to obtain the equations of

translational motion in the inertial frame of reference as

p̈nCM/T = Cn/b
Fb

m
+ gn (11)
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where the position of CM in the North-East-Down (NED)

coordinate system with respect to Fe, is given by pnCM/T =
[

x y z
]T

. The aerodynamic and thrust force vector in

the body system is represented by F b = [ X Y Z ]T .

The aerodynamic and thrust forces in the body frame of

reference is given by

F b =

4
∑

i=1

FiZ (12)

Then (11) can be rewritten as

ẍ = −F bsinθ (13)

ÿ = F bcosθsinφ (14)

z̈ = F bcosθcosφ − 1 (15)

where the constant ”-1” is the normalized product of the

vehicle mass and the gravitational acceleration.

IV. NONLINEAR CONTROL DESIGN

A. Vehicle Stabilization

In this section, a nonlinear controller with a coordination

control strategy is developed. It will be proved that the

proposed control scheme stabilizes the rotorcraft in hover

flight. In order to stabilize the position for (13)-(15) and (8)-

(10), the following control input is proposed

F b ,
−a1ż − a2(z − zd) + 1

cosφ cos θ
(16)

τ̃ψ , −a3ψ̇ − a4(ψ − ψd) (17)

where a1, a2, a3 and a4 are positive constants; zd and ψd

are the desired altitude and heading respectively.bad

Using (16) in (13)-(15) the lateral dynamic model is

represented by the following set of equations:

ÿ = tanφ (18)

φ̈ = τ̃φ (19)

Similarly, the longitudinal dynamic model is represented

by

ẍ =
− tan θ

cosφ
(20)

θ̈ = τ̃θ (21)

It is assumed that pitch angle and roll angle are operated

in a neighborhood of the origin, i.e., |θ| < π/10. Then, the

lateral dynamical system (18)-(19) is reduced to

ÿ = φ (22)

φ̈ = τ̃φ (23)

and the longitudinal dynamic model is reduced to

ẍ = −θ (24)

θ̈ = τ̃θ (25)

Since the control inputs are bounded, we start our analysis

introducing the following definition [26]

Definition 1: Given two positive constants L,M with L ≤
M , a function σ : R → R is said to be a linear saturation for

(L,M) if it is continuous, nondecreasing function satisfying

1) sσ(s) > 0 for all s 6= 0;

2) σ(s) = s when | s |≤ L;

3) | σ(s) |≤M for all s ∈ R
In order to introduce the consensus algorithm we will

review the longitudinal control design, which is a simplified

dynamic model consisting of four integrators in cascade.

Now, we introduce the following variables

ξ1(x) = ξ2 − x− 2ẋ+ θ (26)

ξ2(x) = ξ3 + θ − ẋ (27)

ξ3(x) = ξ4 + θ (28)

ξ4(x) = θ̇ (29)

To simplify the analysis, a recursive methodology is pro-

posed. To do this, it is assumed that

ζn = ξn(x) + σn−1(ζn−1(x)) (30)

ζ1 = ξ1(x) (31)

and

u = −σn(ζn) (32)

Let us define the following positive definite function

Vn = (1/2)ξ2n(x) (33)

Differentiating V with respect to time, we obtain

V̇n = ξn(x)ξ̇n(x) (34)

from the fact that ξ̇n(x) = −σn(ζn), we have

V̇n = ξn(x)u = −ξn(x)σn(ζn) (35)

due to equation (30) we get

V̇n = −ξn(x)σn(ξn(x) + σn−1(ζn−1(x))) (36)

Using definition (1), we can see that Mn−1 < 0.5Ln, it

can be noted that if |ξn| > 0.5Ln then V̇n < 0. This means

that there exist a time Tn such that |ξn| ≤ 0.5Ln for ∀t > Tn
which implies that |ξn+σn−1(ζn−1(x))| ≤ 0.5Ln+Mn−1 ≤
Ln.

When n = 1 we have the base case of the recursion. This

case is treated a little different, let us propose

V1 = (1/2)ξ21(x) (37)

Differentiating V with respect to time, we obtain

V̇1 = ξ1(x)ξ̇1(x) (38)

using (26)-(29) is possible to see that ξ̇1(x) = −σ1(ξ1(x)),
then we have

V̇1 = −ξ1(x)σ1(ζ1) (39)

due to equation (31) we get

V̇1 = −ξ1(x)σ1(ξ1(x)) (40)

As in the recursive case, it can be noted that if |ξ1(x)| >
0.5L1 then V̇1 < 0. This means that there exist a time T1
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such that |ξ1(x)| ≤ 0.5L1 for ∀t > T1. It is important to

note that Tn < Tn−1 for all n > 2.

Since V̇1 < 0 then, from equations (31) and (40) implies

that ξ1(x) = ζ1 → 0. It can be noted that starting from i = 2
until i = n we have the following set of equations due to

the recursion of the method

V̇2 = −ξ2(x)σ2(ξ2(x) + σ1(ζ1(x))) (41)

V̇3 = −ξ3(x)σ3(ξ3(x) + σ2(ζ2(x))) (42)

V̇4 = −ξ4(x)σ4(ξ4(x) + σ3(ζ3(x))) (43)

The recursion of equation (30) leads us to:

ζ2 = ξ2(x) + σ1(ζ1(x)) (44)

ζ3 = ξ3(x) + σ2(ζ2(x)) (45)

ζ4 = ξ4(x) + σ3(ζ3(x)) (46)

After a time T4, it can be seen that from (41), ξ2 → 0,

(44) implies that ζ2 → 0, in a recursive way (42), ξ3 → 0,

from (45) ζ3 → 0, from (43), ξ4 → 0, from (46), ζ4 → 0.

This means that, from (29) θ̇ → 0, from (28) θ → 0, from

(27) ẋ→ 0, and finally from (26) x→ 0.

Due to the fact that the lateral dynamic model is also

a four integrators in cascade, we use the same analysis to

obtain a control design. Then, the lateral and longitudinal

control laws are given by

τ̃θ = −σ4(θ̇ + σ3(θ̇ + θ (47)

+σ2(θ̇ + 2θ − ẋ+ σ1(θ̇ + 3θ − 3ẋ− x))))

τ̃φ = −σ4(φ̇+ σ3(φ̇+ φ (48)

+σ2(φ̇+ 2φ+ ẏ + σ1(φ̇+ 3φ+ 3ẏ + y))))

B. Consensus Agreement

Now, we consider the case of having a multiple quadrotor

vehicle system with either a cyclic topology or a chain

topology of information exchange as shown in Figure 3.

Fig. 3. Cyclic and chain topology of information exchange

The longitudinal kinematic model for the multi-quadrotor

system is given by

ẋ = −Lx+ bu
y = cTx

(49)

where L is the Laplacian matrix of the information ex-

change graph having the following properties:

1) L has a single eigenvalue at 0, λ1(L) = 0 with right

eigenvector wT
1

=
[

1 1 · · · 1
]

, i.e. Lw1 = 0.

2) The remaining eigenvalues are all positive, i.e. λi(L) >
0 and Lwi = λiwi for i = 2, ..n, and wi ∈ Rn.

We assume that the information exchange graph is bal-

anced. Let us assume also that in the coordinating controller

the gains multiplying the signals in between agents are all

equal to 1. For the i− th row of L, the entries lij = −1 for

i 6= j correspond to the gains multiplying the signals from

other agents coming to agent i. For the i − th column of

L, the entries lji = −1 for i 6= j correspond to the gains

multiplying the signals going out of agent i towards the other

agents. We then have the following property.

3) w1 defined above is also the left eigenvalue of L
corresponding to the eigenvalue 0, i.e. wT

1
L = 0.

It is worth to mention that dynamics (49) can also be

written as

ẋi = ūi (50)

with multiple agent consensus achieved using the follow-

ing forced consensus algorithm

ūi = −
∑

j∈Ni

(xi − xj) + ui (51)

where Ni is the set of agents transmitting their information

to the agent i.

Then, we next propose a simple strategy for the position

consensus of the multiple quadrotor vehicle system. We

will consider the use of a nonlinear control using a nested

saturations strategy which drives all the states to the origin.

Since we want to have consensus to the origin (on x and

y-axis) of a set of quadrotor vehicles, we propose a change

of variable on (47) and (48)

x ,
∑

j∈Ni

(x̃j − x̃i) (52)

y ,
∑

j∈Ni

(ỹj − ỹi) (53)

Remark 1: On one hand a multiple mini rotorcraft con-

sensus can be achieved by means of a single integrator

consensus algorithm, then (52) provides a simple way to

solve the coordination problem. On the other hand, we

may think of the neighbors position of a mini rotorcraft as

the position reference and thus the stability of every mini

rotorcraft is guarantied using the nonlinear control based on

nested saturations.

As it was presented in the previous section, after a time

T4 we have that x→ 0. Then, (52) becomes

0 =
∑

j∈Ni

(x̃j − x̃i) (54)

which implies that all x̃j → x̃i, similarly, ỹj → ỹi.
Therefore, the control laws τ̃θ and τ̃φ for the longitudinal

and lateral subsystems of the ith-minirotorcraft becomes

τ̃θ,i = − σ4(θ̇i + σ3(θ̇i + θi + σ2(θ̇i + 2θi − ẋi (55)

+ σ1(θ̇i + 3θi − 3ẋi −
∑

j∈Ni

(x̃j − x̃i)))))

τ̃φ,i = − σ4(φ̇i + σ3(φ̇i + φi + σ2(φ̇i + 2φi + ẏi (56)

+ σ1(φ̇i + 3φi + 3ẏi −
∑

j∈Ni

(ỹj − ỹi)))))

637



C. Formation Control

In the practice, a coordination to the origin implies that

every mini rotorcraft will converge to the same position in

the 3D space. Then, we propose a leader-relative position

consensus (UAV formation) for the multi quadrotor system,

i.e. the quadrotor vehicles will converge to a position with

respect to the leader of the group. In this case, the following

geometric formations are proposed.

1) Triangular Formation: A triangular formation around

a circle of radius r for the team of three quadrotor vehicles is

proposed. Assuming a cyclic information exchange topology,

the relative position is given by

x̃1 − x̃2 = r cos(π/6) (57)

x̃3 − x̃1 = −r cos(π/6) (58)

x̃2 − x̃3 = r cos(π/2) (59)

ỹ1 − ỹ2 = r sin(π/6) (60)

ỹ3 − ỹ1 = −r sin(π/6) (61)

ỹ2 − ỹ3 = 2r sin(π/6) (62)

Assuming a chain information exchange topology, the

relative position is given by

x̃1 − x̃2 = cos(π/6) (63)

x̃2 − x̃3 = cos(π/2) (64)

ỹ1 − ỹ2 = sin(π/6) (65)

ỹ2 − ỹ3 = 2 sin(π/6) (66)

Therefore, we can use either (57)-(62) or (63)-(66) as a

relative position reference with respect to each other.

2) Line Formation: For the team of three quadrotor ve-

hicles assuming chain information exchange topology, the

relative position for a line formation over the y-axis is given

by

x̃i − x̃j = 0 (67)

ỹi − ỹj = dij (68)

where dij is a fixed distance between any two mini

rotorcraft. Similarly, the relative position for a line formation

over the x-axis is given by

x̃i − x̃j = dij (69)

ỹi − ỹj = 0 (70)

Therefore, we can use either (67)-(68) or (69)-(70) as a

relative position reference with respect to each other.

Using a relative position reference for the flight formation

of multiple mini rotorcraft, equations (55) and (56) are

rewritten as

τ̃θ,i = − σ4(θ̇i + σ3(θ̇i + θi + σ2(θ̇i + 2θi − ẋi (71)

+ σ1(θ̇i + 3θi − 3ẋi − (
∑

j∈Ni

(x̃j − x̃i) − x̃di )))))

τ̃φ,i = − σ4(φ̇i + σ3(φ̇i + φi + σ2(φ̇i + 2φi + ẏi (72)

+ σ1(φ̇i + 3φi + 3ẏi − (
∑

j∈Ni

(ỹj − ỹi) − ỹdi )))))

where x̃di and ỹdi represent the position reference of agent

i as described in previous section. (71) and (72) are such that

the geometric flight formation of a multiple mini rotorcraft

system is guarantied.

D. X4 Trajectory Tracking Control

Now, we will consider the case of trajectory tracking of a

multiple vehicle system. It is assumed that the leader of the

group is always vehicle 1. Then, (49) is rewritten as

˙̃x = −Lx̃+ bu1 (73)

where bT = [ 1 0 . . . 0 ] and u is the input given to

the leader. Define x̃CM = 1

N

N
∑

i=1

x̃i where N is the number

of agents in the formation. Let x̃dCMbe the desired value for

x̃CM . Assume for simplicity that agent 1 is the leader, i.e.

cT = bT =
[

1 0 · · · 0
]

and that the control law is

u1(x) = Nkσ(x̃dCM − x̃CM ) (74)

where σ(·) represents the saturation function and k is a

positive gain. Note that x̃CM may not be directly measurable

for the leader (agent 1). It should be noticed that for cyclic

and chain topologies of information exchange the system is

observable from the input and output of the leader, see [27].

The state can therefore be observed from the input and output

of agent 1. Introducing (74) into (73) we get

˙̃xCM = kσ
(

x̃dCM − x̃CM
)

vTi x̃ = −λi(v
T
i x̃) + vTi bu1 ; i = 2, .., N

The modes in the last equation above are all stable. When

u1 = 0, these modes converge to zero which means that

(x̃i − x̃j) → 0 for i 6= j. This property is obtained by using

the coordinating control algorithm that leads the position

dynamics to (73). These modes are uncontrollable when

vTi b = 0. There is a trade-off in the choice of gain k in

(74). For smaller values of k, the speed of convergence of

xCM is slower, but the transient in the errors (x̃i − x̃j) for

i 6= j, will be smaller.

Again, we can use the same control strategy for the lateral

dynamics by replacing the x position by the y position.

Then the trajectory tracking control for the leader of the

group is given by

τ̃θ,1 = − σ4(θ̇ + σ3(θ̇ + θ + σ2(θ̇ + 2θ − ẋ+ σ1(θ̇

+ 3θ − 3ẋ−
∑

j∈Ni

(ỹj − ỹi) − xdi − u1(x))))) (75)

τ̃φ,1 = − σ4(φ̇+ σ3(φ̇+ φ+ σ2(φ̇ + 2φ+ ẏ + σ1(φ̇

+ 3φ+ 3ẏ −
∑

j∈Ni

(ỹj − ỹi) − ydi − u1(y))))) (76)

V. RESULTS

A. Simulation

To illustrate the proposed methodology, this section

presents the simulation results concerning the multiple mini

quadrotor formation control. We consider three mini quadro-

tors evolving in the 3D space. Extensive simulations were
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run on a platoon of three rotorcrafts considering the 6-DOF

nonlinear dynamical model. Cyclic and chain topologies of

information exchange were considered. The initial conditions

for inertial position and velocity are [2,-1,0](m) and [-

0.1,-0.1,0.2](m/s) for the first vehicle; [-1,2,0](m) and [-

0.1,-0.2,0.3](m/s) for the second vehicle and [-1,-1,0](m)

and [0.2,0.3,-0.5](m/s) for the third vehicle The results of

simulation show that the proposed nonlinear control strategy

can be used to achieve a geometric formation as well as

formation flying of multiple mini rotorcrafts. Thus, using

control inputs (71), (72), (16) and (17) on the mini rotorcraft

acting as followers and (75), (76) (16) and (17) on the mini

rotorcraft acting as leader, on the 6-DOF nonlinear dynamical

model (13)-(15) in simulation, we get the results shown in

Figure 4.
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VI. CONCLUSIONS AND FUTURE WORK

A nonlinear dynamical model of the mini rotorcraft has

been presented using the Newton-Euler formulation. Nonlin-

ear control based on nested saturations and a single integrator

consensus control for flight formation of mini rotorcraft was

developed. The x-position and the y-position of each mini

rotorcraft were considered as dynamical agents with full

information access. Trajectory tracking for the group of mini

rotorcraft was achieved by using the virtual center of mass of

the agents formation. Extensive simulations were run in order

to show the performance of the developed control scheme.

Future work in this area includes experimental tests on mini

rotorcraft using real-time embedded control systems.
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