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Abstract— This work proposes a mechatronic solution to
increase the back-drivability of a state-of-the art robot for wrist
neurorehabilitation. The final goal is to reduce robot mechanical
impedance in order to cope with intrinsic kinematic constraints,
which are adopted by the human brain to solve redundancy
during pointing tasks with the wrist. The handle of the robot
has been provided with a load cell and a direct force control
scheme has been implemented to minimize the interaction
forces/torques between the user and the robot. To this aim
gravity, inertia and friction of the more proximal DOF of the
robot (relative to Pronation/Supination (PS) movements) have
been estimated and compensated for. The proposed solution
resulted in a 70% reduction of the end-point perceived inertia
in PS DOF as well as in a decrease of torques exerted by the user
during both 1-DOF and 3-DOFs tasks. The average reduction of
interaction torques is around 81% and 78% respectively. This
work constitutes an important starting point for the analysis of
the effect that different levels of robot transparency could have
on the human neural constraints adopted during redundant
tasks, such as pointing movements with the wrist.

I. INTRODUCTION

Rehabilitation robotics has become an emerging field in
recent years and the potentialities of robot-mediated motor
therapy is being widely investigated [1]–[4].

During traditional neurorehabilitation sessions the role of
the patient is quite passive and the participation of the
high-level structures of his nervous system are limited. On
the other hand, robotic therapy allows subjects to perform
voluntary movements, thus promoting neurogenesis and neu-
roplasticity, and optimizing the functional recovery after
neurological injuries [5], [6].

Rehabilitation robots have to provide assistance as needed,
so that to not perturb voluntary movements of the users,
and to help completing the tasks that they are not able to
perform autonomously. In this sense a high back-drivability,
i.e. a low perceived impedance during retrograde motion,
is of crucial importance. The technological choices in the
design of mechanical structure and control strategies of
robots strictly interacting with humans, have to face several
issues, such as safety, dynamical adaptability and biome-
chanical compatibility [7]. Moreover, it has been shown that
rehabilitation machines have to comply not only with ‘hard’
(biomechanical) constraints but also with ‘soft’ (instrinsic)
constraints of neural origin, which are adopted by the brain
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to solve kinematic redundancy and to implement strategies
for motor efficiency [8].

The first historical examples (1847) of such intrinsic con-
straints were found in the oculomotor system by Donders. He
found that, for a given steady gaze direction, physiological
eye configurations are described by a 2-dimensional surface
embedded into the 3-dimensional space of eye configurations
(Donders’ law) [9]. Nowadays, it has been demonstrated that
such a law is actively implemented by a neural mechanism,
and it is also well applied to limb movements [8], [10].

Recent studies demonstrated that Donders’ law applies
also to wrist movements during pointing tasks (in which
the three DOFs of the wrist are redundant) [11]. This
study was conducted measuring wrist orientations during
pointing movements using a lightweight ‘hand-held device’,
which introduces negligible perturbation to the physiological
movements. The three dimensional rotations vectors resulted
well fitted by quadratic (Donders’) surfaces, whose curvature
expresses inter-subjects differences in motor strategies, thus
denoting a ‘personal style’ in solving redundancy [11].

The same analysis was conducted in [12] with subjects
performing similar pointing tasks while interacting with the
InMotion3 system (Interactive Motion Technologies, Inc.),
a the state-of-the-art robot for wrist neurorehabilitation,
specifically designed to comply with the biomechanical con-
straints, and providing a high degree of back-drivability [13].
In this case no statistically significant difference was found
between subjects, suggesting that the robot flattens out any
personal intrinsic motor strategy (in particular the most prox-
imal joint, for pronation/supination movements, is perceived
as too heavy by the subjects during the task). In other terms,
the robot perturbs voluntary movements of the subjects,
despite its low mechanical impedance (it has been shown
to not be transparent enough to comply with the intrinsic
constraints of neural origin).

The goal of this work is to provide the handle of the
InMotion3 wrist robot with a load cell and to implement
a direct force control scheme to improve the back-drivability
of the system. This kind of mechatronic approach has been
already validated in [14] on the MIT-MANUS robot [1]
(InMotion2 system by Interactive Motion Technologies, Inc.)
in both simulation and experimental tests. In [14] a reduc-
tion of (mean and maximum) forces exerted by a subject
during planar pointing tasks has been verified in different
operative conditions, demontrating the effectiveness of the
chosen force control algorithm in improving the system
transparency. In this work the handle of the InMotion3 wrist
robot has been sensorized; inertia, friction and gravitational
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effects of the pronation/supination DOF have been estimated
to be actively compensated with a pure force control algo-
rithm. The performance of the robot have been analyzed with
and without the force control to verify the reduction of the
perceived mechanical impedance. Moreover, the reduction of
forces/torques required to a subject to perform two different
kinds of tasks (involving respectively 1 or 3 DOFs move-
ments) has also been measured.

The validation of this control scheme is the first step for
a future work on testing the effect that different levels of
transparency of the robot have on the human motor strategies.
The relation between robot back-drivability and human motor
control could possibly be useful in defining indications for
the design of a new generation of rehabilitative robots, able
to comply with constraints of neural origin.

II. INMOTION3 WRIST ROBOT

The InMotion3 system [13] has three active DOFs: Prona-
tion/Supination (PS), Abduction/Adduction (AA) and Flex-
ion/Extension (FE). A differential mechanism is used to
achieve AA and FE movements; PS rotations entail the
sliding along a curve guide of the housing comprising the
differential gearing and the AA and FE actuators (Fig. 1).

In [13] a quantification of the three axis inertia, friction
and gravity terms is provided showing that PS values are
one order of magnitude higher with respect to the two other
DOFs.

At the basis of the handle a linear slider and a revolute
joint allow two other passive DOFs for a further adaptation of
the robot to the axes of rotation of the human wrist (Fig. 1).

Fig. 1. InMotion3 wrist robot [13].

In this work we sensorized the robot handle, in order to
implement a direct force control for the reduction of end-
point impedance of the PS degree of freedom. To this aim we
decided to remove the linear slider and the passive revolute
joint, whose movements could not be measured/controlled,
and to collocate a load cell to the basis of the hand effector
(Fig. 2). A 6 DOFs JR3 force/torque sensor (20E12A4-I25-
EF 100N5, JR3 Inc.) with external electronics was used.
The six analog outputs of the sensor were directly connected
to an acquisition board already present on the robot, which
automatically synchronizes external signals with the 200 Hz
control software. The sampled signals have been multiplied

Fig. 2. Integration of the force/torque sensor in the InMotion3 system.
The linear slider and the passive revolute joint have been removed.

by a calibration and decoupling matrix, provided by the
manufacturer of the sensor.

III. FORCE CONTROL

The control algorithm proposed in this work is adapted
from [15], [16]. It compensates robot dynamics (gravity,
inertia and friction) and minimizes the end-point interaction
force since a zero reference is imposed. This strategy allows
the robot to ‘follow’ subjects’ movements, making them
appear almost free.

The equation of robot dynamics1 can be expressed as:

B(q)q̈ + bq̇ + g(q) + JT (q)F int = τ (1)

where F int represents the 6×1 vector of the generalized
forces exerted by the user (respect to the base frame), b
is a 3×3 diagonal matrix of constant friction coefficients,
B(q) is the 3×3 inertia matrix, JT (q) is the 3×6 transposed
Jacobian matrix, g(q) is the 3×1 gravity term and τ is the
3×1 vector of control torques. Relation (1) is composed
by three scalar equations, which refer to PS, AA and FE
DOFs respectively; thus the vector of joint coordinates is
q = [qPS qAA qFE ]T .

The implemented control law is:

τ = b̂q̇+ĝ(q)+JT (q)F sens+B̂(q)KPJ
T (q)(F d−F sens)

(2)
where the symbol ˆ indicates an estimation of the corre-
sponding vector or matrix, F sens indicates the 6×1 vector
of generalized forces measured by the load cell and KP is a
3×3 positive-definite diagonal gain matrix. A block scheme
of control law in (2) is presented in Fig. 3.

Force error can be indicated as ef = F d−F sens , where
F d is the desired interaction force (which in our application
is set to zero). By substituting (2) in (1), and assuming that
robot dynamical parameters have been perfectly estimated,
the force error dynamics becomes:

ef = Mq̈ (3)

If F d is set to zero, equation (3) indicates that the system
behaves like a free body with mass M = K−1

P , so that

1Coriolis and centrifugal effects have been neglected because of the low
values of velocity involved in the wrist pointing tasks. Hereafter vectors and
matrices will be reported in bold font.
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Fig. 3. Block diagram of force control scheme in (2); the ‘Robot’ block
represents the first term of equation (1).

increasing proportional gain (within stability margins) will
reduce the end-point perceived inertia. Force control in (2)
has been implemented only for the PS DOF since the AA and
FE DOFs are already highly back-drivable (their mechanical
impedance is one order of magnitude smaller than the one
of PS DOF [13]); for this reason the control torques can be
written as follows: 

τPS = τ [1 0 0]T

τAA = 0
τFE = 0

(4)

with

τPS = bPS q̇PS + τg
PS+

+[JT (q)F sens + B̂(q)KPJ
T (q)(F d−F sens)][1 0 0]T

(5)

where τg
PS = gPS sin(qPS) and bPS are the gravity term

and the friction coefficient of the PS DOF, respectively.
The implementation of the control scheme in (5) required
the calculation of the robot kinematic operators and the
estimation of its dynamical properties.

A. Robot kinematic operators

Since the robot native control is implemented only in the
joints space, the calculation of the Jacobian matrix J(q),
and of its transpose JT (q), was necessary to map the
forces/torques measured in the operative space in the corre-
sponding actions on the joints. A schematic representation of
the robot kinematics (without considering the passive DOFs)
is provided in Fig. 4. Denavit-Hartenberg convention was
used to select the frames of reference.

In addition the adjoint transformation [17] was used to
map the vector of generalized forces from the sensor coor-
dinate frame to the global reference system (base frame):
F sens = AdgF

S
sens (the superscript S refers to the sensor

reference frame, see Fig. 4).

B. Gravity term estimation

To estimate the gravity term for the PS DOF, a correla-
tion between different static configurations and the torques
required to hold the robot in those positions was performed.

It is important to note that tests were carried out with
AA and FE DOFs locked (being the actuators commanded
to maintain their 0 reference position through high gains PD
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Fig. 4. Schematic representation of the robot kinematics (without the pas-
sive DOFs); frames of reference are selected using the Denavit-Hartenberg
convention. We measured a = 0.062 m, b = 0.158 m, c = 0.022 m,
d = 0.120 m, l = 0.100 m.

position control), thus neglecting the contribution of changes
in AA and FE configurations on the PS gravity term.

The robot was commanded to reach 10 positions (from
-0.6 rad to +0.6 rad with respect to its rest position); PS
actuator torques exerted to maintain these rotations in static
conditions were evaluated. Figure 5 shows an example of the
PS torque and angle patterns during one estimation test of
gravity term.

A linear regression between PS torque and the sin of the
PS rotation was calculated. In Fig. 6 the collected data (static
PS angles and torques for the 5 trials) are shown together
with the best fitting curve.

The slope of the linear curve in Fig. 6, averaged on the
5 trials, was found to be gPS = 2.254 ± 0.009 Nm, with a
mean R2 of 0.980.

C. Inertia and friction estimation

To estimate inertia and friction terms the robot was back-
driven by one of the authors to perform few rapid oscillating
movements. The PS motor compensated the gravity effect
(on the basis of the estimation reported in III-B) and the AA
and FE actuators were commanded to maintain their rest
positions through high gains PD control; in these conditions
forces/torques exerted on the hand effector were recorded
and their effect on the PS DOF was calculated as follows:

τPS
sens = [J(q)TAdgF

s
sens][1 0 0]T . (6)
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Fig. 5. PS torque and angle patterns during one test for the gravity term
estimation. Commanded angles varied from -0.6 rad to +0.6 rad with respect
to the robot rest configuration.
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Fig. 7. Velocity and acceleration profiles for one representative trial of the
inertia and friction identification procedure. These values are obtained by
manually back-driving the handle of the robot while locking AA and FE
DOFs and compensating the gravity effect for the PS DOF.

In Fig. 7 velocity and acceleration profiles for one repre-
sentative trial are shown.

We estimated the inertia and friction terms for the PS
DOF by regressing the τPS

sens reported in (6) with angular
velocities and accelerations of the PS DOF, as reported in
the following:

τPS
sens = τ0

PS + bPS q̇PS +BPS q̈PS (7)

The multivariable linear regression reported in (7) was
calculated on 5 trials; the best fitting plane is shown in Fig.
8. We found τ0

PS = 0.219±0.049 Nm, bPS = 0.055±0.005
Nm·s/rad and BPS = 0.012± 0.001 kg·m2 with a mean R2

of 0.942.
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Fig. 8. Multivariable linear regression for PS inertia and friction estimation
as reported in (7). Considering the values averaged on 5 trials, we found
τ0
PS = 0.219 ± 0.049 Nm, a viscous friction bPS = 0.055 ± 0.005

Nm·s/rad and an inertia BPS = 0.012± 0.001 kg·m2, with a mean R2 of
0.942.

0 0.5 1 1.5 2 2.5 3 3.5 415

10

5

0

5

10

15

Time [s]

q̇ P
S

[r
ad

/s
]

q̈ P
S

[r
ad

/s
2
]

150

100

50

0

50

100

150

Fig. 9. Velocity and acceleration profiles for one representative trial of the
mechanical impedance evaluation test with force control active on PS DOF.
These values are obtained by manually back-driving the handle of the robot
while locking AA and FE DOFs.

IV. VALIDATION RESULTS

In this section the effectiveness of the force control in (5)
in improving the transparency of the robot is tested. First,
the reduction of the end-point mechanical impedance in the
PS DOF, due to the action of the force control has been
estimated; then the reduction of forces/torques exerted by
three subjects while performing two kinds of pointing tasks
were analyzed, comparing the cases of uncontrolled robot,
gravity-compensated robot, and force-controlled robot.

A. Reduction of end-point inertia

To evaluate the perceived mechanical impedance with the
action of the force control, the same procedure described
in section III-C was followed. In particular the proportional
gain of the force control was set to 250 kg−1m−2.

In Fig. 9 velocity and acceleration profiles for one trial
are shown.

The multivariable linear regression reported in (7) was
calculated on 5 trials; the best fitting plane is shown in
Fig. 10. We found τ0

PS = −0.059 ± 0.043 Nm, bPS =
−0.002±0.002 Nm·s/rad and BPS = 0.0037±0.0001 kg·m2

with a mean R2 of 0.980. The negative value of friction
suggest that an overestimation of this parameter was made.
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Fig. 10. Multivariable linear regression for PS mechanical impedance
estimation with force-controlled robot. Considering the values averaged on
5 trials, we found τ0

PS = −0.059± 0.043 Nm, a viscous friction bPS =
−0.002±0.002 Nm·s/rad and an inertia BPS = 0.0037±0.0001 kg·m2,
with a mean R2 of 0.980. A reduction of about 70% of perceived inertia
was obtained.
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Fig. 11. τPS
sens pattern for 1-DOF (PS) tasks, performed by one represen-

tative subject, in three different conditions: uncontrolled robot (motors off),
gravity-compensated robot and force-controlled robot with different values
of KP .

Anyway, this value can be considered negligible since it was
found to be not statistically different from 0.

Of note, the implemented force control causes a reduction
of the inertia of about 70% with respect to the case with
simple gravity compensation (section III-B).

B. Reduction of forces/torques exerted by the user

In this section PS torques (τPS
sens, as in (6)) exerted

by three healthy subjects (Sub1-3) to perform a 1-DOF
(Pronation/Supination) task and a 3-DOFs task are reported
for three different conditions: uncontrolled robot (Motors
Off, MO), Gravity-Compensated robot (GC) and Force-
Controlled robot (FC).

1) Pronation/Supination (PS) task: During this 1-DOF
task, three healthy subjects were asked to alternately reach 2
points displayed on a monitor on the left and right sides of
a starting central point, only using the PS DOF (AA and FE
DOFs were constrained in their rest positions through high
gains PD position control).

Fig. 11 shows the PS torque (6) exerted by one repre-
sentative subject in the different testing conditions. The only
gravity compensation reduces the torques required to perform
the task with respect to the case of motors off; further
decrease of the torque in the case of the force-controlled
robot can be noticed. Fig. 12 reports the peak and mean
values of the PS torque for the 1-DOF trials on the three
subjects.

It can be seen that these values slightly decrease increasing
the gain KP although no major changes occur. In case
of KP = 300 kg−1m−2 the peak torque decreases of the
90% while the mean torque of the 81% with respect to the
uncontrolled robot case. Gravity compensation only causes
a reduction of the 54% and 46% of the peak and mean
torques respectively. Of note, the force control (KP = 300
kg−1m−2) reduces the peak and mean torques of 77% and
65% respectively, with respect to the gravity compensated
condition.

2) 3-DOFs task: During this 3-DOFs task, three healthy
subjects were asked to perform pointing movements with the
wrist from the center of the workspace to 8 peripheral points
arranged in a circle displayed on the monitor; this is also a
typical rehabilitation exercise often indicated as clock game,
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sens peak and mean values for 1-DOF (PS) tasks on three

subjects (Sub1-3). Five conditions are reported: Motors Off (MO); Gravity
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Control KP = 200 kg−1m−2 (FC2); Force Control KP = 250 kg−1m−2

(FC3); Force Control KP = 300 kg−1m−2 (FC4).

0 2 4 6 8 10 12 14 16

1

0.5

0

0.5

1

Time [s]

τ
P

S
s
e
n

s
[N

m
]

 

 

KP=150 KP=200 KP=150 KP=300 Gravity compensation Motors off

Fig. 13. τPS
sens pattern for 3-DOFs tasks, performed by one representative

subject, in three different conditions: uncontrolled robot (motors off),
gravity-compensated robot and force-controlled robot with different values
of KP .

which has been used in [12] to test the effect of the robot
on human motor strategies.

Fig. 13 shows the PS torque (6) exerted by one repre-
sentative subject in the different testing conditions. Also in
this case gravity compensation lowers the PS torques with
respect to the case of uncontrolled robot and force control
improves this effect.

Fig. 14 reports the peak and mean values of the PS torque
for the trials on the three subjects. No major changes occur
with the gain increasing. In case of KP = 300 kg−1m−2

the peak torque decreases of the 80% and the mean torque
decreases of the 78% with respect to the uncontrolled robot
case. With gravity compensation the peak and mean torques
only decrease of the 5.6% and 5.4% respectively; thus the
force control (KP = 300 kg−1m−2) reduces the peak and
mean torques of 79% and 77% respectively, with respect to
the gravity compensated condition.

An overall view of the results obtained is presented in
Table I.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work a solution to improve back-drivability of
a state-of-the-art robot for wrist neurorehabilitation is pre-
sented. The handle of the robot was provided with a load
cell and a 0 reference direct force control scheme was
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TABLE I
τPS
sens PEAK AND MEAN VALUES FOR 1-DOF (PS) AND 3-DOFS TASKS

Peak torque [Nm] Mean torque [Nm]
PS 3-DOFs PS 3-DOFs

MO 1.306 ± 0.055 0.553 ± 0.441 0.427 ± 0.071 0.167 ± 0.131

GC 0.598 ± 0.099 0.522 ± 0.198 0.230 ± 0.038 0.158 ± 0.062

FC1 0.206 ± 0.059 0.155 ± 0.009 0.072 ± 0.012 0.056 ± 0.004

FC2 0.181 ± 0.048 0.151 ± 0.185 0.061 ± 0.017 0.049 ± 0.004

FC3 0.162 ± 0.028 0.139 ± 0.021 0.057 ± 0.007 0.043 ± 0.004

FC4 0.135 ± 0.024 0.108 ± 0.014 0.081 ± 0.066 0.037 ± 0.002

implemented to minimize the perturbations in the user natural
movements of the pronation/supination DOF.

Dynamical parameters of the PS DOF were estimated and
compensated for in the control law. Inertia and friction were
identified correlating the torque exerted to back-drive the
robot and the velocity/acceleration produced; the gravity term
was estimated on the basis of the torques exerted by the robot
to maintain a set of static configurations.

We showed that the implemented force control law caused
a net increasing of the robot transparency. The PS iner-
tial effect was reduced of about 70% and friction became
negligible (considering a fixed exemplification value of the
control gain). Gravity compensation lowered the mean PS
torque required to a healthy subject to perform 1- and 3-
DOFs tasks of less than 40%. The effect of the force control
was to minimize the mean torque exerted by the subject till
the 90% and 80% (respectively for 1- and 3-DOFs tasks) of
the value needed in the case of uncontrolled robot.

Results show that an increased level of back-drivability
was obtained with the proposed solution.

B. Future Works

In [12] it was demonstrated that the InMotion3 system
was note able to cope with intrinsic (‘soft’) constraints of
neural origin, used by the brain to solve redundancy during
pointing tasks with the wrist. Starting from the results of
this work it will be possible to verify if the force-controlled
robot is capable to respect the human physiological motor
strategies and which can be the effects of different levels of

transparency. Our future works will be focused on demon-
strating that Doders’ surfaces, fitting wrist rotations during
pointing tasks with the robot, will approximate, and ideally
match, the ones obtained in free space.
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