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Abstract—The Linear Temporal Logic MissiOn Planning
(LTLMoP) toolkit is a software package designed to assist in
the rapid development, implementation, and testing of high-
level robot controllers. In this toolkit, structured English and
Linear Temporal Logic are used to write high-level reactive
task specifications, which are then automatically transformed
into correct robot controllers that can be used to drive either a
simulated or a real robot. LTLMoP’s modular design makes it
ideal for research in areas such as controller synthesis, semantic
parsing, motion planning, and human-robot interaction.

Index Terms—Motion planning, mission planning, language,
temporal logics, sensor-based planning, controller synthesis,
hybrid control.

I. INTRODUCTION

The goal of controlling physical robots at an abstract,
high level is one of the fundamental challenges of robotics.
Nobody would dispute that it would be useful if we could
tell a robot to “go find my glasses and bring them to me”;
however, it is still unknown how to perform the sensing and
control that will allow the robot to satisfy this task correctly
and safely in a dynamic and uncertain environment.

Traditionally, different research communities have fo-
cused on different aspects of this problem. The artificial
intelligence community typically addressed discrete planning
problems, where the task is complex but the underlying
dynamics of the problem (i.e. robot motion) are abstracted
away [1]; the control and robotics communities, on the other
hand, have typically looked at the problem of performing
simple tasks (e.g. navigation between two points) in more
physically realistic scenarios, such as ones with dynamic
constraints and obstacles.

Lately, there has been a growing interest1 in looking at
theory and algorithms that bridge this gap between high-level
behaviors and low-level control. Such techniques include
the composition of learned motion primitives [2] and the
use of hierarchical task networks [3]. Another approach
for addressing this gap is the use of temporal logic [4]
as the specification language, and the application of formal
methods such as model-checking [5] and synthesis [6] or
optimization techniques, in conjunction with hybrid system
theory, to automatically generate controllers. This approach
( [7]–[11]) has several strengths, in that it generates provably
correct robot controllers and it allows for a rich set of

∗This work is supported by ARO MURI (SUBTLE) W911NF-07-1-0216.
1As evident from many recent workshops such as those at RSS ’09,

ICAPS ’09, AAAI ’10 and others.

specifications that are able to capture notions such as system
constraints, infinite behaviors, and sequencing.

This paper introduces the Linear Temporal Logic MissiOn
Planning (LTLMoP) toolkit, which was written based on the
work in [7], [12]. This toolkit is a modular, open-source
software package for designing, implementing, and testing
reactive hybrid controllers synthesized automatically from
structured English behavioral specifications.

LTLMoP provides a complete development environment,
encapsulating each step of the controller generation and
implementation process—from parsing of specifications to
continuous robot motion control—and thereby helps to
bridge the gap mentioned above. At the same time, LTLMoP
is designed to be modular, so that research can be performed
on any single component (e.g. semantic parsing or controller
synthesis) in isolation, while still benefiting from the in-
tegrated system. Furthermore, by treating the robot under
control as an abstract interface, LTLMoP allows seamless
transition from computer simulation to physical experiment,
with the same task specification.

The software is written in Python and Java, and is thus
cross-platform. With user-friendly GUIs available for most
tasks, the toolkit facilitates experimentation even by those
unfamiliar with the technical implementation details.

This paper is structured as follows: Section II briefly
reviews some of the fundamental theory behind LTLMoP’s
functionality, Section III outlines the structure of LTLMoP’s
code, and Section IV presents an example task, its corre-
sponding structured English description, and the execution
of the resulting synthesized controller by a robot in our lab.

II. THEORETICAL BACKGROUND

As mentioned in Section I, LTLMoP was written based
on the work described in [7], [12]. Conceptually, the pro-
cess of transforming a high-level task given in structured
English to correct control input for a robot is composed of
three stages: parsing the structured English sentences into
a formal logic formula defined over an abstraction of the
problem, transforming the logic formula into an automaton,
and executing the automaton as a hybrid controller where a
transition between states corresponds to a basic continuous
controller. In the following we give a brief overview of these
three components.
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A. Abstraction and Parsing: Language to logic

The underlying formalism used to capture high-level tasks
is Linear Temporal Logic (LTL [4]). Loosely speaking,
LTL formulas are defined over sets of Boolean proposi-
tions, Boolean operators (∧ “AND”, ¬ “NOT”, ∨ “OR”,
⇒ “IMPLIES”, etc.) and temporal operators (© “NEXT”,
2 “ALWAYS”, 3 “EVENTUALLY”, U “UNTIL”). The
inclusion of temporal operators means that LTL formulas
can describe changes in the truth values of the propositions
over time; for example, one can make statements such as “p
is always true” or “if p is true then eventually q will become
true.” The truth of an LTL formula is evaluated over a finite
state machine that represents the system; the formula is true
if it is true for every possible execution of the system.

In order to capture a continuous behavior (the motion
and action of a robot in response to its environment) using
a discrete formalism (LTL), the continuous behavior is ab-
stracted using a finite set of propositions. These propositions
correspond to sensor information (e.g. “object detected”
could be the output of a perception algorithm), actions (e.g.
“turn on video camera” or “transmit location”) and locations.
Note that, for sensor inputs, we assume the information is
correct and that any noise or non-determinacy is filtered out
by the low-level sensor processing routines. For locations,
we decompose the workspace of the robot into convex
polygons and assign a proposition to each; the proposition
porch would be true whenever the robot is on the porch,
and false otherwise (see Section III-A2).

For computational reasons, we restrict ourselves to a
subset of LTL as in [6].2 LTLMoP includes a parser that
automatically translates English sentences belonging to a
defined grammar into LTL formulas in the subset we are
considering. This grammar allows the user to define behav-
iors for the robot and to specify any assumptions regarding
the behavior of the environment (e.g. “a person will never
be seen in Region 1”). Furthermore, this grammar naturally
captures reactive tasks in which the robot’s behavior depends
on the sensor information it receives while it is executing
(e.g. “if you see a red light, stop”). Any sentence that cannot
be translated into a corresponding LTL formula will cause
an error.

In addition to the written specification, knowledge about
the workspace topology (that is, information about which
regions are adjacent, and consequently where the robot can
move to in one “step”) is automatically encoded into the
logic formula based on the decomposition, thus constraining
the possible motion of the robot based on its physical
limitations in the environment.

LTLMoP implements the grammar described in [12],
which includes conditionals, goals and safety sentences.
In the near future we will enrich the grammar with non-
projective locative prepositions such as “between” and
“within” as described in [13].

2In our experience, this subset of LTL is still sufficient for describing a
wide variety of tasks. For details, see the discussion in [7].

B. Synthesis: Logic to automaton

Once a task is captured using an LTL formula, it is
synthesized into an automaton based on the algorithm in [6].
This formal synthesis approach naturally generates correct-
by-construction automata: if the task can be accomplished in
all environments satisfying the given assumptions, then an
automaton will be created such that every possible execution
satisfies the required task. If, on the other hand, the task is
unrealizable—that is, the environment can prevent the robot
from achieving its task—then the algorithm will not create
an automaton (worst-case approach).

It is important to note that, in this fragment, our specifi-
cations take the form of an implication:

[environment assumptions]⇒ [robot behavior specification]

This means that the robot is guaranteed to behave according
to specification under the synthesized controller only as long
as the assumptions made about the environment hold true.

As for the synthesis process itself, the satisfying automa-
ton is generated by treating the problem as a two-player
game between system (robot) and environment: for every
possible move the environment might take, a countering
move for the robot is selected such that it continues to satisfy
its task specification. For details, see [6].

C. Hybrid Control: Automaton to control commands

The previous sections described how a continuous task
is abstracted into a discrete representation (LTL) and then
solved (synthesized into an automaton). What remains is
to discuss the creation of a continuous controller from
the discrete solution. To do this, the discrete automaton
is executed as a hybrid controller: a transition between
states (which depends on the sensor information the robot
perceives during execution) corresponds to the activation of
one or more atomic continuous controllers. For example, if
the proposition region1 is true in one state and in the next
state it is false but the proposition region2 is true, in order to
satisfy the transition the robot must call a low-level motion
controller that drives it from Region 1 to Region 2 without
going through any other region.

Clearly, there is a tight connection between the environ-
mental decomposition and the set of atomic controllers that
can guarantee certain motion for different kinematics and
dynamics. For a wheeled robot moving around a polygonal
environment, several methods exist to create such controllers
for any convex partition [14]–[18].

For a complete discussion of the hybrid controller, the
reader is referred to [7]. Section III-B discusses how atomic
controllers are incorporated within LTLMoP.

III. CODE STRUCTURE

The LTLMoP toolkit consists of several interconnected
applications and modules, the relationship between which is
illustrated in Figure 1. The Specification Editor serves as the
main development environment for working on projects, and
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Fig. 1: Overview of LTLMoP components

all other applications and modules are called from within the
Specification Editor.3

Project data is shared between applications in the form
of data and configuration files. All data is stored in a simple
plain-text format, so it can easily be modified by hand or
exported from another program. The specific file formats
are not discussed here, but more information can be found
in the API documentation on LTLMoP’s website [19].

A brief overview of each component is given in the
following subsections, listed in the order in which one would
typically encounter them when working on a project.

A. Application Components
1) Specification Editor: The Specification Editor (see

screenshot in Figure 2) is a development environment used
for editing, compiling, and executing structured English
specifications.

In addition to writing the specification in a standard
text editor, region propositions (imported from region files
created by the Region Editor) can be chosen visually from
a map, and sensor and actuator propositions (imported from
Robot Description Files) can be selected from a sidebar for
convenience. For more complex behavior, custom proposi-
tions can also be declared.

Compilation is accomplished by calling the parsing and
synthesis modules described below. The outputs of both
stages of compilation can be viewed as well, either as the raw
LTL specification or as an image of the resulting automaton
(using the GraphViz package [20])

To run the compiled controller, an experimental setup
must be defined by creating or selecting a configuration
from the simulation configuration dialog (see screenshot in
Figure 3). This configuration, which specifies the relation-
ship between the abstract map and propositions referred to
by the specification and their concrete counterparts in the

3However, the applications can also run independently; in particular, the
controller executor can run without any GUI, for headless applications.

experiment environment, is then passed on to the controller
executor (described below). By having multiple experiment
configurations associated with a single specification, the
user can easily switch between simulated and real-world
experiments, or even between different robots that provide
the same sensors and actuators.

2) Region Editor: The Region Editor (Figure 4) is a
simple graphical editor for creating named polygonal regions
on a map (with an optional background image) and for
automatically generating a topological connectivity graph
based on region adjacency. In order to later find a coordinate
frame mapping with the Calibration Tool (described below),
the Region Editor provides a way to indicate which map
vertices to use for the calibration. Also, because the mo-
tion controller included with LTLMoP (see Section III-B5)
requires regions to be convex, Region Editor will quietly
highlight any concave regions as they are drawn.

3) Structured English Parser: This module converts spec-
ifications in structured English into an equivalent LTL
specification, as described in Section II-A. In addition to
performing template-based mapping between syntaxes, the
parser automatically replaces region name propositions with
a minimal vector of propositions representing the region
index, thus reducing the total number of propositions in
the LTL formula. The parser module also uses topological
connectivity information from the Region Editor to encode
movement constraints on the robot.

4) Controller Synthesizer: A synthesis algorithm, de-
scribed briefly in Section II-B and implemented on top of the
JTLV framework [21], is used to check for realizability and
generate a controller automaton from the LTL specification.

5) Calibration Tool: This script helps the user to exper-
imentally determine the coordinate transformation between
points on the region map and points in the coordinate system
being used in an experiment, by taking measurements at
calibration vertices that were pre-defined on the map using
the Region Editor.

6) Controller Executor: This module executes the hybrid
controller for a robot in a simulated or real environment,
using the handlers listed in Section III-B.

7) Simulation Monitor: This application (see screenshot
in Figure 5) provides real-time information about the status
of the controller’s execution in an experiment. The current
position of the robot is plotted on the map, the controller
update frequency is shown in the status bar, and debugging
messages are displayed in the log window. Buttons are
provided to pause and resume controller execution, as well
as to export the log messages for later reference.

B. Handlers
Handler modules form the glue that connects the dis-

crete control automaton with the continuous world, be it a
computer simulation or a physical experiment. The different
types of handlers and their functions are described in the
following sections, and a corresponding block diagram is
given in Figure 6. Note that, within each handler category,
different modules can be plugged in as necessary, allowing
the same control automaton to easily interface with a wide

1990



Fig. 2: Specification Editor

Fig. 3: Simulation configuration window

Fig. 4: Region Editor, showing map. (Image modified for
legibility; thick black lines are walls.)

Fig. 5: Simulation Monitor
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Fig. 6: Block diagram of handler modules

variety of robots and experimental setups. The handlers are
determined per-experiment, based on choice of lab and robot
configuration files.

1) Initialization: This handler does any initialization that
needs to occur before other handlers are loaded. This in-
cludes tasks such as launching external simulation environ-
ments or opening any network connections that will need to
be shared between multiple handlers. LTLMoP includes a
handler to start a Stage simulation and a handler to connect
to a Player server [22], [23].

2) Pose: This handler finds out the robot’s current pose
from a localization system. LTLMoP includes pose handlers
for Player/Stage and the Orca robotics framework [24].

3) Sensor: Given the name of a sensor proposition, this
handler returns a boolean value corresponding to the ab-
stracted state of the corresponding physical sensor. LTLMoP
includes a handler for receiving UDP data from Orca, as well
as a simple virtual sensor simulator, which provides a GUI
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with buttons so the user can adjust sensor values in real-time.
4) Actuator: Given the name of an actuator proposition

and a state, this handler sets the corresponding physical
actuator to be in that state. LTLMoP includes a handler for
sending UDP packets to Orca, as well as a pass-through
handler which simply prints out changes in actuator state.

5) Motion Control: This handler calculates an instanta-
neous linear velocity vector in the global reference frame that
will help the robot get from the current region to a specified
next region. LTLMoP includes a potential field-based motion
control handler based on the work of Conner et al. [14].

6) Drive: Given a desired linear velocity vector [Vx, Vy]
(specified in the global reference frame) from the motion
controller and knowledge of the current orientation θ of
the robot, this handler constructs a drive command for the
robot’s motors that will cause it to follow this vector as
closely as possible. This is to account for the fact that real
robots are generally not holonomic or kinematic. LTLMoP
includes a drive handler for differential-drive robots and a
pass-through handler for simulated holonomic point robots.

7) Locomotion Command: This handler sends a locomo-
tion command from the drive handler to the robot. LTLMoP
includes handlers for Player/Stage and Orca.

IV. EXAMPLE

A specification for a simple “fire-fighting” scenario was
written and tested in both simulation (using Player/Stage
[22]) and in a lab environment.

In this example scenario, the robot’s task is to enter a
house (see map in Figure 4) from its porch and patrol its
rooms. If it encounters a person in the house, the robot is
to stay in the room with the person and radio for help. On
the other hand, if it encounters a potentially hazardous item,
the robot is to pick it up and take it to the front porch.
Furthermore, the robot is to satisfy these goals infinitely
often, so it will continue its patrol until its run is terminated.
(For an excerpt of the specification, see Listing 1.)

In simulation, the virtual sensor handler was used (so
the user could click on toggle buttons to dynamically adjust
the value of the sensor propositions), as well as the virtual
actuator handler (which simply prints out the status of an
actuator when its state changes). A holonomic point-robot
model was used for simplicity, with the heat-based potential-
field motion controller [14] for moving between regions. The
simulation monitor window for this experiment can be seen
in Figure 5.

In the lab, a Pioneer 3-DX robot was used. A Vicon
motion capture system was used for localization, and the
same potential-field motion controller was used in conjunc-
tion with a basic feedback linearization algorithm to generate
differential drive commands. For sensor input, a camera
and simple blob-detection algorithm were used to detect
red (“person”) and blue (“hazardous item”) golf balls. For
actuator output, a small red flag attached to a servo gimbal
was used as a multi-function actuator: “radio” was signaled
by waving the flag back and forth in the horizontal plane, and
“pick up” was indicated by the flag being raised to vertical,
where it remained until the “drop” command restored it back

to level. All components were linked using the lab’s existing
infrastructure, which itself uses the Orca robotics framework
[24]. An annotated video of this demonstration accompanies
this paper, and several frames are shown in Figure 7.

Listing 1 Abridged structured English specification for
firefighter example

# Initial conditions
Env starts with false
Robot starts with false

# Assumptions about the environment
If you were in porch then do not person
If you were in porch then do not hazardous_item

# Define when and how to pick up and drop
Do pick_up if and only if you are sensing

hazardous_item and you are not activating
carrying_item

Do drop if and only if you are activating
carrying_item and you were in porch

...
# Define when and how to radio
Do radio if and only if you are sensing person
If you are activating radio or you activated radio

then stay there

# Patrol goals
If you are not activating carrying_item and you

are not activating radio then visit dining
...

If you are activating carrying_item and you are
not activating radio then visit porch

V. CONCLUSIONS AND FUTURE WORK

The most recent version of LTLMoP can be downloaded
from our SVN repository; instructions for doing so can
be found at http://code.google.com/p/ltlmop/.
The distribution includes a number of example projects and
a step-by-step tutorial. Detailed API documentation can also
be found at the same website.

The more diverse the array of available sensors, ac-
tuators, and motion controllers, the more interesting the
specifications that can be written. To this end, we plan to
create handlers for using the ROS robotics framework [25]
with LTLMoP, and to interface with a legged robot with a
manipulator in the near future.

Looking further ahead, we plan to extend LTLMoP’s
grammar to support a more expressive language, experiment
with ways of providing useful feedback to the user in
the case of an unrealizable specification, add support for
multiple-robot scenarios, and explore methods for generating
optimal strategies over probabilistic systems.
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Fig. 7: Experimental run of the “fire-fighting” scenario. Left-to-right, top-to-bottom: A) The robot starts patrolling from the
porch. B) It encounters a “person” in the living room and stops, waving its flag. C) Once the “person” is gone, the robot
continues to the bedroom, where it now encounters and picks up a “hazardous item.” D) The robot carries the item towards
the porch. E) The robot drops the item on the porch. F) The robot heads to the kitchen to continue its patrol of the house.
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