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Abstract—Robust water detection is a critical perception 
requirement for unmanned ground vehicle (UGV) autonomous 
navigation.  This is particularly true in wide open areas where 
water can collect in naturally occurring terrain depressions 
during periods of heavy precipitation and form large water 
bodies (such as ponds).  At far range, reflections of the sky 
provide a strong cue for water.  But at close range, the color 
coming out of a water body dominates sky reflections and the 
water cue from sky reflections is of marginal use.  We model 
this behavior by using water body intensity data from multiple 
frames of RGB imagery to estimate the total reflection 
coefficient contribution from surface reflections and the 
combination of all other factors.  We then describe an 
algorithm that uses one of the color cameras in a forward-
looking, UGV-mounted stereo-vision perception system to 
detect water bodies in wide open areas.  This detector exploits 
the knowledge that the change in saturation-to-brightness ratio 
across a water body from the leading to trailing edge is 
uniform and distinct from other terrain types.  In test 
sequences approaching a pond under clear, overcast, and 
cloudy sky conditions, the true positive and false negative water 
detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 
0.60%, 0.62%), respectively.  This software has been integrated 
on an experimental unmanned vehicle and field tested at Ft. 
Indiantown Gap, PA, USA. 

 

I. INTRODUCTION 
etecting water hazards is a significant challenge to 
unmanned ground vehicle (UGV) autonomous 

navigation over cross country terrain.  This is particularly 
true for military UGVs navigating over wide open areas 
such as clearings.  Here, higher vehicle speeds are desired 
when executing tactical behaviors such as “dash to cover”.  
But these are areas that typically contain some naturally 
occurring depressions where large water bodies (such as 
ponds) can form during periods of heavy precipitation.  The 
probability of driving into a water hazard increases when a 
UGV is required to operate at higher than normal speeds, 
especially since a priori water data may not be available as 

current water hazards may not have existed when the most 
recent digital terrain map was generated.  Thus, the need to 
traverse wide open areas at high speed while detecting and 
avoiding previously unknown water traps necessitates robust 
water detection. 
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Water detection for UGV autonomous navigation is still a 
relatively new research area.  In 2003, Matthies et al. [1] 
cataloged the environmental variables affecting the 
properties and conditions of surface water, and discussed the 
sensors applicable to detecting it under each condition.  
Iqbal et al. [2] recently performed a survey of sensors and 
algorithms applicable to water detection. 

Both passive sensors {visible, short-wave infrared 
(SWIR), thermal infrared (TIR), polarization, hyperspectral 
[1][3][4][5][6]} and active sensors (laser [7][8]) have been 
explored for water detection.  Although laser sensors often 
get no return value on free-standing water [7], fusing laser 
cues for water with color cues for water can increase water 
detectability [8].  But because there are military operations 
when it may be desirable for UGVs to operate without 
emitting strong, detectable electromagnetic signals, a passive 
perception solution to water detection is desirable. 

Polarization cameras have been successfully used by 
several researchers to detect water bodies [3][4][5].  
However, polarization cameras (as well as SWIR, TIR and 
hyperspectral sensors) are relatively high cost in comparison 
to visible sensors.  In order to accurately transfer water 
detection results from one of these specialized cameras to a 
terrain map used to plan safe paths, either a second 
specialized camera or a pair of visible cameras are required 
to perform stereo ranging, or a separate ranging sensor (such 
as a 3D laser scanner) is required. 

Low cost visible cameras have also been successfully 
used to detect water bodies [1][9][10][11][12].  The 
appearance of water can greatly vary, depending upon the 
color of the sky, the level of turbidity, the time of day, and 
the presence of wind, terrain reflections, underwater objects 
visible from the surface, surface vegetation, and shadows.  
The large number of possible scenarios and appearances of 
water makes water detection particularly challenging using a 
single cue.  A single cue for water tends to only be reliable 
under certain conditions.  For example, spatiotemporal 
variation analysis is useful in detecting moving water from a 
stationary platform, but not still water [13].  In [9] and [11], 
multiple cues for water from visible cameras were fused.  In 
[1], a supervised RGB classifier based on a mixture of 
Gaussians model was used, and in [12], active learning and 
mean-shift based image segmentation were combined.  
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However, both of these methods require manual labeling of 
sample imagery prior to autonomous navigation. 

Under the Robotics Collaborative Technology Alliances 
(RCTA) program, we have developed a water detector for 
wide-open areas that uses a forward-looking stereo pair of 
color cameras mounted to the front of a UGV to detect water 
bodies at mid to far range, where reflections of the sky 
provide a strong cue for water.  We have demonstrated the 
detection and localization of large water bodies at ranges 
beyond 50 meters with our sky reflection detector [14].  
However, we cannot rely on only detecting water bodies in 
wide open areas when they are far away.  An autonomous 
vehicle operating on challenging terrain will often suddenly 
change its heading, causing water bodies to come in and out 
of a sensor’s field of view at any range. 

At close range, the color coming out of a water body 
dominates sky reflections and the water cue from sky 
reflections is of marginal use.  In section III, we model this 
behavior by using water body intensity data from multiple 
frames of RGB imagery to estimate the total reflection 
coefficient contribution from surface reflections and the 
combination of all other factors.  In section IV, we describe 
an algorithm that uses one of the color cameras in a forward-
looking, UGV-mounted stereo-vision perception system to 
detect water bodies in wide open areas.  This detector 
exploits the knowledge that the change in saturation-to-
brightness ratio across a water body from the leading to 
trailing edge is uniform and distinct from other terrain types.  
While this detector only uses a single color camera to 
classify water, stereo processing (which is beyond the scope 
of this paper) is performed to localize detected water in a 
terrain map.   

II. MULTI-FRAME WATER SEGMENTATION 
In this section, we describe a technique used for 

segmenting portions of water bodies for color analysis.  This 
technique was applied to the water body described in Fig. 1 
in order to obtain image intensity data on a large set of water 
pixels from multiple frames.  The intensity data was used to 
experimentally develop a model of the reflection coefficients 
from the water body in Fig. 1.  Fig. 1 contains an RGB 
image of a long water body (>50 meters) and hue, 
saturation, and brightness (HSB) color components.  The 
leading edge is close to the UGV and the trailing edge is far 
away.  Sky reflections dominate near the trailing edge but 
have a significantly reduced effect on the perceived color of 
the water near the leading edge.  The sequence of images 
leading up to this water body starts 40 meters from the 
water’s leading edge.  The frame in Fig. 1 is near the end of 
a 143 frame sequence. 

As illustrated in the Fig. 1 brightness image, water bodies 
tend to have a uniform brightness where they are not 
reflecting objects.  Thus, low texture can be a cue for water.  
To locate regions of low texture, we convert the native RGB 
images to grayscale and pass a 5x5 intensity variance filter 

over the grayscale images.  In the sample intensity variance 
image in Fig. 1, red corresponds to low variance, blue 
corresponds to high variance, and the colors in between 
correspond to an intermediate variance.  Here, variance is 
only calculated for pixels with a grayscale intensity above 
100 (on a 0-225 scale). 

The rational for ignoring the variance of low intensity 
regions is that we do not expect water to be extremely dark 
during the daytime in imagery from a sensor sensitive to the 
visible spectrum.  Using a cutoff intensity limits the search 
space for candidate water bodies.  In this case, however, a 
portion of the water body in the foreground is below the 
cutoff intensity.  We detect that region by expanding the low 
intensity variance region to include neighboring pixels that 
have a low intensity gradient. 

The majority of this water body was segmented in every 
frame of the sequence by performing a union of the region 
near the trailing edge strongly reflecting the sky, low 
intensity variance regions, and low intensity gradient 
regions.  Stereo range data was used to project water pixels 
into a digital terrain map having a resolution of 0.4 meters.  
For the 143 frame sequence, 23,731 map cells were 
segmented as water, an average of 159 cells from each 
frame.  For each map cell segmented as water, the angle 
between the ray from the cell center to the left camera focal 
plane array and zenith (i.e., the angle of incidence) and the 
average color in each cell was used to develop an empirical 
model of water reflection coefficients. 
 

 

Saturation RGB Hue 

 

Brightness Intensity variance  Water segmentation  

Fig. 1.  A frame near the end of a 143 frame sequence containing a long 
water body.  The majority of the water pixels in this sequence was 
segmented in software by performing a union of the region near the trailing 
edge strongly reflecting the sky, low intensity variance regions, and low 
intensity gradient regions. 

III. MODEL OF WATER REFLECTION COEFFICIENTS 
When electromagnetic energy reaches a water surface, it 

can be reflected off the surface, transmitted into the water, 
absorbed by the water, scattered by the water, absorbed by 
materials suspended in the water, reflected or scattered by 
materials suspended in the water, and reflected off the 
bottom of the water.  Deriving a full model of the energy 
flux from water bodies would be fairly difficult.  As an 
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alternative, we use experimental data to develop a partial 
model of the reflection coefficients. 

The total reflection coefficient Rtotal from a water body to 
a camera is the sum of the reflection coefficients for energy 
reflected off the water surface to the camera Rr, scattered by 
water molecules to the camera Rp, reflected or scattered by 
materials suspended in the water to the camera Rs, and 
reflected off the bottom of the water to the camera Rb (1).  
The fraction of the incident power that is reflected from an 
air/water interface is given by Fresnel equations (2) and (3) 
for light polarized perpendicular to and parallel to the plane 
of incidence, where n1 is the refractive index of air, n2 is the 
refractive index of water, and θ is the angle of incidence. 

The refractive index of air and pure water is 1.03 and 
1.33, respectively.  The most significant factors that can 
affect the refractive index of water are the wavelength of the 
light entering it and its salinity.  However, these factors only 
alter the refractive index of water by as much as 1%.  For 
unpolarized incident light, such as would be present on 
overcast days, the fraction of the incident power that is 
reflected from an air/water interface is the average of the 
polarized reflection coefficients (4).  As illustrated in Fig. 2, 
the energy reflected off the surface of water bodies increases 
with increasing incidence angle.  For this work, we make the 
assumptions that, for the purpose of estimating the surface 
reflection coefficient for water bodies, the refractive index 
for pure water can be used and the incident light is mostly 
unpolarized. 
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Fig. 2.  Theoretical fraction of incident power that is reflected from an 
air/pure water interface as a function of incidence angle.  Rr,┴ (θ) and Rr,|| (θ) 
are the Fresnel reflection coefficients for light polarized perpendicular to 
and parallel to the plane of incidence, respectively.  Rr(θ) is the Fresnel 
reflection coefficient for unpolarized light. 
 

Thus far, we have an expression for the surface reflection 
coefficient Rr in (1).  Rather than model each of the 
remaining reflection coefficients in (1), we combine the 
reflection coefficients for energy scattered by the water Rp, 
reflected or scattered by materials suspended in the water Rs, 
and reflected off the bottom of the water Rb into a single 
term Ro (5).  The intensity values of water pixels are related 
to the total reflection coefficient by (6), where L is an 
illumination factor.  Illumination depends on solar incidence 
angle, sky conditions, and terrain topology.  Since the 
duration of the data collection on the water body in Fig. 1 
was relatively short (~1 minute) and the water body is in an 
open area where few shadows are cast on the water, we 
assume constant illumination factor L.  Substituting our 
simplified expression for Rtotal into (6) yields the expression 
in (7). 

As shown in (8), the native RGB imagery is converted to 
grayscale (by averaging the RGB components) so that there 
is a single intensity value for each pixel.  Fig. 3 contains a 
scatter plot of the grayscale intensity values on the water 
body in the image sequence described in Fig. 1.  The 
intensity data is fairly linear and modeled using a least 
squares line fit (9).  Recall that at high incidence angles, the 
surface reflection coefficient dominates the other reflection 
coefficients.  Assuming Ro(θ) is negligible for an incidence 
angle of π/2, we can estimate the illumination factor L (10).   

Finally, with an estimate of the illumination factor, a 
model of the intensity as a function of incidence angle, and 
an expression to calculate the surface reflection coefficient, 
we can estimate the sum of the remaining reflection 
coefficients in our model (11).  Fig. 4 contains a plot of the 
surface reflection coefficient Rr(θ), the combination of the 
remaining reflection coefficients Ro(θ), and the modeled 
intensity as a function of the incidence angle θ.  These 
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parameters can be cast in terms of the distance along flat 
ground D by using D=H*tan(θ), where H is the sensor 
height above the ground.  For the data sets analyzed in this 
paper, the sensor height was 1.5 meters.  Fig. 5 contains a 
plot of the surface reflection coefficient Rr(θ), the 
combination of the remaining reflection coefficients Ro(θ), 
and the modeled intensity as a function of the distance along 
the ground D.  This model predicts that reflections of the sky 
dominate the perceived color of the water beyond ~12 
meters. 
 
 , where  (5) ortotal RRR += bspo RRRR ++=
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Fig. 3. The average of the RGB components for the water body in Fig. 1, 
plotted on a 0-1 scale, is used as a measure of intensity.  The intensity 
values can be modeled with the line I = 0.4431θ – 0.1767. 
 

 
Fig. 4. Surface reflection coefficient Rr(θ), the combination of other the 
reflection coefficients Ro(θ), and modeled intensity (I = 0.4431θ – 0.1767) 
as a function of incidence angle. 

 

 
Fig. 5. Surface reflection coefficient Rr(θ), the combination of other the 
reflection coefficients Ro(θ), and modeled intensity as a function of the 
distance along the ground, given a sensor height of 1.5 meters above the 
ground. 

IV. WATER DETECTION 
We have observed that the color of a water body tends to 

gradually change from the leading edge to the trailing edge, 
when other naturally occurring terrain types typically do not.  
In this section, we develop a method for detecting water 
bodies in wide-open areas based on their variation in color 
as a function of incidence angle.  Fig. 6 contains a scatter 
plot of the average RGB and HSB color components for the 
23,731 water map cells extracted from the sequence 
described in Fig. 1.  Red, green, blue, brightness, and 
saturation values are plotted using a 0-255 scale, and hue is 
plotted using a 0-360 scale.  The hue scale is angular with 0° 
and 360° being equivalent.  

Several observations can be made.  From the RGB plot, 
red, green, and blue water content decrease with decreasing 
incidence angle, green at a faster rate than red, and blue at a 
faster rate than green.  From the HSB plot, the water 
brightness was largely unchanged except at lower incidence 
angles, where it begins to decrease at a low rate.  Moving 
from higher to lower incidence angles, water saturation 
increases at a high rate and then levels off.  At very high 
incidence angles the hue of the water body is somewhat 
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unpredictable, spanning the entire scale.  There, water 
strongly reflects haze just above the horizon causing the 
saturation to be low.  Hue is undefined for zero saturation 
and numerically ill-determined for low saturation.  At lower 
incidence angles, water hue was fairly linear with low slope.  
Fig. 7 illustrates the water hue at the beginning, in the 
middle, and at the end of the sequence.    We focus our 
attention on the ratio of water saturation to brightness, as 
those two components trend in opposite directions.   
 

 
Fig. 6.  A scatter plot of the RGB and HSB color components of the water 
body in Fig. 1 (as a function of angle of incidence) during a straight on 
approach starting from a range of 40 meters from the leading edge. 
 
 

 
Fig. 7.  As an open-area water body is approached, the sensed hue gradually 
changes from the hue of the sky to the hue coming out of the water. 

Fig. 8 contains a plot of saturation divided by brightness 
as a function of incidence angle for the 23,731 water map 
cells extracted from the sequence described in Fig. 1.  Note 
that the plot is fairly linear with high slope magnitude.   (A 
brightness/saturation plot has a high positive slope.)  As the 
water body is approached from a distance, the net change in 
brightness and saturation across the water body tends to 
increase.  Fig. 9 shows plots of the maximum change in 
HSB color components over the water body in Fig. 1 for 
each frame in the sequence.  The saturation content changes 
at a faster rate than the brightness content.  We have 
implemented a water detector based on color variation that 
identifies candidate water regions in image space based on 
texture, evaluates the color changes across each candidate 
water region to locate those consistent with water, and 
performs filtering to prune regions that geometrically are not 
likely to be water.  The steps in the algorithm are as follows: 
 

a) In image space, low-texture regions with a 
monochrome intensity above some threshold and an 
average intensity much higher than their surrounds 
are identified as candidate water bodies.   

b) Candidate water body regions are expanded using a 
flood fill algorithm that continues to add neighbor 
pixels as long as the intensity gradient in the 
brightness image is low. 

c) An ellipse fit of each candidate water body is 
performed in image space. 

d) A least-squares line fit of the pixels in each 
candidate water body is performed in brightness/ 
saturation vs. incidence-angle space. 

e) Assuming a horizontal ground plane at the front-
wheel contact elevation, the pixel length and width 
of each ellipse are converted to meters. 

f) The density of each candidate water region is 
calculated in image space in terms of the 
percentage of pixels in each ellipse that are 
candidate water pixels.  Candidate water regions 
that are dense are more likely to be actual water 
regions.  Low-density candidate water bodies tend 
to have a wireframe like appearance and are not 
likely water. 

g) For each candidate water region, the line fit slope 
and average error, the ellipse aspect ratio, the blob 
size (in pixels), the blob density, and the blob 
length and width (in meters) are all thresholded. 

 
Fig. 10 contains a water detection result for a single frame 

in the sequence.  Each red ellipse contains a low texture 
region hypothesized to be water.  After color variation and 
geometric filtering, only the ellipse containing yellow was 
ultimately detected as containing water.  Fig. 11 shows the 
inclination angle of the least-squares line fit (step d) for true 
positive, true negative, false positive, and false negative 
water detection for each frame in the sequence.  Water 
regions tend to have higher inclination angles than other 
naturally occurring terrain types.  The false positive and 
false negative rates were both 1.4% for this sequence. 
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The water detector was run on three image sequences 
collected under clear, overcast, and cloudy sky conditions 
(see Fig. 12).  The clear sky sequence was collected during 
an approach to the pond in Fig. 1 from 50 meters, and the 
overcast and cloudy sky sequences were collected during 
approaches to the same pond but from the opposite side 
(from 35 and 37 meters, respectively).  For these sequences, 
a more aggressive inclination angle threshold of 1.25 radians 
was used.  Table 1 contains water detection results for these 
three sequences. 

Fig. 13 illustrates our color-variation based water detector 
outperforms our sky-reflection based water detector when 
water bodies are close to a UGV.  Fig. 14 contains some 
additional examples of detecting close water bodies based 
on variation in color across low texture regions. 
 

 
Fig. 8.   A scatter plot of saturation/brightness (from the sequence described 
in Fig. 1) as a function of angle of incidence.  Note that the plot is fairly 
linear with high slope magnitude.  The slope magnitude appears to be higher 
for water than other naturally occurring terrain. 
 

 
Fig. 9.  The maximum change in HSB color components over the water 
body in Fig. 1 for each frame during a straight on approach starting from a 
range of 40 meters. 
 

 
Fig. 10.  A variety of characteristics are thresholded to detect water bodies 
based on color variation.  Here, each red ellipse contains a single candidate 
water body.  Only the one labeled yellow is ultimately detected as water. 

 
Fig. 11. Water detection results for the 143 frame sequence approaching the 
water body in Fig. 1.  Each marker represents a candidate water body.  An 
inclination angle threshold of 1.4 radians was used to classify low-texture 
blobs as water.  The false positive and false negative rates were both 1.4%. 
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Fig. 12.  First-frame water detection results for three sequences collected 
under clear, overcast, and cloudy sky conditions, approaching the water 
body in Fig. 1.  The approaches on the overcast and cloudy days were from 
the opposite side. 
 

Table 1.  Water detection results for the 3 sequences illustrated in Fig. 12 
Scene 1st frame 

distance 
to water 

Num 
frames 

True 
positive 

detection 

False 
positive 

detection 

Avg 
frame 
time 

Clear 50 meters 237 227 
(95.76%) 

1 
(0.45%) 

128ms 

Over-
cast 

35 meters 334 323 
(96.71%) 

2 
(0.60%) 

76ms 

Cloudy 37 meters 162 160 
(98.77%) 

1 
(0.62%) 

54ms 
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Fig. 13.  As expected, color variation (“Color Var”) provides a stronger cue 
for water than sky reflections (“Sky Ref”) when the water body is close.  
Here, the water body in Fig. 1 was approached from the opposite side. 
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Fig. 14.  Additional examples of detecting close water bodies based on color 
variation across low texture regions. 

V. CONCLUSION 
Robust water detection is a critical perception requirement 

for UGV autonomous navigation.  Traversing through deep 
water bodies could cause costly damage to the electronics of 
UGVs.  Additionally, a UGV that is either broken down due 
to water damage or stuck in a water body during an 
autonomous military mission may require rescue, potentially 
drawing critical resources away from the primary mission 
and soldiers into harm’s way.  In previous work, we 
developed software that detects water bodies out in the open 
at mid to far range, where sky reflections provide a strong 
cue for water.  But at close range, the color coming out of a 
water body dominates sky reflections, and the water cue 
from sky reflections is of marginal use.  A model of 
reflection coefficients developed using experimental water 
intensity data suggests that for a sensor height of 1.5 meters, 
sky reflections no longer dominate the color of water bodies 
at ranges less than ~12 meters. 

We explored the possibility of developing a water 
detector based on the observation that the color of a water 
body tends to gradually change from the leading edge to the 
trailing edge, when other naturally occurring terrain types 
typically do not.  Moving from higher to lower incidence 
angles, water body saturation and brightness move in 
opposite directions, with saturation increasing at a much 
higher rate than brightness decreases.  For 23,731 water map 
cells segmented from a sequence of 143 frames approaching 
a water body starting at 40 meters, a plot of 
saturation/brightness vs. incidence angle is fairly linear with 
high slope magnitude.  Fortuitously, the slope magnitude 
tends to be higher for water than other naturally occurring 
terrain, such as soil and vegetation.  We have exploited this 
phenomenology to develop software that detects water 
bodies based on the variation in color across the water body. 

First, we identify candidate water regions in image space 
by locating regions having low texture.  Next, we evaluate 
the color changes across each candidate water region to 
locate those consistent with water.  Finally, we perform an 
ellipse fit on remaining candidate water regions and apply 
some size and aspect ratio filtering to prune regions that 
geometrically are not likely to be water.  In three color 
image sequences collected while approaching a pond on 
different days when the sky was clear, overcast, and cloudy 
(from starting distances of 50, 35, and 37 meters, 
respectively), the true positive and false negative water 

detection rates were (95.76%, 96.71%, 98.77%) and (0.45%, 
0.60%, 0.62%), respectively.  The average time to classify 
each 512x384 image on a 2.6 GHz Intel Core 2 Duo 
processor was 128, 76, and 54 milliseconds, respectively.  
The timing varies based on the number of low-texture 
regions segmented for classification. 

Our practice is to run the sky reflection based water 
detector and the color variation based water detector in 
parallel to detect water bodies that are out in the open.  
These two detectors are complementary.  The color variation 
based water detector performs well in detecting water bodies 
at close to mid range, and the sky reflection based detector 
performs well in detecting water bodies at mid to far range. 
These detectors have been integrated on an experimental 
unmanned vehicle and field tested at Ft. Indiantown Gap, 
PA [14].   
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