
Using GPUs to improve system performance in Visual Servo systems

Chuantao Zang, Koichi Hashimoto
Graduate School of Information Sciences,

Tohoku University, Sendai, Japan
{chuantao,koichi}@ic.is.tohoku.ac.jp

Abstract— This paper describes our novel work of using
GPUs to improve the performance of a homography-based
visual servo system. We present our novel implementations
of a GPU based Efficient Second-order Minimization (GPU-
ESM) algorithm. By utilizing the tremendous parallel pro-
cessing capability of a GPU, we have obtained significant
acceleration over its CPU counterpart. Currently our GPU-
ESM algorithm can process a 360× 360 pixels tracking area
at 145 fps on a NVIDIA GTX295 board and Intel Core i7
920, approximately 30 times faster than a CPU implementation.
This speedup substantially improves the realtime performance
of our system. System reliability and stability are also greatly
enhanced by a GPU based Scale Invariant Feature Transform
(SIFT) algorithm, which is used to deal with such cases where
ESM tracking failure happens, such as due to large image
difference, occlusion and so on. In this paper, translation details
of the ESM algorithm from CPU to GPU implementation and
novel optimizations are presented. The co-processing model
of multiple GPUs and multiple CPU threads is described in
this paper. The performance of our GPU accelerated system is
evaluated with experimental data.

I. INTRODUCTION

Visual servo consists in controlling a robot using feedback
image information [1]. Among various image based visual
servo (IBVS) systems, one category has been designed
to exploit the Cartesian information from the homography
between two images of a planar object. Several control strate-
gies decompose the homography to explicitly reconstruct the
motion of a camera (translation and rotation), such as [2] [3]
[4]; some schemes directly use the homography to control the
robot without such decomposition in [5] [6] [7]. Among all
these methods, the system performance greatly depends on
the estimation accuracy and robustness of the homography.

In most cases homography solution is a typical minimiza-
tion problem of sum of squared differences (SSD) between
a region in a reference image and a warped region in a
current image [6]. Many nonlinear optimization approaches
have been proposed to deal with this least square opti-
mization problem with different kinds of approximations,
such as Standard Newton method, Gauss-Newton methods,
Levenberg-Marquardt method and so on [8]. Among these
solutions, the efficient second-order minimization (ESM)
algorithm is an elegant idea which adopts a more adequate
approximation of the computational costly Hessian matrix
than other methods’ approximations [9]. By performing a
second order approximation of the SSD problem with only
first order derivative, this method can get a high convergence
rate and avoid local minima close to the global one. Because
of these merits, it has been used in different applications.

However, when considering a realtime visual servo sys-
tem, the main requirements of the tracking algorithms are
efficiency, accuracy and stability. In Malis’s paper [6], only
the stability and convergence rate of the ESM algorithm
are evaluated. As far as we know, no processing speed
information is mentioned. From our experience, with the
increase size of a tracking area, for example, an area of
300×300 pixels, the ESM computation still takes too much
time and induces a relative low processing speed. In a
typical visual servo system, this will cause a larger image
displacement in the two continuous images as the camera is
mounted on a moving end-effector. As we will mention later,
ESM can not process this kind of large image difference well.

And there are also other limitations about the ESM algo-
rithm. In such cases where a large difference exists between
a current image and a reference image, i.e. only a small
overlapping area exists in this pair of images, the ESM
tracking algorithm will fail to find the right homography
solution because it can not obtain enough information from
this relative small overlapping area. In practical applications
of visual servo, usually there is a large difference between
the current image and the reference image because the end-
effector can be far from the desired pose.

To solve these problems, we adopt the GPUs as copro-
cessors to increase the tracking speed and stability of our
system. Our contributions are mainly as follows.

Firstly, we present a GPU based ESM algorithm (GPU-
ESM) to address the need for faster visual tracking algo-
rithms. After several novel optimizations on the GPU code,
we succeed in achieving substantial acceleration over its CPU
implementation. For a tracking area of 360×360 pixels, our
GPU-ESM can work at 145 fps, approximately 30 times
faster than the CPU application. This allows for a realtime
visual tracking system with a higher speed camera. With
such camera there will be a smaller difference between the
continuous frames and this smaller difference will make the
ESM tracking result more reliable.

Secondly, to improve the system reliability and robustness,
we adopt Lowe’s Scale Invariant Feature Transform (SIFT)
algorithm [10] on GPU (GPU-SIFT) to find the homography
in such cases where GPU-ESM failure happens due to
large translation or rotation or even occlusion. We get an
approximately 20 times speed up than on CPU.

Thirdly, we proposed a co-processing strategy to combine
the GPU-ESM and GPU-SIFT algorithms for system reli-
ability. If GPU-ESM tracking failure happens, the system
will automatically use the homography result from the GPU-

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3937



SIFT. As the ESM algorithm is adaptive, i.e. a homography
from the previous loop will be the initial value of the current
loop, ESM tracking can continue working with the homog-
raphy from the SIFT algorithm. Therefore, the whole system
can work smoothly with high reliability and robustness at a
high processing speed.

The rest of this paper is organized as follows. Section
II reviews the relative works about the ESM and SIFT
algorithms. Section III introduces the translation details of
the GPU-ESM so as to fully utilize the parallel architecture
of a GPU. The co-processing model between multiple CPUs
and GPUs is also described in this part. Section IV lists the
optimization methods in our GPU implementations. Section
V shows the experiments to evaluate our proposed system.
Section VI is the conclusion part.

II. RELATED WORKS

A. ESM algorithm

ESM algorithm was first proposed by Malis in 2004 [11].
By performing a second order approximation of the least
square problem with only first order derivative, it has shown
great potential in a variety of applications, such as visual
tracking of planar object [6] and deformable object [12], vi-
sual servo in [7] [11] etc. In our visual servo applications, we
adopt the homography-based visual control scheme [6] for
a planar object. For simplicity, we review the homography-
based visual control scheme with ESM algorithm [6].

First we suppose a planar object is projected in a reference
image I∗ with some “Template” region of q pixels. Tracking
the reference template in a current image I consists in
finding the homography transformation G that transforms
each pixel P∗

i of the template into its corresponding pixel
in the current image I, i.e. finding the homography G such
that ∀i ∈ {1,2, ...q}:

I(w(G)(P∗
i )) = I∗(P∗

i ) (1)

Suppose we have had an approximation Ĝ of G , the prob-
lem consists in finding an incremental transformation G(x)
(where the 8×1 vector x contains a local parameterization),
such that the difference between the region in the image
I (transformed with the composition w(Ĝ) ◦ w(G(x)) and
the corresponding region in the image I∗ is null. Therefore,
tracking consists in finding the vector x such that ∀i ∈
{1,2, ...q}, the image difference

yi(x) = I(w(Ĝ)◦w(G(x))(P∗
i ))− I∗(P∗

i ) = 0 (2)

Let y(x) be the q×1 vector containing the differences:

y(x) = [y1(x),y2(x), ...yq(x)]⊤ (3)

The problem consists in finding x = x0 verifying:

y(x0) = 0 (4)

We linearize the vector y(x) around x = 0 using a second-
order Taylor series approximation:

y(x) = y(0)+J(0)x+
1
2

x⊤H(0)x+O(∥x∥3) (5)

where J(0) and H(0) are the Jacobian matrix and Hessian
matrix at x = 0, separately. In the ESM algorithm, the
Hessian matrices of vector y(x) are replaced by a first-order
Taylor Series approximation of vector J(x) about x = 0:

J(x) = J(0)+x⊤H(0)+O(∥x∥2) (6)

Then Eq. 5 becomes

y(x)≈ y(0)+
1
2
(J(0)+J(x))x (7)

For x = x0, we have

y(x0) = y(0)+
1
2
(J(0)+J(x0))x0 = 0 (8)

With some mathematical proof in [6], the sum of Jacobian
matrix 1

2 (J(0)+J(x0)) can be written as one matrix Jesm.
Therefore, for x = x0, we have

y(x0) = y(0)+Jesmx0 = 0 (9)

The solution x0 can be obtained by:

x0 = J+esmy(0) (10)

J+esm is the pseudoinverse matrix of Jesm. The homography
G can be calculated with this x0 with Lie Algebra operation.
With this homography G, an elegant visual servo scheme was
proposed with a special task function and control law, whose
computation only depend on the G [6]. In our visual servo
system, we adopt this homography-base control strategy.

B. SIFT algorithm

Among the feature based matching approaches, the SIFT
[10] algorithm has been demonstrated to have a good per-
formance with respect to variations in scale, rotation, and
translation. However, it involves a computationally intensive
high-dimensional descriptor extraction and is difficult to
apply for realtime applications. To improve its performance
and accelerate processing speed, various algorithms have
been proposed, including PCA-SIFT [13] and SURF (Speed
up Robust Features) [14]. And there are also GPU SIFT
implementations [15] [16]. In our system the GPU based
implementation SiftGPU provided by Changchang Wu is
selected [17] and extended to find a homography solution.
It exploits the processing power of a GPU to achieve a
significant speedup (about 20 times) over the CPU imple-
mentations.

Besides, our combination of the GPU-SIFT and GPU-
ESM algorithms is following the “Incremental Focus of
Attention” (IFA) architecture [18]. When conditions are
good, GPU-ESM tracking is accurate and precise; as con-
ditions deteriorate, more robust but less accurate GPU-SIFT
algorithm takes over. By this means we can realize robust,
adaptive, real-time visual tracking applications.

3938



III. SYSTEM IMPLEMENTATION

Our GPU implementations of the ESM and SIFT algo-
rithms are carried out on a desktop with Intel Core i7-
920 2.67GHz, 3GB RAM and a NVIDIA GTX295 board.
The GTX295 board integrates two GTX280 GPUs inside
and has 896MB GPU RAM for each GPU. Development
environment is Windows XP (sp2) with NVIDIA’s CUDA
(Compute Capability 1.3).

A. GPU programming

For hardware details, each GTX280 has 30 Streaming
Multiprocessors (SMs) and each SM has 8 Scalar Processor
(SP) cores. In CUDA, functions are expressed as kernels and
the smallest execution unit on a GPU is a thread. In CUDA
the thread hierarchy is defined as follows: a CUDA kernel
is a grid of threads. A grid is composed of several blocks of
threads and a block is composed of several threads. As one
CUDA kernel just completes a certain task like an ordinary
C function, multiple CUDA kernels are needed to realize
different functions in one algorithm.

B. GPU-ESM

Our GPU-ESM algorithm is categorized into 6 CUDA
kernels.

1) Warping. This kernel warps the template image to the
current image with a known homography.

2) Gradient. This kernel calculates the image intensity
gradient in the X and Y directions.

3) JESM. It obtains the Jesm matrix in the Eq. 9.
4) Solving. This kernel finds a solution x0 of the equations

Jesmx0 = y(0) (11)

5) Updating. This kernel updates the homography with
solution x0 from the “Solving” kernel.

6) Correlation. This kernel calculates the correlation of the
warped area and the template area to determine when to stop
the ESM loops. As an iterative minimization algorithm, such
threshold is necessary to stop the loops.

C. GPU-SIFT

We transfer Changchang Wu’s code to our GPU-SIFT
algorithm and extend it to a homography solution with
RANSAC. The processing loop for an image is as follows.

1) SIFT feature extraction. The SIFT features in the
current image and the reference image are extracted in this
step. The extraction from a reference image can be computed
in advance as it stays the same during the tracking process.

2) SIFT feature matching. The corresponding pairs of
feature points in the two images are matched in this step.

3) Solving. After applying Changchang Wu’s code in
the previous steps, the RANSAC method is exploited to
find the homography between the corresponding pairs of
feature points. RANSAC shows a better performance than the
ordinary least squares methods as it can effectively remove
the outliers (the mismatched pairs of feature points).

D. Co-processing model of CPUs and GPUs

We assigned GPU-SIFT and GPU-ESM on separate
GTX280 GPU. As a GPU can only run as a coprocessor
of a CPU, corresponding CPU threads to control each GPU
are needed. This is implemented by utilizing a multi-thread
programming model on the CPU.

The final important item is how to effectively combine
the GPU-ESM and GPU-SIFT to improve the system perfor-
mance. Both algorithms run simultaneously on two GPUs.
But the homography from GPU-SIFT is only used when
GPU-ESM fails to track the object. Therefore it is important
to set some criteria to detect whether the current GPU-
ESM tracking fails or not. If GPU-ESM tracking failure is
detected, the GPU-ESM thread will automatically read the
homography result from the GPU-SIFT thread. From our
practical experience, we adopt such criteria:

1) Image coordinate changes of the tracking area. For
simplicity, the template area is selected with a rectangular
shape. If the coordinates of any one of the four corner
points change larger than a preset threshold (10 pixels in our
application), it will be treated as an ESM tracking failure.

2) Correlation from the kernel “Correlation”. The Zero
mean Normalized Cross Correlation (ZNCC) is used as:

∑q
k=1 (I(k)− I)(I∗(k)− I∗)√

∑q
k=1 (I(k)− I)2 ∑q

k=1 (I
∗(k)− I∗)2

(12)

where I and I∗ are the mean values of the warped area I
and template area I∗, respectively. If the correlation value is
smaller than a preset threshold(0.6 in our application), it will
be treated as tracking failure.

In GPU-ESM algorithm, after each processing loop for one
image, such homography quality evaluation is carried out
with the above criteria. If either of the criteria is reached,
GPU-ESM will alternatively load the homography from
GPU-SIFT. In our visual servo application, after detecting a
tracking failure, the robot will not move until ESM tracking
successfully continues working. Therefore the negative effect
of the control information discontinuities can be removed.

IV. OPTIMIZATION

In this section, we describe our optimization techniques
in our GPU-ESM implementation. Though CUDA uses C
language with several extensions which make it easier than
other GPU languages, to make GPU code highly proficient,
carefully optimization must be exploited and several impor-
tant factors must be considered.

A. Code parallelization

Algorithms must be carefully parallelized so that they can
fully use the parallelism of a GPU, otherwise no obvious
speedup can be obtained. Amdahl’s law [19] specifies the
maximum speedup (S) that can be expected by parallelizing
portions of a sequential program as

S =
1

(1−P)+ P
N

(13)

3939



where P is the fraction of the total serial execution time
taken by the portion of code that can be parallelized, N
is the number of processors on which the parallel portion
code runs. When P is small, i.e. the code is not effectively
parallelized, no matter how many cores you use (N), there
will be little improvement. So maximizing the amount of
code that can be parallelized is the most important factor. For
simplicity, we only take the matrix multiplication to show the
important role of the code parallelization.

With CUDA Profiler we find that the kernel “Solving”
takes most of the running time. Therefore optimization of
this kernel is important. In the CUDA kernel “Solving”, we
need to solve the overdetermined equation Eq. 11:

Jesmx0 = y(0)

Jesm is M × 8, y(0) is M × 1, solution x0 is 8 × 1. M is
the number of pixels in the template area. With least square
methods, it consists in solving the following equation:

J⊤esmJesmx0 = J⊤esmy(0) (14)

J⊤esm is the transpose matrix of Jesm. Therefore, GPU imple-
mentation of matrix multiplication (J⊤esmJesm) and (J⊤esmy(0))
are necessary. At first we tried the CUBLAS library. It is
simple to use but the result is not satisfactory (see Fig. 3).
Therefore specific CUDA kernels are needed to obtain a
better performance. We use block matrix multiplication and
compare two different block division methods in Fig. 3.

In method 1, each CUDA block is composed of 512
threads and each block calculates a block matrix multipli-
cation ( 8 × 64 by 64 × 8) to get an 8 × 8 intermediate
result (Fig. 1). After all the blocks obtaining their results,
a second summary kernel will calculate the final result by
summarizing all the intermediate results.

Fig. 1. Method 1

In method 2, each block contains 256 threads and calcu-
lates 1 element of the result (Fig. 2). The number of blocks
is 64.

Fig. 2. Method 2

With CUDA Profiler these two methods’ running time are
shown in Fig. 3. The template pixel number M is selected
from 64×64 to 384×384 pixels. The logarithmic scales are
used on both the horizontal and vertical axes.

8 8.5 9 9.5 10 10.5 11 11.5 12
5

6

7

8

9

10

11

12

Pixels−ln(M)

T
im

e
−

ln
(t

) 
(u

s
)

 

 

CUBLAS(us)

Method1(us)

Method2(us)

Fig. 3. Comparisons on processing time with M

It shows that method 2 is even faster than method 1 though
both run on the same GPU. To investigate the difference in
detail, we take M = 300×300 = 90000 for an example. The
block number in method 1 is 90000/64≈ 1407 and two steps
are needed to get the final result. Meanwhile method 2 only
needs 64 blocks and can get the result in one step. Limited
by CUDA’s compute capability, a GTX280 GPU can run at
most 120 blocks simultaneously when 1 block contains 256
threads. So in method 2, all these 64 blocks can run parallel
on a GPU. While in the method 1, it needs block scheduling
because of so large a block number (1407) and it has to
save all the 1407 intermediate results in global memory and
load them again for next summary operation. As we will
mention later, this kind of global memory fetching takes too
much time. Method 1 essentially does not fully parallelize
the code as some blocks have to wait for the accomplishment
of other blocks during the block scheduling. Therefore, with
fully code parallelization in method 2, significant speedup
has been obtained.

B. Memory optimization

Memory optimization mainly consists in using different
kinds of GPU memory to accelerate the application. CUDA
provides a hierarchy of memory resources. Among them,
commonly used are register, shared memory, global memory
and texture memory.

In our GPU-ESM, we intensively utilize the fast shared
memory instead of the long-latency global memory. In kernel
“JESM”, the computing of Jesm matrix needs several inter-
mediate results based on the image gradient. So we first load
the image gradient data into the shared memory of each block
and then continue other computation on them. By using this
“cache” like strategy, we reduce this kernel’s processing time
from 300us to 50us (300×300 size).

We also use texture memory in kernel “warping” because
CUDA provides such bilinear filter function. We only need
to set the filter mode to bilinear. When fetching the texture
memory, the returned value is computed automatically based

3940



on the input coordinates. Though the running time is similar
to our own kernel but with it we can skip its programming.

C. Memory coalescing

By memory coalescing a half warp of 16 GPU threads
can complete 16 global data fetching in as few as 1 or 2
transactions. In our application, we also intensively use this
technique. For example, in the method 2 of matrix multiplica-
tion (M = 90000), each block (256 threads) needs to calculate
the sum of 90000 products. As 90000 = 255× 352+ 240,
each tread will process 352 data (except the last thread with
only 240 data). One common idea is using a “for-loop” in
each thread:

f or(k = threadID∗352;k < (threadID+1)∗352;k++)

sum+= data[k];

Each thread will process a continuous addressing mem-
ory, e.g. thread 0 accumulates data[0]∼data[351]; thread 1
processes data[352]∼data[703], and so on. To use memory
coalescing, the code is changed to follows:

f or(k = threadID;k < 90000;k+= 352)

sum+= data[k];

In this case, thread 0 accumulates data[0], data[352]...; thread
1 processes data[1], data[353]... and so on. Though both “for-
loops” have the same performance for a CPU thread, speedup
really happens on the GPU.

GPU memory is accessed in a specific block mode, i.e.
each GPU memory access will load data from a block of
continuous address memory space. For example, 16 threads
can load data[0] ∼ data[15] simultaneously by 16 GPU
threads. In the latter method, the loaded 16 data can be
parallel processed by 16 GPU threads. Meanwhile, in the
former method, only one of the 16 loaded data is used by
one thread while all the other data is deserted. For each of
the other threads, they must invoke their own GPU memory
access to fetch the data they need. Therefore using memory
coalescing strategy, we can substantially reduce the total
number of GPU global memory access. Reducing such global
memory access (usually takes several hundred GPU cycles)
provides us with great performance gain.

V. EXPERIMENTS

A. Running Time Proportions

We compare our GPU-ESM with CPU-ESM on the same
desktop. The running-time proportion of each kernel is listed
in Table I. The template area is set to M = 300×300 pixels.

TABLE I
RUNNING TIME PROPORTIONS

Kernel GPU Time(us)(%) CPU Time(us)(%)
Warping 67.1(7.9%) 6942.4(23.6%)
Gradient 55.5(6.5%) 1552.1(5.3%)

JESM 74.9(8.8%) 6405.6(21.7%)
Solving 408.7(48.0%) 11692.5(39.7%)

Updating 19.6(2.3%) 4.4(0.01%)
Correlation 226.3(26.6%) 2853.9(9.7%)

B. Comparision of Processing speed

This part we compare the processing speeds of GPU-ESM
and CPU-ESM with the same image sequence which has
already been loaded into the CPU memory. Their processing
frame rates are shown in Fig. 4 and Fig. 5. The template is
selected from 32× 32 to 360× 360 pixels. The logarithmic
scale is only used on the horizontal axe in both figures.

7 8 9 10 11 12
0

100

200

300

400

500

Pixels−ln(M)

F
P

S

 

 
GPU−ESM(fps)

CPU−ESM(fps)

Fig. 4. FPS Comparision respecting to ln(M)

7 8 9 10 11 12
0

5

10

15

20

25

30

35

Pixels−ln(M)

G
P

U
/C

P
U

 F
P

S
 R

a
ti
o

Fig. 5. GPU/GPU FPS Ratio respecting to M

It shows that using a GPU can greatly accelerate the
ESM algorithm. Meanwhile, as the “GPU/CPU FPS Ratio”
increases with M, it also shows that a GPU is more preferable
for highly parallel processing.

C. Combination Performance

Experiments are carried out to evaluate the whole system.
Images sequences extracted from the GPU-ESM and CPU-
ESM tracking are shown separately in Fig. 6 and Fig. 7.
Tracking area is a 200×200 window shown in t = 0s. The
windows in the first row of Fig. 6 and Fig. 7 are warped back
and shown in the second row. Despite illumination changes
and image noises, the warped windows should be close
to the template when the tracking is accurately performed.
When the object moves slowly, both work well in tracking
the object. With the increase of the moving speed, CPU-
ESM can not track it well (Images at the boundary time
are shown at t = 9.8s. From t = 10.56s the warped area
is obviously different from the template) while GPU still
performs tracking well. At t = 21.54s occlusion happens,
with GPU-SIFT’s homography the GPU-ESM can continue

3941



t=0.00s t=9.98s t=10.56s t=21.54s t=21.87s

Fig. 6. GPU-ESM tracking. The second row shows the warped images from the boxed region in current images (the first row). The red quadrilateral
shows that GPU-ESM can track the fast moving object even when occlusion happens.

t=0.00s t=9.98s t=10.56s t=21.54s t=21.87s

Fig. 7. CPU-ESM tracking. The change of warped images shows that CPU-ESM tracking can not track the same moving object as in Fig. 6 when the
object moves fast or occlusion happens.

tracking the object during the occlusion(The red quadrilateral
of GPU-ESM at t = 21.54s means the tracking result is
accurate). After the occlusion is moved(t = 21.87s), GPU-
ESM can continue tracking while CPU-ESM fails. Therefore
the effectiveness of our combination strategy is confirmed.

VI. CONCLUSIONS

In this paper, CUDA implementations of GPU-ESM and
GPU-SIFT are presented in a homography-based visual servo
system. By utilizing optimization techniques including code
parallelization, memory optimization and memory coalesc-
ing, GPU provides us a better system performance with a
higher processing speed and reliability. Experimental results
validate the effectiveness of our CUDA applications. By
investigating the optimization techniques adopted in our
implementations in detail, this study also makes contribution
to the general purpose GPU computation community.

REFERENCES

[1] S. Hutchinson, G. D. Hager, P. I. Corke, “A tutorial on visual servo
control”, IEEE Trans. on Rob. and Autom, vol. 12, no. 5, pp. 651-670,
1996.

[2] O. Faugeras, F. Lustman, “Motion and structure from motion in
a piecewise planar environment”, International Journal of Pattern
Recognition and Artificial Intelligence, 2(3): 485-508, 1988.

[3] M. Vargas, E. Malis, “Visual servoing based on an analytical homog-
raphy decomposition”, Joint 44th IEEE Conference on Decision and
Control and European Control Conference, Seville, Spain, 2005.

[4] E. Malis, M. Vargas, “Deeper understanding of the homography de-
composition for vision-based control”, Research Report 6303, INRIA,
2007.

[5] Y. Fang, W. Dixon, D. Dawson, P. Chawda, “Homography-based visual
servoing of wheeled mobile robots”, IEEE Trans. on Systems, Man,
and Cybernetics - Part B, 35(5): 1041-1050, 2005.

[6] S. Benhimane, E. Malis, “Homography-based 2d visual tracking and
servoing”, International Journal of Robotic Research, 26(7): 661-676,
2007.

[7] G. Silveira, E. Malis, “Direct Visual Servoing with respect to Rigid
Objects”, IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Diego, USA, October 2007.

[8] Shum, H. Y, Szeliski, R, “Construction of panoramic image mosaics
with global and local alignment”, International Journal of Computer
Vision, 16(1): 63-84.

[9] S. Benhimane, E. Malis, “Real-time image-based tracking of planes
using efficient second-order minimization”, IEEE/RSJ International
Conference on Intelligent Robots Systems, Sendai, Japan, 2004.

[10] D. G. Lowe, “Distinctive image features from scale-invariant key-
points”, International Journal of Computer Vision, vol. 60, no. 2, pp.
91-110, Nov. 2004.

[11] E. Malis, “Improving vision-based control using efficient second-order
minimization techniques IEEE International Conference on Robotics
and Automation”, New Orleans, USA, April 2004.

[12] E. Malis, “An efficient unified approach to direct visual tracking of
rigid and deformable surfaces”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Diego, USA, October 2007.

[13] Y. Ke, R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors”, Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 511-517, 2004.

[14] H. Bay, Y. Tuytelaars, G. L. Van, “SURF: Speeded up robust features”,
Computer Vision and Image Understanding,vol. 110, pp. 346-359,
2008.

[15] S. Sinha, J.M. Frahm, M. Pollefeys, Y. Genc, “Feature tracking and
matching in video using programmable graphics hardware”, Machine
Vision and Applications, March 2007.

[16] S. Heymann, K. Muller, A. Smolic, B. Froehlich, T. Wiegand,
“SIFT implementation and optimization for general-purpose GPU”,
in WSCG’07, 2007.

[17] http://www.cs.unc.edu/ ccwu/siftgpu/
[18] K. Toyama, G. Hager, “Incremental Focus of Attention for Robust

Vision-Based Tracking”, Int‘l J. Computer Vision, 35(1): 45-63, Nov,
1999.

[19] Amdahl, Gene, “Validity of the Single Processor Approach to Achiev-
ing Large-Scale Computing Capabilities”, AFIPS Conference Proceed-
ings, (30): 483-485, 1967.

3942




