
General 3D Modelling of Novel Objects from a Single View

Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan Kleinehellefort, Michael Beetz
Intelligent Autonomous Systems, Technische Universität München

{marton, pangercic, blodow, kleinehe, beetz}@cs.tum.edu

Abstract— In this paper we present a method for building
models for grasping from a single 3D snapshot of a scene
composed of objects of daily use in human living environments.
We employ fast shape estimation, probabilistic model fitting and
verification methods capable of dealing with different kinds of
symmetries, and combine these with a triangular mesh of the
parts that have no other representation to model previously
unseen objects of arbitrary shape. Our approach is enhanced
by the information given by the geometric clues about different
parts of objects which serve as prior information for the
selection of the appropriate reconstruction method.

While we designed our system for grasping based on single
view 3D data, its generality allows us to also use the combination
of multiple views. We present two application scenarios that
require complete geometric models: grasp planning and locating
objects in camera images.

I. INTRODUCTION

Autonomous robots performing in human living environ-

ments have to manipulate many different objects, and in the

course of their long term operation they will inevitably en-

counter novel objects. In this paper we consider the problem

of estimating 3D models of objects for grasp planning from

a single view of a 3D sensor. The biggest problem in this

perception task is that the robot sees only the front part of the

object and must make assumptions about the possible back

side based on this data to avoid incorrect grasps. We tackle

this problem by exploiting some of the structure that the

environment and the task at hand give us, namely that many

objects designed for daily use in human living environments

have common symmetries, and that the objects are typically

physically stable, which means that they are standing on

planar surfaces. The reconstruction algorithms that we are

investigating can use this structural information in order to

obtain better reconstruction results (see Figure 1).

Our objective is to investigate this problem in the setting

of a kitchen using small, compact and low cost devices, like

the time-of-flight (TOF) cameras, stereo cameras and small

laser scanners which have rather low resolution and accuracy.

The reason for doing so lies in their flexibility and safety

concerns which is a major drawback of e.g. SICK LMS 400

laser sensor which is highly accurate but not eye-safe. Herein

presented pre-processing and feature estimation steps thus

enable the fitting to work not only with the highly accurate

3D sensors, but also with the e.g. less precise Hokuyo laser,

and to some extent with the TOF and stereo cameras.

We herein present the data pre-processing, robust sur-

face estimation, and probabilistic shape fitting routines we

employ, and we evaluate them on scans of various objects

coming from different sensors. We rely on the detection of

Fig. 1: Novel object modeling in a household environment using 3D
sensors. Our Kuka-based mobile manipulation platform (top-left)
acquires one-shot point clouds of typical kitchen objects (top-right)
and computes respective mesh models for them (bottom-right).
Models are provided to the grasp planner for grasp computation
and evaluation (bottom-left).

Fig. 2: Left: some of the sensors our robot is equipped with. Middle:
raw data from SICK LMS400, Videre STOC and SwissRanger
4000, respectively (from top to bottom). Right: the reconstruction
of the models of the scanned objects.

planar and arbitrary rotational symmetries to complete the

data from a single scan with the back side, and use the full

object models for computing valid grasps even if the back

of an object has not been visible (see Figure 2) during the

acquisition phase.

We have already shown before that exploiting rotational

[1] and planar symmetries [2] is especially useful for mod-

eling of many types of objects which are common in the

indoor environments, and that hybrid models containing

shape primitives and triangulated surfaces are flexible enough
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to represent arbitrary objects [3]. The prerequisite for these

works were, however, highly accurate 3D measurements,

which as argued earlier are not always available.

The main contributions of this paper are:

• a framework for single view grasping that is general

enough to deal with noisy sensing devices,

• robust surface reconstruction that approximates the un-

derlying surface, its normals and the physical radius,

• improved model fitting and verification methods that

take the corrected surface parameters into account and

detect probable symmetries.

II. RELATED WORK

Multiple sensors were used for solving similar tasks, like

cameras [4], [5], stereo cameras [6], [7], 3D sensors [8], and

also their combinations to speed up or improve results.

A vision-based grasping system which segments objects

on a table and constructs triangular meshes for them is

presented in [9]. While the presented method is general and

works for many objects, it creates complicated models for

certain objects, which could be simplified through the usage

of geometric primitives. A simplification of the modeling

problem is used in Grasp-It [10], where geometric shape

primitives are used to model each object as a combination

of spheres, cylinders, cones or boxes.

In purely computer vision based approaches, image fea-

tures are used to find matches between parts of a scene

and a database of object images. These approaches rely on

a database of segmented images and since no knowledge

about the 3D information is known, the system can easily

make mistakes and return false positives (e.g. when an

object contains an image of another). Some of the solutions

adopted consist in creating complete 3D models offline for

the targeted objects and finding feature spaces to match the

partial views with models in the database [11]. Another

approach to obtain 3D information directly from camera

images is to project CAD models from a database to the

image and search for good matches in the edges domain, as

in [4] for example. While this is a more direct method, it is

still dependent on a database of CAD models.

Available models of complex objects are decomposed into

superquadric parts in [12] and [13], and these models are

matched to a point cloud. This however needs a database of

models, and moreover, their decomposition into superquadric

components, which is often difficult to obtain. A sample con-

sensus based approach for model decomposition is presented

in [14], where a set of 3D geometric primitives (planes,

spheres, cylinders, cones and tori) are fit to noisy point

clouds. Since the point clouds presented there are complete,

the authors do not need to reconstruct the missing parts.

In [15] the authors describe a method for detecting and

verifying symmetries in point clouds obtained from a single

viewpoint, and they project the existing points according to

the detected symmetry to obtain the back side. However,

using our methods we were able to reconstruct surfaces by

approximating them with shape equations and thus generate

a complete model, which can be sampled with the required
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Fig. 3: Automatic geometric model generation pipeline

density or sparseness according to the speed and accuracy

requirements of our applications.

III. SYSTEM OVERVIEW

Figure 3 depicts all the necessary steps for the generation

of the models from the raw point cloud data acquired

from four different sensing modalities on our robot: two

different laser scanners (Sick LMS400 and Hokuyo UTM

30LX), TOF camera (SwissRanger 4000) and stereo on

chip camera (Videre STOC). The pipeline is implemented

in ROS (Robot Operating System - www.ros.org), as a

collection of modules – “nodes”, depicted as green or blue

blocks in Figure 3. The data flow between nodes can either

occur through shared memory, when optimal performance is

required, or over the network, which is convenient for the

de-centralized processing.

As described in our previous works, we proceed by first

removing the erroneous measurements based on jump-edge

detection and statistical analysis, and estimating the normals

for each surface voxel. In the next step we restrict the

search space by detecting horizontal regions of interest

(ROI) (e.g. tables, counter tops) using an efficient variant

of the RANSAC algorithm [16]. We expect these places to

support object candidates (point clusters) for modeling. Point

clusters are extracted by testing whether the projection of the

points fall inside the bounds of the previously extracted ROI

(we rely on a physical separation between the objects for

segmentation).

These point clusters representing object hypotheses are

processed as following: First, they are re-sampled, and at

each point the surface normal and the minimal curve radius

are estimated. The data is then passed into a hierarchical

loop which consists of the following steps: i) fit boxes and

cylinders first to detect the simplest symmetries (if any), ii)

estimate whether the remaining data contains a surface of

revolution and fit a contour, and iii) triangulate remaining

free form surfaces.

We use a Sample Consensus (SaC) approach to fit geo-

metric models (boxes, rotational shapes and shape primitives)

because they scale well with the different amounts of data

coming from various sensors without adjustment. The accu-

racy and robustness of our methods are increased further by

the previously mentioned surface estimation step, as well

as by taking into account the accurate normal estimates

provided by it, and the point-level surface radius estimation

results. After each fit we validate the model by computing the

plausibility of the supposed shape to produce the obtained

measurements. For this we maintain and update a voxelized
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Fig. 4: From left to right: Rendering of the raw scan of a teapot
obtained from the Hokuyo UTM-30LX and the points projected
onto the estimated underlying surface. Radius estimation results for
a scan of a teapot – values are color-coded from red (radius of 0) to
blue (radius of 0.1m or higher). Please note that for visualization
purposes the values were capped at 0.1m, as planar regions have
an infinite or very large radius.

labeling of our environment that keeps track of occupied,

free and occluded space as described in [1]. For objects and

parts that do not obey the symmetries we are looking for,

triangulation is the only alternative as no information about

possible objects is known to the system.

In the final step we triangulate all fitted models, merge the

triangulation results, and publish the model for applications

like force-closure grasping and CAD model-based object

detection in 2D images as discussed in Section VI.

As the TOF and stereo cameras proved to be too inaccurate

to reconstruct more complicated objects than boxes reliably,

we focused solely on the processing of the data coming from

the Hokuyo laser sensor.

IV. 3D MODELLING PIPELINE

In this section we will detail the different processing steps,

then in the next section we will present the experimental re-

sults and application scenarios, and conclude in Section VII,

giving insights on our future work.

A. Data Pre-processing

Since the data coming from the sensors is highly noisy, we

are using a Robust MLS algorithm described in our previous

work to correct it (see Figure 4). At each point, after a

tangent plane has been robustly identified, we approximate

the point’s neighborhood using a height function f relative

to this plane, in the form of a 3rd order bi-variate polynomial

defined in a local coordinate system:

f(u,v) = c0 + c1u + c2v + c3uv + c4u
2 + c5v

2 + c6u
2v

+c7uv2 + c8u
3 + c9v

3

where u and v are coordinates in the local coordinate system

lying on the tangent plane. To obtain these ten unknown

coefficients ci, we perform a direct weighted least squares

minimization, and project the point onto the obtained surface.

By choosing the query point to be at the origin of the

local coordinate system (~U ⊥ ~V ⊥ ~N , with ~U and ~V in the

Fig. 5: Left: surface normal estimated by PCA (green) 2
nd order

(blue) and 3
rd (purple) order polynomials. Right top and bottom:

the polynomials fitted to the neighborhood. Please note that for
better visibility high quality data was used for this example.

plane, and ~N parallel to its normal), we can easily compute

the normal ~n of the estimated surface by computing the two

partial derivatives at (0, 0) which are c1 and c2, thus the two

tangents and their cross product:

~n = (~U + c1
~N) × (~V + c2

~N) (1)

Since the minimum radius estimator and the reconstruction

modules work robustly with varying densities and their ac-

curacy is influenced only by the correctness of the estimated

normals, using this approach (see Figure 5) significantly

improves their success rate even without re-sampling.

B. Estimating The Radius of The Underlying Surface

While estimated surface normals are important, they alone

tell little about the surface’s type. The estimation of the

curvature using the ratio of eigenvalues of a neighborhood’s

covariance matrix on the other hand neglects surface normals

and we found it to be too inaccurate. To differentiate surface

types we used variants of Point Feature Histograms [17] in

a classification framework. It is however a relatively time

consuming process even with the latest (less descriptive) Fast

Point Feature Histograms [18], and local surface type classi-

fication is not always needed. What we are actually interested

in is the approximated radius of the (smallest) fitting curve to

a local neighborhood. This value with physical meaning can

be tied directly to the underlying surface without the need

for classification.

We compute this feature (Radius-based Surface Descriptor,

or RSD) starting similarly as in the case of spin images with a

local support [19], with the added advantage that we consider

the normals of the neighboring points directly, and that we

can extract values that intuitively describe the local surface.

If we look at the case of the sphere, for each point

all the circles that fit to its neighborhood have the same

radius, namely the radius r of the sphere itself. For each of

these circles we can write the following relation between the

distance d of a point on the sphere from the original point and

the angle α between these two points’ (undirected) normals:

d(α) =
√

2r
√

1 − cos(α) (2)

From this we can see that given the distance and the angle

between two point normals one can approximate the radius

of the circle the point is on.

In the case of an ideal plane, this estimated radius will

always be infinite with all neighbors, since they have parallel
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Fig. 6: Radius-based Surface Descriptors (RSD): 2D histograms of
normal angle difference and distance from a reference point to it’s
neighbors (examples are shown from left to right for histograms
computed for points on a plane, sphere, corner, edge and three
cylinders, where the last two are computed for different points
of the corrected teapot scan presented in Figure 4) – from these
histograms the physical surface radiuses can be read as the slopes
of the different lines going through the lower left corners.

normals. A point on a cylinder is on multiple circles (ellipses

actually), and the radius estimated with different neighbors

will vary between the minimum radius (the radius of the

cylinder) and the maximum radius (infinity). For corners and

edges the estimated radius changes similarly as for spheres

and cylinders (see Figure 6).

Given a point on a surface along with its neighbors, this

minimum and maximum radius can be estimated using the

model in Equation 2 by solving the equation system for

r given the maximum and minimum angles for different

distance intervals. While estimating both of them would be

required for differentiating between spheres and cylinders

for example, for our application the minimal radius (defined

by the maximal angle) is enough. To make the estimation

easier, we can exploit the fact that α ∈ [0, π/2] and the

Taylor decomposition of Equation 2 is simple:

d(α) = rα +
rα3

24
+ O(α5) (3)

where O(α5) indicates the existence of elements with order

5 and upwards. Thus we can assume d = rα which renders

the problem of finding r to a simple regression.

This feature is easy to compute, while still being very

descriptive1 and does not require consistently oriented nor-

mals. Because it is a continuous value that estimates the real

minimal metric radius of the curve each points lies on, it can

be used for example as a prior when sampling points to fit

different surfaces.

In our case for fitting boxes points with very high es-

timated minimal radius are preferred, while for rotational

models they are avoided along with points having a very

small radius. We incorporated this preference in the random

sampling step for each model fitting algorithm. The inliers

are also weighted by how well their radius fits the tested

model.

C. Box and Cylinder Fitting

The method used for deciding on when to use box or

cylinder fitting is based on our previous work on footprint

analysis [2], but now we also rely on the 3D normals to

robustly detect a circular or a rectangular footprint, and also

during the 3D model fitting and validation step. This enables

our method to make the best choice regarding what model it

should choose, a robustly estimated oriented bounding box,

1 using both the minimal and maximal angle along with gradients it can
produce different signatures for spheres, cylinders, planes, cones, corners,
edges, and surfaces of high normal variance (noise, handles, stems, etc.)

a cylinder, an arbitrary rotational object, or fall back to the

triangulation if none of the models fit the points well enough.

If enough points have minimum radius that was capped,

meaning that they most probably lie on planar surfaces, we

set out to find the best fitting box to the cluster. Unlike

in [2], we fit a rectangular model directly to the points

having normals perpendicular to the up axis (using the

preferential sampling described before). For each sample,

we accept those points as verifying the model that have

parallel or perpendicular normals (weighted by the size of

their minimal radius to lower the effect of false positives),

and maximize the number of inliers in a RANSAC loop.

This direct approach clearly outperforms the line detection

and merging and/or box detection based on PCA analysis.

Since we assume a correct segmentation and noise removal

is performed, after the boxes orientation is found, its sizes

are set to encompass the cluster, and the final number of

inliers is checked against the model.

In order to detect cylinders, we also use a SaC approach

which is based on the observation that on a cylinder surface,

all normals are orthogonal to the cylinder axis, and intersect

it. We consider the two lines defined by two sample points

and their corresponding normals as two skew lines, and the

shortest connecting line segment as the axis. Determining

the radius is then a matter of computing the distance of one

of the sample points to the axis. By enforcing an upright

position results are more robust, but it is not mandatory.

D. Estimation of Rotational Surfaces

To reconstruct almost arbitrary surfaces of revolution, we

employ a RANSAC-based two-step approach as described

in [1]. In the first step, a rotation axis is estimated from

sample points by minimizing a function over the line-to-

line distances between the axis and the lines defined by

each sample point and its corresponding normal. This is

based on the observation that for a rotational object, a line

constructed from a point and corresponding normal intersects

the symmetry axis. The contour line is then estimated in the

second step (see below).

Let 〈a, ~a〉 denote the axis, defined by a point a and a

direction vector ~a and let 〈pi, ~ni〉 denote the line defined

by the ith sample point and its corresponding normal vector.

Then, we minimize the following function over a and ~a:

m
∑

i=0

dl,l(〈a, ~a〉, 〈pi, ~ni〉)2, (4)

where dl,l stands for the line-to-line distance. This can

be solved using a non-linear optimizer like Levenberg-

Marquardt.

Once an axis has been found, the original sample points

are transformed into a 2D coordinate system such that the

rotation axis coincides with the x-axis. Every point pi is

projected onto a point pi,2D whose x-coordinate is defined

as its position along the rotation axis, and whose y-coordinate

represents the point-to-line distance between pi and 〈a, ~a〉.
We then employ a polynomial fitting step based on least-

squares minimization to fit a preliminary contour line to the
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Fig. 7: The axis estimation step fails consecutively if surface
points and normals contain too much noise (left). Re-sampling the
points results in usable axis estimates (middle). Fitting a polynomial
function to generate the contour curve given the axis (right).

projected (2D) sample points. This contour line is then used

to determine which points are inliers to the rotational model,

and the polynomial is refitted using these inliers. This can

be repeated until changing the polynomial coefficients does

not increase the number of inliers. An example of this 2D

problem is shown in Figure 7-right for the teapot data-set

used earlier. Note that the contour curve is not influenced by

the outliers that come from the handle, for example.

The data from the less accurate sensor is polluted by more

noise, so the axis estimation step as presented in [1] does not

work properly out of the box. The minimization function 4

becomes less smooth and the optimization gets “stuck” in

local optima most of the time, as can be seen in Figure 7-

left. We alleviated this problem by performing the rotational

estimation on re-sampled point cloud data, which has a much

smoother surface and also smoother normals (see Figure 7-

middle).

V. DISCUSSION AND EXPERIMENTAL RESULTS

We evaluated our algorithm using different sensors on

multiple household objects (see Figured 2 and 8 for a few

examples). The objects were scanned from multiple angles

thus presenting various (incomplete) symmetries. When us-

ing the pure stereo (without e.g. projected light patterns) and

the TOF camera only the boxes were recognized consistently

(see Figure 2), the other shapes fell back to triangulation

because of the acute sensor inaccuracies. These can be some-

what improved by using a projector together with the stereo

camera and by keeping the TOF camera as perpendicular to

the surface to be reconstructed as possible. On Hokuyo data

it however performed remarkably well (see Figure 8) despite

the high noise levels.

The performed evaluation was threefold: i) by manually

inspecting the generated models, ii) by calculating the grasp

points on the generated models (see Section VI-A) and iii) by

using the generated models in the application of shape-based

matching of objects in 2D images (see Section VI-B). The in-

visible side of the objects played an important role especially

in the second case (please see the video attachment). Slight

inaccuracies in generated models do not pose the problem

while carrying out the actual grasping given our manipulator

with force-compliant arms. Important for the third type of

the evaluation was to generate models with as few triangles

as possible since the shape matching approaches require

significant pre-processing that is polynomially increasing

with the number of faces in the model. Our most complex

object models, those of the teapots, were generated with

roughly 600 faces, and were afterwards successfully located

in images (see Figure 8-bottom), thus warranting the use of

our 3D data based method for generating the models.

Two important difficulties have to be considered though.

One is the problem of having only a single side of a box

visible, or not the complete top. In this case it is impossible

to judge its extent towards the back reliably. This case can be

detected however, and signaled to the robot control program

to be accounted for. The other one is that most 3D sensors

have problems obtaining reliable distance measurements

from thin handles, which typically get curved towards the

back, or completely averaged into the background. Most of

the time however there is some information present (please

see Teapot1 in Figure 8) to aid both applications in giving

correct results (please see Figure 1 for the computed grasp).

VI. APPLICATION SCENARIOS

A. Force-Closure Grasping

We imported the triangulated meshes together with the

located table into a grasp planning software [20], which

searches for grasps that are likely to be successful. The

planner randomly chooses parameters (i.e. the approach

direction) for the grasp, and then tries to execute it in a

kinematic simulation. By detecting collisions between the

triangulated mesh of the object and a CAD model of the

hand, the planner can find the contact points.

From the contacts, the grasp quality is statically estimated

using an algorithm by Ferrari and Canny [21], which – under

some simplifying assumptions – scores those grasps higher

that are able to resist higher force and torque (as presented in

Fig. 8 and the video attachment). A score of zero indicates

that the grasp is not force-closed. A selection of the best

grasps found by this method for the DLR Hand II [22] can

be seen in Fig. 8. Applying those grasps on the real robot is

part of our future research agenda. We have however used

our models for the grasping on the PR2 robot (please see the

video attachment).

B. CAD Model-based Object Detection

We perform 3D position retrieval of objects on 2D images

using state-of-the-art 3D shape model matching technique

that simulates the 2D appearance of the objects in a shape

model generation phase (see [4]). The routine gets object

candidates (clusters of points) projected onto 2D image from

point cloud data and then uses a priori built CAD model of

objects to perform the actual detection. The strength of our

approach is in that the CAD models must not be modeled

manually but can rather be generated by the robot itself (see

Figure 8-bottom).

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a system that can generate

reasonable hypotheses of complete models of previously

unseen objects, and is precise enough for using it in grasping

objects of significant variation from a single view. We have

tested our method on different sensors, and due to the

accurate surface reconstruction and estimation steps, the
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Box Mug Teapot1 Teapot2

Fig. 8: Automatic modeling applied to various objects. 1st row:
objects on kitchen table, 3rd row: radius estimation results on the
reconstructed point cloud (for the interpretation of the colors please
see Figure 4), 4th row: generated geometric models, 5th row:
applications to grasping and matching in 2D images

fitting methods were able to correctly reconstruct the object

models from low resolution and/or noisy data.

As the presented methods work on complete point clouds

as well, they can be run on complete scans of objects in

order to obtain a geometric reconstruction automatically. We

plan to explore this application scenario as well, and devise

ways to evaluate the quality of the matches. Because of the

randomized element in the model fitting step, the results have

slight variations, and the quality of the matches can not fully

be judged based on the number of inliers. In the future we

will also work on the integration of the computed surface

parameters into grasp planning to exploit the symmetries of

the objects in order to generalize successful grasps, and to

integrate active verification of the hypothesized back sides

of objects using a next-best-view algorithm.

As the models generated for arbitrary rotational objects

contain several hundred triangles at least, the matching

of these models in camera images is not fast enough for

practical use. Simplifying the triangular mesh and employing

adaptive re-sampling could alleviate the problem.
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