
 
 

 

 

  

Abstract—This work presents the kinematic modeling and 
motion planning algorithm for an omni-directional mobile robot 
with kinematic redundancy. This robot consists of three wheel 
mechanisms each of which has one redundant joint as compared 
to the operational degrees. Initially, the kinematic modeling of 
this robot is conducted. Next, using such a kinematic redundancy 
of each chain, several motion planning algorithms are suggested. 
A localization algorithm of the mobile robot based on odometry 
is presented and specifically, two-leveled obstacle avoidance 
scheme, which simultaneously considers both large and small 
obstacles, is presented. The usefulness of the proposed 
algorithms is verified through simulation.  

I. INTRODUCTION 
OR a mobile robot to have an omni-directional 
characteristic on planar space, each wheel mechanism of 

the robot should generate three degrees of freedom motion. 
Either the caster wheel or Swedish wheel can be kinematically 
modeled as three degree of freedom serial chain. Recently, 
researches on omni-directional mobile robots with active 
caster wheels have drawn much attention. 

Campion, et al. [1] proved the omni-directionality of the 
caster wheel. Wada, et al. [2] developed a mobile robot with 
two caster wheels and one rotational actuator. Yi and Kim [3] 
initially developed the kinematic model of the 
omni-directional mobile robot with active caster wheels. Salih, 
et al. [4] developed an omni-directional mobile robot using 
four custom-made mecanum wheels. Moore and Flann [5] and 
Berkermeier and Ma [6] implemented a six-wheeled 
omni-directional mobile robot and ODIS (Omni-Directional 
Inspection System) with the so-called “smart wheel” active 
caster wheel module, respectively. Ushimi, et al. [7] 
developed an omni-directional vehicle with two wheels caster. 
Lee, et al. [8] implemented and proposed a motion generation 
algorithm for the caster-type omni-directional mobile robot. 
Park, et al. [9] performed the optimal design for the 
omni-directional mobile robot with caster wheels. Tadakuma, 
et al. [10] proposed a three-wheeled mobile robot that has 
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kinematic redundancy for each chain. However, the 
mathematical modeling was not provided.  Endo and Hirose 
[11] presented a study on roller-walker in which multi-mode 
steering control and self-contained locomotion were 
introduced. This mobile robot also has kinematic redundancy 
but it is not omni-directional. Davis, et al. [12] proposed a 
mobile robotic system for ground-testing of multi-spacecraft 
proximity operations. This mobile robot incorporated a 6 
DOF parallel robot on the platform to provide kinematic 
redundancy in the operational space, but not in the wheel 
chain. 

In previous research works related to the omni-directional 
mobile robot with kinematic redundancy, the kinematic 
redundancy in the wheel chain is limited or a closed-form 
kinematic model of such robots has not been provided. 
Therefore, in this work, the kinematic modeling for an 
omni-directional mobile robot with multiple kinematic 
redundancies (see Fig.3) is presented, and various motion 
planning algorithms that exploit the kinematic redundancy of 
the wheel chain are suggested.  

II. FIRST-ORDER KINEMATICS 
To control the mobile robot as shown in Fig.1, we introduce 

the first-order kinematics that describes the velocity relation 
between the center of the platform and all input joints. In Fig.1, 
XY  represent the global reference frame, and xy denote a 

local coordinate frame attached to the mobile platform; i, j, 
and k are the unit vectors of the xyz coordinate frame. C 
denotes the origin of the local coordinate frame.  
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Fig.1. Kinematic description of the omni-directional mobile robot. 
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We define θ  as the driving angle of the wheel and ϕ  as the 
revolute joint angle between the neighboring links. η  denotes 
the angular displacement of the wheel relative to the X-axis of 
the global reference frame. r and d denote the radius of the 
wheel and the length of the link, respectively. For convenience, 

iα , which is the angle of the caster wheel with respect to the 
x-axis of the local coordinate frame, is defined as 

1 2i i iα ϕ ϕ π+ − .                                (1) 
Actually, the mobile robot can be visualized as a parallel 

mechanism, because the instantaneous kinematics of the 
mobile robot is equivalent to that of a typical parallel robot 
that is fixed to the ground. Thus, for kinematic analysis of the 
mobile robot, we employ the intermediate coordinate transfer 
method [14] that has been used for modeling of parallel 
mechanisms. 

The linear velocity at the center of the i-th wheel is given as 
( )cos sin ( 1,2,3)oi i i ir iθ α α= − =v i j .                (2) 

The linear velocity at the origin C of the mobile robot can 
be described as 
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where ω  representing the angular velocity of the mobile 
platform can be described as 

1 2 , ( 1, 2,3)i i i iω η ϕ ϕ= + + =   .                        (6) 

Now, 
T

cx cyv vc  =  v  and ω  can be combined as the 

operational velocity vector of the omni-directional mobile 
robot defined by 

     
T

cx cyu v v ω =   .                                            (7) 

For the first wheel chain, (3) and (6) are expressed as 
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for the second wheel chain, (4) and (6) are expressed as 
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and for the third wheel chain, (5) and (6) are expressed as 

3
32 31 31 31 31

3
32 31 31 31 31

31

32

sin sin cos sin
cos cos sin 0 cos

1 0 1 1

d d b r b d b
u d d r d

η
α ϕ α ϕ

θ
α ϕ α ϕ

ϕ
ϕ

 
− − + − +   

   = − − − −   
    

 

3 3

3 3











.    (10) 

(8) - (10) can be expressed as i iu J φ= 

 , where iφ  is a vector of 

joint parameters. It is noted from (8) through (10) that each 
wheel has four joint parameters while controlling three 
outputs, and thus each wheel chain has one kinematic 
redundancy. 

To take the inverse of (8) - (10) that are not square matrices, 
we take the pseudo inverse as follows  
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where 1( ) .T TJ J JJ+ −=  For a given operational velocity 
vector u , we calculate angular velocities of nine input joints 
through the pseudo inverse of Jacobian in (11). Since η  (the 
angular displacement of the wheel relative to the X-axis of the 
global reference frame) is a passive parameter, the number of 
maximum active inputs is 9 out of the total 12 joint parameters. 
The omni-directional mobile robot has three kinematic 
redundancies since three output parameters are controlled by 
using six inputs. Furthermore, if more than six actuators are 
used in the system, the mobile robot system has force 
redundancy. Actually, we employ nine actuators (three for 
each wheel chain) to control this mobile robot developed for 
experimentation. 

III. DYNAMICS 
It is known that the particular solution of (11) minimizes the 

kinetic energy of the i-th chain when the inertia matrix is used 
as a weighting matrix in the pseudo inverse of Jacobian given 
in (11). A dynamic modeling approach employing Lagrange’s 
form of D’Alembert principle will be employed. To derive the 
dynamic model of this system, we convert the system into an 
open-tree structure by cutting joints of close chains. First, by 
using the Lagrangian dynamic formulation, a dynamic model 
of each serial chain is evaluated. Next, by using the virtual 
work, the open chain dynamics can be directly incorporated 
into a closed chain dynamics. 

As shown in Fig.1, one chain of the mobile robot consists of 
four rigid bodies; one third of the moving platform, two links, 
and one wheel. Each rigid body has its kinetic energy. The 
kinetic energy ik  of the i-th rigid body can be expressed as 

1 1
2 2

i

i i

CT i T i
i i C C i i ik m v v Iω ω= + ,                  (12) 

where the first term is the kinetic energy due to the linear 
velocity at the center of the mass of the rigid body, and the 
second term is the kinetic energy due to the angular velocity of 
the rigid body. Also im  and Ci

iI  are mass and inertia matrix 
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of the i-th link, respectively. Therefore, the total kinetic 
energy of the open chain is the sum of the kinetic energy of all 
rigid bodies.  

1
.

n

i
i

k k
=

= ∑                                   (13) 

The Lagrangian dynamic formulation is described as 
d k k
dt

τ
θθ

∂ ∂
− =

∂∂ 
,                            (14) 

where τ  is the n x 1 joint torque vector, and k is the sum of the 
whole kinetic energy. Since we assume that the mobile robot 
moves only in the planar domain, the potential energy is 
ignored. Now, substituting (13) into (14) yields an open chain 
dynamics of the i-th chain as [13] 

* *T
i i ii i iφ φφ φφφφ φ φ   = +   T   I P ,                (15) 

where *
φφ  i I  and *

φφφ  i P denote the inertia matrix and the 

inertia power array referred to the Lagrangian coordinate set, 
respectively. 

The pseudo inverse of Jacobian in (11) can be changed to a 
weighted pseudo inverse as follows 

1 1 1( ) .T T
i i i iJ W J J W J+ − − −=                       (16) 

Specifically, when the inertia matrix *
φφ  i I  of the i-th chain 

is chosen as the weighting matrix ,W it implies that the 
particular solution minimizes the kinetic energy of the i-th 
chain.  

Fig.2 shows the simulation result that describes the 
comparison of kinetic energy of two weighting matrices when 
the following trajectory is given as an example.   
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The solid line denotes the kinetic energy when the 
weighting matrix is given as an identity matrix, and the dotted 
line denotes the kinetic energy when the weighting matrix is 
given as the inertia matrix. It is noted that less energy is 
consumed when the inertia matrix is employed. Thus, this 
inertia weighted pseudo inverse solution is employed in our 
system. 
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Fig.2.  Comparison of kinetic energy of two weighting matrices. 

IV. REDUNDANCY RESOLUTION  

A. Configuration Changing Algorithm Using Kinematic 
Redundancy 

There are many ways to resolve the motion of each wheel 
mechanism having one kinematic redundancy. The 
intermediate coordinate transfer method [14], which has been 
popularly employed in parallel robot community, cannot be 
employed to derive the forward kinematic relation because it 
requires a square Jacobian. Thus, we employ the inertia 
weighted pseudo inverse solution. Taking the pseudo inverses 
of (8) - (10), the general solution for each wheel chain is given 
by 

( )i i i i
i

PJ u I J J Kφ
φ

+ + ∂
= + −

∂


 ,                   (18) 

where the scalar function P needs to be optimized. When 
K is given positive, P  is maximized. Otherwise, it is 
minimized. u  can be any operational velocity vector of the 
mobile platform.   

The merit of this kinematically redundant mobile robot is its 
versatile motion using the kinematic redundancy of each 
wheel mechanism. This redundancy in the configuration (or 
joint) space can be beneficially employed to avoid small 
obstacles that have low-height in the flat surface. Also the 
redundancy can be used to obtain the improved dexterity for 
the given operational pose of the mobile robot.  

One such example is the situation that a mobile robot 
passes through a neck-downed section safely without 
collision to the obstacle. Here, the desired joint angle 1i dϕ  is 
decided according to the size of the neck-downed section. 
Then, the performance index for the i-th wheel chain is set as 

2
1 1( ) ,A i i dP ϕ ϕ= −                                  (19) 

where we would like to minimize the square of the difference 
between the current angle 1iϕ  and the desired angle 1i dϕ  of 
the first joint of the i-th wheel chain.  

V. EXPERIMENT 

A. Hardware 
Fig.3 shows the proto-type of the kinematically redundant 

omni-directional mobile robot with three active caster wheels. 
An embedded robot system should have the ability to compute 
all the values that the system needs. To implement the 
embedded mobile robot system, we developed an embedded 
system that consists of seven DSP controllers, nine motor 
drivers, a wireless communication module (Bluetooth), and 
nine actuators with an encoder.  

To control all three caster wheels, we embedded the pseudo 
inverse of Jacobian to two DSP boards for each corresponding 
chain, and one DSP board is used as the main controller to 
control the whole system. All DSP boards are connected to 
each other through CAN. For a given operational velocity 
vector u , the robot system can be operated in real time. 
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Fig.3.  The omni-directional mobile robot with active caster wheels. 

B. Odometry 
For navigation, a mobile robot should know its position and 

orientation with respect to the global reference coordinate. 
One of fundamental methods for this issue is using its 
odometer. It can be recognized (see Fig.1) that the 
components ( cxv , cyv , and ω ) of the robot operational 
velocity vector are related to the angular velocity of all the 
joints by (8) - (10). In our system, we employ nine sensors at 
nine joints driven by actuator. However, the ground interface 
variable iη  in (8) - (10) cannot be measured because they are 
imaginary joints between wheels and ground. In order to 
identify such unknown variables, we use the kinematic 
constraint of the parallel kinematic chains of this mobile robot. 
If two equations in (8) - (10) are taken, we can calculate the 
odometry (or pose of the robot). The velocities of the passive 
joints can be obtained by the following procedure. 

For instance, let us consider two wheel chains as shown in 
Fig.4. Eq. (14) and (15) can be briefly expressed as 1 1u J φ= 

  

and 2 2u J φ= 

 , respectively. Therefore, the equations are equal 
as bellows.  

  1 1 2 2u J Jφ φ= = 

                              (20) 
which can be expressed as  
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where ijg  denotes the j-th column of the i-th wheel chain’s 
Jacobian. By converting (21), we can obtain the immeasurable 
variables as follows. 
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where + denotes pseudo inverse. Therefore, the operational 
velocities ( cxv , cyv , and ω ) are obtained from the (8), (9), 
and (22). Then, the velocities of the mobile platform can be 
calculated, with respect to the global reference frame, as 
bellows. 
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where x and y are the positions of the mobile platform with 
respect to the global reference frame, and ψ  is the angle 
between the x axis of the local frame of the mobile robot and 
the global x-axis. 

Finally, the odometry of the mobile robot is implemented by 
discrete-time integration of (23), such as 
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where the subscript k denotes the k-th time sample and T is the 
sampling period.  
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Fig.4.  Parameter description for odometry. 

 

C. Experimental results 
The attached video clip demonstrates the experimental 

results for the 3-DOF onmi-directional motion and 
configuration change while it is moving as shown in Fig.5. 
The proposed mobile robot is able to create a dexterous 
omni-directional motion in the planar corridor, and also its 
redundant joint can be possibly employed to optimize some 
criterion such as obstacle avoidance. By using (18), (19), and 
odometry information, the mobile robot can go through a 
neck-downed section of the corridor successfully. 

 

 
Fig.5.  Configuration change motion at a neck-downed section. 
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VI. TWO-LEVELED OBSTACLE AVOIDANCE ALGORITHM 

A. Navigation Algorithm of the Mobile Platform 
The mobile robot that we developed has 3-DOF in the 

operational space. Thus, more dexterous motion is possible as 
compared to the 2 DOF differential type mobile robot. The 
first goal of navigation will be moving the mobile robot to the 
goal point, and then the second goal will be avoiding obstacles. 
To satisfy these purposes, positions of the mobile robot, 
obstacles, and the goal point should be estimated. The 
navigation algorithm ought to minimize the distance between 
the current position of the mobile robot and the goal point, and 
maximize the distances between the current position of the 
mobile robot and obstacles. The performance indices are then 
set as follows. 

2 2

2 2

min{ ( ) ( ) }

max{ ( ) ( ) },
G G G

i i i

P x x y y
P x x y y

= − + −

= − + −
                   (25) 

where x  and y  denote the center positions of the mobile 
robot, Gx and Gy  denote the positions of the goal point, and 

ix and iy  denote the positions of the i-th obstacle.  
Here, we would like to model the omni-directional mobile 

robot as a kinematically redundant system. Initially, we 
express the desired angular velocity of the mobile platform in 
terms of the operational velocity vector u as follows: 

d GJ uω =  ,                     (26) 

where [ ]0 0 1GJ =  and 
T

cx cyu v v ω =   . The general 

solution for (26) is given by 
[ ]( ) ,G d G Gu J I J J Hω+ += + − ∇                   (27) 

where 1( ) ,T T
G G G GJ J J J+ −= and H used in the homogeneous 

solution is the potential function that needs to be optimized. 
When the gradient of H is given as follows 

( ) ,G i
T TP P

G iH K Kλ λ
∂ ∂
∂ ∂∇ = +∑        (28) 

it implies that GP and iP are to be optimized. Depending upon 
the sign of the coefficients GK  and iK , the mobile robot is 
controlled in such a way to minimize or maximize the given 
performance index. In this example, GK  should be negative 
to minimize the distance between the robot and the goal, and 

iK  should be positive to maximize the distance between the 
robot and the obstacles. In (27), if the angular velocity 
( 0dω = ) of the mobile robot is given as zero, the mobile robot 
maintains its initial posture during navigation. Only the 
homogeneous solution exists in (27), which makes the mobile 
robot navigate toward the goal while avoiding obstacles.  

Decision of GK  and iK  is made as follows. The 
coefficient GK  related to moving to the goal is determined by 
experiment like the p-gain of proportional control. The 
coefficient iK  related to the obstacle avoidance is determined 
by the following equation. 

  
ln(0.01)

iS
h

iK ke= ,          (29) 
where k denotes a weighting factor, h denotes a permissible 
approach range, and iS  denotes the distance between the 
mobile robot and the i-th obstacle. iK  is equal to 0.01k at 

iS = h  according to (29). iK  should vary with respect to the 
distance from an obstacle to the robot, because obstacles 
outside of the permissible range are not needed to be cared. 
On the contrary, the obstacle avoidance algorithm is effective 
for the nearer obstacles. Therefore, the omni-directional 
mobile robot can avoid obstacles and move to the goal point 
by applying the operational velocity vector u  generated by 
(27) to (18). 
 

B. Low-height Obstacle Avoidance Algorithm 
When the heights of obstacles strewn on the floor are 

sufficiently low, the mobile robot could use the self motion of 
the kinematically redundant caster wheel to avoid those 
obstacles without affecting the platform motion of the mobile 
robot. To change the position of the caster wheel, the passive 
steering angle as well as its wheel rotational angle needs to be 
controlled like steering a bicycle. Fig.6 illustrates a collision 
avoidance scheme of the caster wheel with kinematic 
redundancy, where every obstacle shown in the figure is 
assumed to be located at low-height. The following describes 
the summary of the algorithm.  

First, in Fig.6, we define a searching range of the caster 
wheel. The magnitude of this searching range (i.e., angles 

minη and maxη , and the distance R from the wheel shown in 
the figure) could be selected by considering the normal 
rotational speed of the wheel and the maximum steering speed. 
Then, we find the largest angles between obstacles (including 
maximum and minimum angle ranges), and steer the wheel 
toward the center, dη , of the largest obstacle-free sector in the 
searching range. We note that depending on the rotational 
direction of the wheel, either the front side or the rear side is 
searched.   

To perform this algorithm, we set the performance index as 
follows 

2( )B i idP η η= − .                              (30) 
Since iη is a passive joint angle in Fig.4, we should express it 
as the function of active joint parameters given by  

1 2 .i i iη ψ ϕ ϕ π= − − +                          (31) 
Then, the performance index is expressed as  

2
1 2( ) .B i i idP ψ ϕ ϕ π η= − − + −                     (32) 

Finally, the general solution of this algorithm is given as 
follows 

( ) .B
i i i i B

i

PJ u I J J Kφ
φ

+ +
 ∂

= + − −  ∂ 


              (33) 
 

Particularly, in the situation such as either obstacles 
completely block the motion passage of the wheel or the 
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mobile robot is at internal kinematic singularities, the wheel 
rotation needs to be drastically reduced (If necessary, it should 
be stopped) while the steering angle of the wheel is 
continuously changed to secure a free passage of the wheel 
around. 
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Fig.6.  Wheel steering action. 

 

C. Simulation 
In this section, we simulate the proposed motion planning 

algorithms for the kinematically redundant omni-directional 
mobile robot. Fig.7 shows the simulation result of the motion 
planning algorithm presented in this section. In the simulation 
shown in Fig.7, two-leveled obstacle avoidance scheme is 
employed by applying (25) and (32) as performance indices. 
The mobile robot moves to the goal point that is located at 
10m distance from the staring position, while avoiding large- 
and small-sized obstacles. One hundred small obstacles are 
randomly scattered in 2100 .m   

 
Fig.7.  Two-leveled obstacle avoidance scheme. 

 
The attached video clip clearly demonstrates the usefulness 

of the proposed redundant mobile robot exploiting the 
kinematic redundancy of each wheel mechanism.  

VII. CONCLUSIONS 
This work proposes the closed-form kinematic model and 

redundancy resolution algorithms for an omni-directional 
mobile robot having multiple kinematic redundancies. A 
localization algorithm of the mobile robot based on odometry 
is also presented. 

We demonstrated through experiment and simulation that 
such kinematic redundancy could be applied to optimize 
several performance indices. Specifically, two-leveled 
obstacle avoidance algorithm was successfully tested. Several 

subtasks exploiting the kinematic redundancy of this mobile 
robot will be implemented to the real hardware in the near 
future. 
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