
Extending Rapidly-Exploring Random Trees for Asymptotically

Optimal Anytime Motion Planning

Yasin Abbasi-Yadkori and Joseph Modayil and Csaba Szepesvari

Abstract— We consider the problem of anytime planning in
continuous state and action spaces with non-linear deterministic
dynamics. We review the existing approaches to this problem
and find no algorithms that both quickly find feasible solutions
and also eventually approach optimal solutions with additional
time. The state-of-the-art solution to this problem is the rapidly-
exploring random tree (RRT) algorithm that quickly finds a
feasible solution. However, the RRT algorithm does not return
better results with additional time. We introduce RRT++,
an anytime extension of the basic RRT algorithm. We show
that the new algorithm has desirable theoretical properties
and experimentally show that it efficiently finds near optimal
solutions.

I. INTRODUCTION

Consider a motion planning problem for a wheeled robot

with non-trivial dynamics navigating through an environment

filled with benches. The rapidly exploring random tree (RRT)

algorithm [5] is the most popular method for solving this

planning problem, but in cluttered environments (Figure 1)

the RRT algorithm will reliably fail to find a path that is

anywhere near optimal. This problem raises the question:

does there exist an algorithm that returns feasible solutions

as quickly as RRT and also asymptotically approaches an

optimal solution?

Several papers have explored related ideas. One approach

uses heuristics to bias the search [8]. Another approach [1],

runs RRT repeatedly with tighter constraints on each iteration

to improve the solution quality. A third approach [2] exam-

ines the restricted class of problems that permit bidirectional

extensions and lack differential constraints. Our proposed

algorithm outperforms the first two methods, and is more

general than the third.

First, we present a formal characterization of desirable

properties for an anytime planning algorithm. We review

popular approaches to planning algorithms and argue that

they do not satisfy these properties. Then, we present

RRT++, an anytime extension to the RRT algorithm which

satisfies some of these properties. Finally, we present exper-

iments that demonstrate the ability of the new algorithm to

efficiently approach optimal solutions in a cluttered environ-

ment.

II. PROBLEM FORMULATION

We consider the problem of planning in continuous state

and action spaces with non-linear deterministic dynamics.

We are interested in anytime algorithms for a single query

problem. The planning agent has a set of actions A ⊂ R
n

and the environment states are given by the set X ⊂ R
d.

Department of Computing Science, University of Alberta, Email:
{abbasiya, jmodayil, szepesva}@ualberta.ca

Fig. 1. A robot motion planning problem going from S to G with dynamical
constraints. The robot must avoid several bench shaped obstacles in this
cluttered environment. The RRT algorithm typically finds a substantially
sub-optimal solution. Our new algorithm RRT++ eventually finds a nearly
optimal path.

Let the set of planning problems be P . Each problem

P =<xs, g, f,m, c>

has a start state xs ∈ X , and specification functions g, f ,

m, and c. The goal function is g : X → {0, 1}, and the free

space indicator is f : X → {0, 1}. The set of all states for

which f(x) = 1 is called the free space (or the collision free

space) and is denoted by X1. The function m : X ×A → X
is a black-box deterministic forward model of the system

dynamics, where at time t the agent takes the action at and

the agent goes to the next state xt+1 = m(xt, at). The cost

function c : X ×A → R associates a cost with every step. (A

collision can be modelled by setting xt+1 to a collision free

state and/or setting the cost to infinite). Although the problem

is fully specified by the above formulation, solution methods

may require auxiliary structures. In particular, with RRT we

assume the existence of a setpoint controller κ : X ×X → A
that takes a current state and a target state as inputs and

returns an action that brings the agent’s state closer to the

target.

A trajectory J is a connected sequence of state and action

steps, J = {(x(t), a(t))}t∈{1,...,L}, where L is the trajectory

length. For a non-feasible trajectory, namely one that does

not terminate in a goal state, the cost of the trajectory is set

to be infinity. The cost of a feasible trajectory is given by

the sum of the costs of the steps.

An anytime planning algorithm A is a potentially non-

terminating computation that takes a planning problem as an

input and can be asked for a solution at any point in time.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 127

We restrict our attention to anytime algorithms for which

the cost is monotonically decreasing, as this can easily be

satisfied. We consider time to be constrained by the number

of calls to the specification functions of the problem. Let

i ∈ N be the number of such function calls (interactions)

when algorithm A is run on problem P . We shall denote

the output J of A (a trajectory) at this time i on problem

P by J = A(P, i). Also note that we consider randomized

anytime algorithms, namely given the same inputs, the output

could vary randomly. We let S (Sdet) denote the set of such

randomized (deterministic) algorithms.

Define the cost of an optimal plan

c∗(P) = min
A∈Sdet, i∈N

c(A(P, i)).

Define the expected regret of an algorithm after i interactions

to be

RA
i,P = min(E [c(A(P, i))]− c∗(P), R∗).

Thus, R∗ > 0 is the upper bound on the regret. When R∗

is finite, the meaning of R∗ is that a trajectory with a cost

above R∗ is as useless as not knowing a feasible solution.

Thus a finite value of R∗ allows us to quantify what we

mean by plans that are useless in practice.

We define the feasibility time, F (A,P), as the expected

time for an algorithm A to find a useful solution for the

problem P :
F (A,P) = E

[

IAP
]

,

where
IAP = min{i | c(A(P, i) < R∗}

is the (random) number of interactions that algorithm A
needs on problem P to produce a trajectory with cost less

than R∗.

We say an anytime planning algorithm is an (asymptotic)

no-regret algorithm for a problem P if

lim
i→∞

RA
i,P = 0.

This means for any problem, the returned solutions will

eventually be arbitrarily close to optimal in expectation.

Algorithms which do not have this property are regretable.

We say an anytime planning algorithm is a uniform

(asymptotic) no-regret algorithm over problem class P if

lim
i→∞

sup
P∈P

RA
i,P = 0.

Note that supP∈P RA
i,P is the worst-case regret over P after

i interactions, i.e., this value bounds the regret irrespectively

of the problem. The interesting problem in connection to the

uniform no-regret property is to characterize the largest set

of problems (specific to a chosen algorithm) for which the

uniform no-regret property holds.

Having a small feasibility time and being a no-regret

algorithm are desired properties. However, these are crude

concepts and only represent minimum requirements. In par-

ticular, that one of these desired properties holds for an

algorithm does not necessarily translate into a good practical

performance. However, not having one of these properties

usually means that something is not right with the algorithm.

In particular, in such cases we expect that the algorithm

considered will have difficulties on some practical problems.

III. EXISTING ALGORITHMS

We first introduce two problem features that affect popular

algorithms. If the wall in Figure 2(a) is thin and blocks

passage, then we call it a narrow blocking wall (NBW).

If there is a freespace region which is thin (shown here

with width ǫ) but passable, we call it a narrow passage

(NP). These problem features naturally affect discrete state

approaches and also affect sample based approaches. Assume

an algorithm tests some actions in some states to find the

solution. If it hits an obstacle and the algorithm is optimistic

(i.e. assumes that the obstacle is not large and does not block

the passage), then this algorithm will get stuck indefinitely in

the presence of a narrow blocking wall. On the other hand, if

the algorithm is pessimistic (i.e. assumes that the obstacle is

large and blocks the passage), then this algorithm is not able

to find a narrow passage. We place both of these features

into a sample problem called p(ǫ), as shown in Figure 2. In

this example a kinematic model is assumed.

First we review a common problem in the existing algo-

rithms. Then, we review existing algorithms and show that

they are subject to this problem.

A. Solving an abstract problem (SAP)

Many algorithms simplify the original problem by first

building and solving an abstracted problem. For example,

they may remove the obstacles in a map or learn a heuristic

for the map. They may discretize the problem by placing

a grid over the state space, find the shortest path over

this grid and then search for a sequence of controls that

keeps the robot near this shortest path. However, a solution

to the abstract problem may not correspond to a feasible

solution for the original problem, and conversely solutions

to the original problem may not be feasible solutions for

the abstract problem. Hence abstractions can lose soundness,

completeness, or both.

Let us now review some existing approaches. We start

with some stylized algorithms that attempt to work with an

abstraction to illustrate some issues.

B. Iteratively Refined Action Spaces

One algorithm to find near optimal solutions is to use

discrete action planning methods by incrementally refining

the discretization of the continuous action space (which we

shall call IRAS). This approach tries one level of action space

discretization, and then refines the discretization when no

solution is found up to a given trajectory length of L of

action sequences. For example, we could define an action

granularity of 1/ǫ in each of d dimensions, and consider all

paths up to length N/ǫ for some problem specific N . As

the algorithm would eventually consider all possible paths,

it would eventually consider trajectories with costs that are

arbitrarily close to optimal. Thus this is an asymptotic no-

regret algorithm:

Proposition 1: IRAS is a no-regret algorithm for p(ǫ)
Unfortunately, it will often take an extremely long time to

generate a feasible solution. As this approach considers all

possible action sequences, it must search exponentially many

128

(a) (b) (c)

Fig. 2. The planning problems we consider in this paper. The letter S is at the start state, and the green circles are goal regions. The brown blocks are
obstacles. a) The map p(ǫ), used for analysing common problems for anytime algorithms. b) A map with multiple narrow passages. The width of each
wall is 10 and the size of each narrow passage is 1.6. c) An example of a realistic cluttered environment where RRT will often return a substantially
suboptimal path.

leaf nodes until it finds the goal. For the p(ǫ) problem, the

solution time is governed by (1/ǫ)n where n = L/S and

L > 1 is the length of the shortest path between the start

state and the goal, and S = ǫ is the step size.

Proposition 2: F (IRAS, p(ǫ)) = Ω((1/ǫ)1/ǫ).

C. Incrementally refined state spaces

Given the difficulty of handling all possible action trajecto-

ries, one popular alternative is to perform a discretization of

the state space. This approach has the benefit of potentially

sparse state to state transitions. Unfortunately, when contin-

uous dynamics are involved, it is nearly impossible to find

an abstraction of the state space which fiducially captures

exactly the state transitions that are possible in the original

problem. Thus after generating an abstract state space, the

options are to introduce transitions between abstract states

A and B for which 1) there exists “some” original state

a (that maps to A) that under some action will transition

to some state b (that maps to B) 2) a “usually” version of

the previous, or 3) “all” original states in A can transition

under some action to all original states in B. Guaranteeing

condition 3 is infeasible in practice, so some version of 1 or

2 is typically used.

The lack of a veridical representation causes the prob-

lems mentioned above with solving an abstract problem. In

particular, the algorithms that are optimistic in defining the

transitions have difficulties with narrow blocking walls that

partition the reachable states within a state abstraction. Thus

paths that appear feasible in the abstract problem turn out to

be completely infeasible in the original problem. As a result

these algorithm will fail to find an optimal solution.

Proposition 3: If A is an algorithm which solves an

abstract problem with optimistic transition structure then

F (A, p(ǫ)) = ∞ and the feasibility time in general is

inversely proportional to the width of the narrow blocking

wall.

This problem affects many popular approaches for discrete

state spaces including A∗.

The other possibility is making the algorithms pessimistic.

In this case the algorithm will need to refine the discretization

until a passage is found, which again may take a long time

in p(ǫ).

D. Motion Planning

When using classic motion planning [4], [3] for a problem

with dynamics, the common approach is to first solve an

abstract problem without dynamics and then search for

controls that move the robot along the solution path. This

approach ignores the differential dynamics of the problem

and can get stuck even with increased resolution. Hence,

the proposed solution may not be feasible due to differential

constraints of the problem. From this classical approach, the

most popular for multiple query problems are Potential Field

Methods [4] and Probabilistic Roadmaps [3].

The state-of-the-art algorithm that incorporates dynamics

for a single query problem is the Rapidly exploring Random

Trees (RRT) algorithm [5]. The main idea in RRT is to

randomly pick states in the free space and extending the

planning tree towards that state. The pseudo-code of RRT is

shown in Figure 3.

We also assume that the given freespace sampling func-

tion f generates uniformly distributed states from the free

space. We use rejection sampling to implement this sampler.

However, sampling states from the free space can in general

be expensive.

First, note that RRT is not constructing an abstract prob-

lem. Although RRT samples random states and tries to

get to them, it considers a sub-goal for only one time-

step (notice the difference between considering a sub-goal

and committing to a sub-goal). Also, because RRT does

not build the planning tree in an exhaustive fashion, it

is able to efficiently handle the continuity in the action

space. Compared to dynamic programming algorithms, a

disadvantage of RRT is that the model is assumed to be

deterministic.

Although RRT is guaranteed to find a feasible solution [6],

the solution quality can be arbitrarily bad. Furthermore, the

plain RRT algorithm can not use additional computational

resources to improve the quality of its first solution.

129

Input: xs (starting state), g (goal function), m (a

generative model), κ (a setpoint controller), ρ (a

metric), u(X1) (a sampler from the free space), f (the

free space indicator function).

Output: A solution trajectory.

Let T be a set of states, initialized by T = ∅.

T = T
⋃

{xs}.

while Goal Not Found do

X = u(X1).
Y = argminY ′∈T ρ(Y ′, X).
A = κ(Y,X).
Z = m(Y,A).
Add Z as a child to Y .

T = T
⋃

{Z}.

if g(Z) = 1 then

Goal is Found. Return the solution trajectory.

end if

end while

Fig. 3. The RRT Algorithm

Proposition 4: Even with trajectory optimization, RRT is

regretable for p(ǫ).

IV. RRT++

Our proposed method, RRT++, is an extension of RRT to

an anytime algorithm that quickly finds a feasible solution,

and incrementally improves this solution when given addi-

tional time. It will return solutions as quickly as the RRT

algorithm. As time progresses, its solutions will approach

the minimal cost.

The RRT++ algorithm is based on the observation that

RRT is rapidly exploring the state space, but it needs to

explore the path space. The planning tree has a number of

branches. For optimality, one of these branches needs to be

close to an optimal path. The difficulty is that a desirable

branch may only be partially developed by the time the other

branches are arriving at the goal.

For example, consider the problem in Figure 8(a) of

moving from the starting state S to the goal G. There are two

relevant branches in the map: b1 is following the optimal

path and b2 is going through a sub-optimal route. During

the execution of RRT, many attempts to extend b1 will

fail because b1 needs to go through some narrow passages.

Hence, b2 will develop and reach the goal faster than b1.

Consider the consequence of making RRT an anytime

algorithm by continuing to grow the original search tree

after the goal has been reached. If RRT tries to extend

b1 by sampling more states, b2 will absorb samples near

the goal and prevent b1 from growing towards the goal. In

Figure 8(a), a sub-branch of b2 has blocked b1.

This argument suggests that it is futile to make RRT an

anytime algorithm by continuing to add new samples to the

tree. Another simple approach to improve solutions for an

anytime algorithm is to run RRT repeatedly, starting with an

empty tree for each run. We call this method Repeated RRT

(R3T). This algorithm is shown in Figure 4. Despite being

Input: xs (starting state), g (goal function), m (a

generative model), κ (a setpoint controller), ρ (a

metric), u(X1) (a sampler from the free space), f
(the free space indicator function), c (a trajectory cost

function), i (computational interaction budget).

C saves the total computation used.

J∗ saves the best trajectory found.

b = ∞.

while C < i do

Let T be a set of states, initialized by T = ∅.

T = T
⋃

{xs}.

J = RRT (xs, g,m, κ, ρ, u(X1), f).
Update C.

if c(J) < b then

b = c(J).
Store J∗ = J as the best solution.

end if

end while

Return J∗.

Fig. 4. The Repeated RRT (R3T) Algorithm

simple, this approach has desirable properties. Unfortunately,

this approach can be slow to converge on problems where

RRT repeatedly finds poor paths.

From the base RRT algorithm, R3T also provides the

fast feasible solutions. However, it is an asymptotic no-

regret algorithm for the problem p(ε), as there is some non-

zero probability of selecting a sequence of points within an

arbitrarily small window near the optimal path.

Proposition 5: R3T is an asymptotic no-regret algorithm

for p(ǫ).
Proposition 6: ∀p, F (R3T, p) = F (RRT, p)
As a side note, despite similarities to R3T , the Anytime

RRT [1] algorithm is regretable for p(ǫ), as the algorithm

can set an unattainable cost bound.

By destroying the entire search tree between runs, R3T

takes a crude approach to achieving improved plans. Another

more delicate solution is to cut just some bad branch that

reached the goal, and continue running RRT with the remain-

der of the search tree. The idea is to clear the space around

the goal to let other branches grow. This approach raises the

question of where the tree should be cut. Intuitively, we want

to cut the tree at a node that forks into two or more large

branches, such that one of these branches leads to the goal.

Assume there is a trajectory that connects the node x to

the goal, and let U(T , x) denote this trajectory. Let Z(T , x)
be all children of x that are not in U(T , x) and let D(T , x)
be the child of x that is in U(T , x). Consider all trajectories

J = {x, x′, . . . }, where x′ ∈ Z(T , x). Let E(T , x) be the

longest such trajectory.

For example, consider Figure 5. In this figure, some nodes

(D = D(T , S), D1, D2, B, M, F) are shown with hollow

circles and some trajectories (U(T , S) and E(T , S)) are

shown with dashed black lines. In this figure, Z(T , S) =
{D1, D2}. Intuitively, we want to cut node D(T , S) and its

descendants from the tree T and continue running RRT.

130

S

E(T,S)

D1

D=D(T,S)

D2
U(T,S) B

M

GF

Fig. 5. A portion of the planning tree T after reaching a goal state.
We indicate nodes on the tree with hollow circles, and trajectories with
dashed lines. This simplified tree graph shows a child node D(T , S) of S,
the trajectory that passes through this child to the goal U(T , S), and the
longest disjoint sibling trajectory E(T , S).

We find a state x∗ such that

x∗ = argmax
x∈U(T ,xs)

|U(T , x)|+ |E(T , x)| , (1)

where |J | is the number of elements in trajectory J . Then,

we remove D(T , x∗) and its descendants from the tree T
and continue running RRT.

This intuition is a heuristic and can fail. Consider Figure 5

again. Assume the optimal trajectory goes from S to B to

F and then follows the dashed line. Then the right point to

cut is M . But even if |E(T , S)| was substantially smaller

than what we have shown in this figure, the solution to

Problem 1 is still x∗ = D(T , S) (simply because |U(T , S)|
is large and dominates the optimization). Hence, if only a

small improvement at the very end of U(T , xs) is possible,

this heuristic probably cannot find it. Note that this problem

doesn’t exist in Figure 8(a).

We introduce a cyclic incremental fallback method to

overcome this problem. Consider a cyclic counter r = (
mod (c,N) + 1)/N , where N ∈ N is a constant algorithm

parameter and c ∈ N increases by one after each execution

of RRT. Let U(T , xs) = {x0 = xs, . . . , xm} be the solution

trajectory found by running the last RRT algorithm. Then we

consider only the descendants of x′ = x⌊(1−r)m⌋ (i.e. a 1−r
fraction of the solution trajectory) for the cut operation:

x∗ = argmax
x∈U(T ,x′)

|U(T , x)|+ |E(T , x)| .

After cutting x∗ and its descendants from T , we increase

c by one and run RRT again starting with the smaller tree.

This procedure continues until our computational budget is

ended. The pseudo-code for the RRT++ algorithm is shown

in Figure 6.

Although RRT++ is designed to be better than R3T in

practice, it is not clear that the algorithm as described

above has the no-regret property. We restore this property

by including random restarts (with a tiny probability δ) to

recover the no-regret property.

Proposition 7: ∀p, F (RRT++, p) = F (RRT, p)
Proposition 8: RRT++ is a no-regret algorithm for p(ǫ).
The fact that random restarts allow RRT++ to trivially

gain the no-regret property shows that the no-regret property

can be considered weak. Note however, that this property is

not so weak that it is easily achieved by all the algorithms

considered earlier.

Input: xs (starting state), g (goal function), f (a

generative model), κ (a setpoint controller), ρ (a met-

ric), N (number of cuts), i (computational interaction

budget), δ (reset probability).

C saves the total computation used.

c = 1 is a counter.

U(T , x) = {x0, x2, . . . , xL}, E(T , x), and c∗(T , x)
are defined in the text.

Let T be the set of states, initialized by T = ∅.

while C < i do

With probability δ, T = ∅.

T = RRT(xs, g, f, κ, ρ, T).
Update C.

Let U(T , xs) = {x0, . . . , xm} (so m = |U(T , xs)|)
r = (mod (c,N) + 1)/N .

x′ = x⌊(1−r)m⌋.

x∗ = argmaxx∈U(T ,x0) |U(T , x)|+ |E(T , x)|.
Cut D(T , x∗) and descendants from T .

c = c+ 1.

end while

Fig. 6. The RRT++ Algorithm

V. SIMULATION RESULTS

We use the RLAI Critterbot robot simulator [7]. We model

a two wheeled robot situated in two 120× 120 maps shown

in Figure 2. The simulated robot has non-trivial dynamics

including substantial inertia and limited torques. The mass

is 1.1kg and the moment of inertia is 0.004217kg×m2. For

simplicity, we performed the collision detection only for the

center of the robot, effectively transforming the robot’s body

to a point.

Let the top left corner of the map be the origin and the

horizontal and vertical lines be the two coordinate axes. The

state is a 4-dimensional vector x = (x1, x2, x3, x4), where

x1 and x2 are coordinates of the robot, and where x3 = ẋ1

and x4 = ẋ2 are velocities. The action is the torques applied

to the robot wheels. Instead of using a setpoint controller

to generate actions, we restricted action selection to one of

three discrete actions. The metric ρ on the state space is the

Euclidean distance.

For these experiments, the cost of a single step in a path

is the two dimensional distance travelled by the robot. In

the case of a collision, the cost is infinite (and the forward

model returns the original state).

The starting state in the maps (marked with an S), and the

green regions (marked with G) represent the goal regions.

The maps are designed such that there are multiple paths

from the start to a goal that are not homotopic. For each goal

position, the shortest path has narrow passages that makes

the planning problem difficult.

We compare the performance of RRT++ and R3T on the

problems in Figure 2. For the first map, we solve two separate

planning problems with goal centers of G and H . In the

second map, the start state is S and the center goal state is

G. The radius of the goal region is ǫ = 4 in both problems.

131

0 50 100 150 200 250 300 350 400
150

160

170

180

190

200

210

220

230

240

Computation Time (Seconds)

S
o
lu

ti
o
n
 L

e
n
g
th

RRT++

R
3
T

0 50 100 150 200 250 300 350 400
80

100

120

140

160

180

200

220

240

Computation Time (Seconds)

S
o
lu

ti
o
n
 L

e
n
g
th

RRT++

R
3
T

−200 0 200 400 600 800 1000
120

140

160

180

200

220

240

260

280

300

Computation Time (Seconds)

S
o
lu

ti
o
n
 L

e
n
g
th

RRT++

R
3
T

(a) (b) (c)

Fig. 7. In all these graphs, red is R3T and blue is RRT++. The vertical bars show 95% confidence intervals from ten runs. (a) The results for goal state
G for the map in Figure 2(b). (b) The results for goal state H for the map in Figure 2(c). (c) The results for the cluttered map in Figure 2(c). These graphs
show that RRT++ can find substantially improved plans.

(a) (b) (c)
Fig. 8. The shape of the RRT++ planning tree (a) before a cut, (b) after a cut, and (c) on eventually finding a near-optimal solution. Different colors
indicate different robot orientations. In (a) the solution is sub-optimal and the bad branch has blocked the good branch. In (b), the bad branch is removed
from the tree. In (c), RRT++ has found a near-optimal solution because bad branches had been cleared away by earlier steps.

The cost of R3T and RRT++ is the CPU time in seconds.

The performance criteria is the solution length, which is

the sum of the Euclidean distances between consecutive

positions in the solution trajectory.

Figure 7 shows the performance of R3T and RRT++ on

the above problems. The results show that R3T does not

converge quickly towards the optimal solution, but RRT++

shows substantially better performance.

Figure 8 shows how RRT++ modifies the search tree. Fig-

ure 8(a) shows the search tree just before the cut operation.

Trajectory b2 is the last solution trajectory and b1 is a near-

optimal trajectory. Figure 8(b) shows the search tree after the

cut operation. The cut point is very close to S and trajectory

b2 is gone. Figure 8(c) shows the search tree when a solution

after the cut operation is found. Trajectory b1 has reached to

the goal. This trajectory is the same near-optimal trajectory

that we have shown in Figure 1.

In separate experiments, we examined modifications sug-

gested by other papers. We examined the use of heuristic

biases to the search [8]. We also examined the idea of

extending multiple nearby branches towards a node, as in

the RRG algorithm [2]. In our experiments, both variants

performed worse than the R3T algorithm.

VI. CONCLUSION

We have introduced RRT++, a new anytime extension of

RRT that quickly generates feasible solutions, and asymptot-

ically approaches optimal solutions. We introduced desirable

properties for an anytime algorithm, and we showed that

RRT++has desirable properties. In addition to this theoretical

structure, we provide empirical results that show RRT++

converges towards optimal solutions on problems where RRT

reliably finds substantially suboptimal solutions. Moreover,

we show that R3T does not efficiently converge towards

an optimal solution in a realistic cluttered environment. In

comparison on the same problem, RRT++ is able to use

additional computational resources to efficiently reduce costs

to a near optimal solution.

REFERENCES

[1] D. Ferguson and A. Stentz. Anytime RRTs. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2006.
[2] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms

for optimal motion planning. In Robotics: Science and Systems, 2010.
[3] L. Kavraki, P. Svestka, J-C Latombe, and M. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 1996.

[4] J-C Latombe. Robot Motion Planning. Kluwer Publishers, 1991.
[5] S.M. LaValle and J.J. Kuffner. Randomized kinodynamic planning.

International Journal of Robotics Research, 20(5):378–400, 2001.
[6] S.M. LaValle and J.J. Kuffner. Rapidly-exploring random trees:

Progress and prospects. Algorithmic and Computational Robotics: New

Directions, pages 293–308, 2001.
[7] RLAI. Critterbot simulator, 2009. http://critterbot.rl-community.org.
[8] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT

growth. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2003.

132

