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Abstract— In this paper, the practical problems of the 
Operational Space Formulation (OSF) are considered. The OSF 
provides decentralized control of the tasks by virtue of the 
'dynamic decoupling property'. In the practical view point, 
however, the OSF can be unfavorable due to the inevitable 
modeling error and large computational effort. As a remedy for 
this problem, the OSF is enhanced with Time-Delay Estimation 
(TDE) scheme. The robustness and efficiency of the proposed 
control have been analyzed and demonstrated to be effective 
against the practical problems while preserving the dynamic 
decoupling property.  

I. INTRODUCTION 
HE Operational Space Formulation (OSF) [1]-[4] 
provides the decentralized control of an arbitrary number 

of tasks in parallel by virtue of the useful property dynamic 
decoupling: the force for one task does not affect the motion 
of the other tasks [4], [5]. Owing to the physical merit, the 
OSF has been widely applied to control many robotic systems 
with consistently good results: multi-arm robotic systems [4], 
[6], surgery robots [7], and humanoid robots [2], [3]. 
Especially, the recent results in humanoid robots shed the 
new light on the natural movement generation of 
high-degrees-of-freedom robots that is one of the open and 
interesting problems in the field of robotics. 

The OSF, however, can be practically unfavorable in 
respects of the inevitable modeling error and of the relatively 
high computational effort [8] as the following.  

The OSF requires precise robot dynamics models. In the 
practical view point, the modeling error is inevitable: the 
dynamics parameters vary due to the change of the payload, 
and precise modeling of the friction force is still an open 
problem. It has been reported that the OSF reveals noticeable 
performance degradation in the presence of modeling error 
[8]. One reason is that the modeling error of the inertia creates 
many sources of errors in the motor commands due to 
repeated usage of inertia [8]. An accurate model of the inertia 
is essential for the dynamic decoupling property. Under the 
modeling error of inertia, the OSF fails to decouple each 
task-dynamics. A learning method has been proposed as a 
remedy for modeling error problem [9]. However, the method 

is complex and computationally burdensome.  
The OSF requires relatively large computational effort. 

The evaluation of explicit dynamic models is computationally 
demanding. Particularly, inversion of the inertia is the most 
expensive [8], [10]. An efficient computation algorithm that 
does not require explicit inversion of the inertia was proposed 
[10]. However, the algorithm can be applied only for the 
primary task not for the secondary tasks. The large 
computational effort of the OSF is still burdensome in spite of 
recent developments of the computing hardware: the heavy 
charge of computation requires a large expense for hardware 
of real-time control, and the high performance hardware lays 
a burden on the battery-capacity of the mobile robots such as 
humanoids since it generally consumes large electric power 
[9].   

This paper introduces Time-Delay Estimation (TDE) 
[11]-[14] to practically enhance the OSF, an OSF with TDE 
(OSFTDE): 1) robustness for the modeling error regarding to 
both the dynamical decoupling and the control performance, 
and 2) high computational efficiency. TDE scheme provides 
an accurate estimate of the complex nonlinear robot dynamics. 
By virtue of TDE scheme, the dynamic decoupling property 
is feasible even with a constant nominal model of inertia; 
good control performance is obtained in face of the modeling 
error. Also, TDE saves expensive computations in the OSF: 
nonlinear forces−Coriolis and centrifugal force, gravity force, 
and friction force−are not required to be computed. The 
inversion of the inertia, the most expensive computation in 
the OSF, can be saved since a constant nominal model of 
inertia can be used and its inverse can be obtained off-line. 

The paper is structured as follows: In section II, TDE is 
briefly reviewed, and the practically enhanced OSF, the 
OSFTDE, is presented. In section III, the practical advantages 
of the OSFTDE are analyzed through the comparison with the 
OSF. Finally, the results are summarized and conclusions are 
drawn in Section IV. 

II. OSFTDE 

A. Decoupled Operational Space Dynamics 
 The rigid-body dynamics equation of robot with n  

degrees of freedom (DOFs) is given as  
Manuscript received March 10, 2010. This research was supported by the 

Ministry of Knowledge Economy, Republic of Korea  under the 21st Century 
Frontier R&D programs and the Daedoek Innopolis R&D programs 
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where , n∈ℜeΓ Γ

, , n

 denote the joint torque and the interaction 

torque; ∈ℜq q q  denote the joint angle, the joint velocity, 

T

The authors are with the Department of Mechanical Engineering, KAIST, 
Daejeon, Republic of Korea (e-mail: mechjjw@mecha.kaist.ac.kr;  
phchang@mecha.kaist.ac.kr; and jinoh_lee@mecha.kaist.ac.kr). 

The 2010 IEEE/RSJ International Conference on 
Intelligent Robots and Systems 
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4390



  

and the joint acceleration, respectively; ( ) n n×∈ℜA q  a 

positive definite inertia,  Coriolis and 

centrifugal torque, and  gravity torque; 

 stands for the friction including Coulomb 
friction, viscous friction and stiction. 

( , ) n∈ℜb q q

( ) n∈ℜg q

( , ) n∈ℜf q q

Introducing a constant nominal model of the inertia, 
n n×∈ℜA , another expression of (1) is obtained as follows: 

 ( , , ) =q q q Γ+Aq H ,                            (2) 
where  denotes all nonlinear terms as  ( , , )H q q q

( , , ) [ ( ) ] ( , ) ( )+ +b q q g q ( , )+ − ef q q Γ= −H q q q A q A q .  (3)            
Note that  represents the difference of two 

dynamics− linear dynamics, 

( , , )H q q q

Aq , and the other nonlinear 
dynamics. 

Assume that there are  tasks and the i th task has lower 
priority with respect to the previous (  tasks. The th 

task is represented as the coordinate vector, 

k
1) i

( ) im
i

i −

∈ℜx q

( )k

)

 with 
the associated Jacobian J q . ( ) ( ) /i i= ∂ ∂x q

| (2)ev k+ Γ

• i

( 1i −

i

T
i i iJ F

| (i prev iΓ

( )

( )

| ( )

(

T
prev i i

T T

q
The OSF describes the torque level decomposition as 

follows: 
1 2 |pr prev= +Γ Γ Γ ,                 (4) 

where  denotes the prioritized torque that does 
not ‘disturb’ the primary task in dynamics level, and the 
subscript  indicate that  of the th task is projected 

onto the null-space of the previous  tasks. 

| ( )
n

i prev i ∈ℜΓ

| ( )i prev i•

)
Torque vector can be obtained for the operational space 

force of the th task, , as follows: i m
i ∈ℜF

=Γ .                                  (5) 
Then, the prioritized torque, , is obtained by 

projecting  onto the dynamic-consistent null space of the 
tasks with the higher priority:  

)

iΓ

| ( )i prev i

prev i i

T
i prev i i

N Γ

N

J F
i

=

=

=

Γ

J F ,                     (6) 

where  denotes the dynamic-consistent null 
space projector such that 

( )
n n

prev i
×∈ ℜN

1
( )( ) , fT

rev j = 0 ori p i−J A N j< ,                 (7) 

and  denotes the task-consistent Jacobian 
of the i th task. The dynamic-consistent null space projector, 

| ( ) ( )i prev i i prev i=J J N

( )prev iN , is efficiently obtained as follows [3], [15]: 
1

( ) | ( ) |
1

i

( )prev i j prev j j p
j

−
+

=

= − ∑ AN I J rev jJ

q

.             (8) 

Let the task-consistent operational space acceleration be 
 .                    (9)     | ( ) | ( ) | ( )i prev i i prev i i prev i= +x J q J

From (2), the joint-acceleration is obtained as 

1[ ( , ,−= −q A Γ H q q q)] .                        (10) 
Substituting (4) and (10) into (9) leads to the equation of 
motion of the th task as follows: i

| ( ) | ( ) | ( )( ) ( , , )i i prev i i prev i i prev i= +F Λ q x H q q q ,          (11)  
where  

1 1
| ( ) | ( ) | ( )( ) [ ( ) ( ) ]T

i prev i i prev i i prev i
− −=Λ q J q A J q ,        (12) 

| ( ) | ( ) | ( )

| ( )

( , , ) ( )

( ) ( ,
i prev i i prev i i prev i

T
i prev i

+

= −

+ A

H q q q Λ q J q

J H q q, )q
,       (13)  

and  
1

| ( ) | ( ) | ( )
T

i prev i i prev i i prev i
+ −=AJ A J Λ .                 (14) 

Note that  includes all nonlinear terms of 
the th task dynamics. 

| ( ) ( , , )i prev iH q q q
i

B. Time-Delay Estimation (TDE) 
In this section,  is to be efficiently and 

accurately estimated by TDE scheme.  
| ( ) ( , , )i prev iH q q q

Assume that  is continuous or at least 
piece-wise continuous about time . Then, for a sufficiently 
small time-delay, L , the time delayed estimate of 

 can be obtained as below: 

| ( ) ( , , )i prev iH q q q
t

| ( ) ( , , )i prev iH q q q

| ( ) | ( ) ( )

( ) | ( ) | ( )( )

ˆ ( , , ) ( , , )i prev i i prev i t L

i t L i prev i i prev i t L

−

− −

=

= −

H q q q H q q q

F Λ x
,     (15)  

where •̂  denotes the estimated value of • , and ( )t L−•  

denotes time delayed value of • . It is noteworthy that TDE 
does not require a dynamic model or its parameters except for 

| ( )ii prevΛ

i

. It only needs the recent past information of 
acceleration and input force. 

In practice, the smallest achievable L  is the sampling 
period in digital implementation. A digital control system 
behaves reasonably close to the continuous system if the 
sampling rate is faster than 30 times the system bandwidth 
[16]. Hence, with  smaller than this level,  
can be estimated by TDE.  

L | ( ) ( , , )i prev iH q q q

C. Control Based on TDE 
The control objective is to yield the decoupled behavior, 
*

i =x x
i

, where  denotes the reference acceleration for the 
th task.  

*
ix

From (4) and (11), the control torque is designed as 
follows: 

1 1 2| (2) 2 | ( )
T T T

prev k prev k k= + + +Γ J F J F J F ,         (16) 
and 

*
| ( ) _ ( ) | ( ) | ( )( )

Injecting the desired dynamics Canceling the nonlinearities

( )( )i i prev i i i bias i t L i prev i i prev i t L− −= − + −F Λ q x x F Λ x , 

(17) 
where  denotes the bias-acceleration [2], [3] _i biasx

_ | ( )i bias i prev i i= −x x x .                          (18) 
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The reference accelerations should be assigned in 
accordance with the objects to be controlled: position, force, 
or impedance.  

In this paper, we adopt the reference accelerations for the 
impedance control [17]-[19] since: 1) the impedance control 
provides desired compliance 1  for the task that needs to 
interact with the environment; 2) the impedance control can 
be general form of the other controls [18].  

The objective of the impedance control is to make a robot 
achieve the following target-impedance dynamics:  

( ) ( ) ( )id id i id id i id id i i− + − + − = eΛ x x B x x K x x F ,    (19) 

where , , and i im m
id

×∈ℜΛ i im m
id

×∈ℜB i im m
id

×∈ℜK

idx idx

 denote 
the desired inertia matrix, desired damping matrix, and 
desired stiffness matrix, respectively; , , and  
denote the desired acceleration, desired velocity, and desired 
position, respectively;  denotes the interaction force 
of the th task. 

idx

im
i ∈ ℜeF

i
The reference acceleration for the impedance control can 

be designed as 
* 1[ ( ) ( ) ]i id id id id i id id i i

−= + − + − − ex x Λ B x x K x x F .  (20) 
1) Relation to the Position Control: When a task is 

performed in free-space, the interaction force is zero, and (20) 
is reduced to the well-known reference acceleration of the 
position control, 

* ( ) (i id i id i i id i= + − + −V Px x K x x K x x )

d d

)

)

d

 

          (21) 
with 

1
i id i

−=VK Λ B  and .            (22) 1
i id i

−=PK Λ K
2) Relation to the Force Control: Equation (20) can be 

reduced to a reference acceleration of the implicit force 
control [18]. Let  denote the position of the environment. 
When a robot contacts with the stiff environment,  and 

 can determine2 the desired interaction force, , as 
follows: 

ex

idx

ideFidK

( ) (id id i id id e

id

− ≈ −
= e

K x x K x x
F

.                   (23) 

Substituting (23) into (20) leads to the reference 
acceleration for the implicit force control, 

* ( ) (i id i id i i id i= + − + −Vf Pf e ex x K x x K F F         (24) 
with 

1
i id i

−=VfK Λ B  and .              (25) 1
i id

−=PfK Λ

D. Dynamic consistency 
The dynamic decoupling property is defined as that the 

joint torque for the task with the lower priority does not 
produce any operational acceleration of the task with the 
higher priority [4], [5].  
 

Proposition 1. Suppose that TDE perfectly estimates ) . 
Then, the OSFTDE has the dynamical decoupling property. 

| (
ˆ

i prev iH

 
Proof. When combining the robot dynamics equation with the 
controller, we obtain 

| ( ) | ( )
1 1

i k
T T

j prev j j j prev j j
j j i

torques with thelower priority

= = +

+ = +∑ ∑Aq H J F J F .         (26) 

For the simplicity, assume that the control forces for the 
th task and for the tasks with the higher priority consist of 

only the TDE term as 
i

| ( )
ˆ , for 1j j prev j j i= ≤ ≤F H ,                    (27) 

and the velocity product terms,  or , are ignored. iJ q | ( )i prev iJ q

Multiplying 1
i

−J A  on both sides of (26), we obtain  

1 1
| ( ) | ( )

1

1
| ( )

1

ˆ
i

T
i i i j prev j j prev j

j

TDE term

k
T

i j prev j j
j i

acceleration from the force with the lower priority

− −

=

−

= +

+ =

+

∑

∑

x J A H J A J H

J A J F
.     (28) 

Since TDE is assumed to be perfect, TDE term on the 
right-hand side of (28) is derived as 

1
| ( ) | ( )

1

1
| ( ) | ( )

1

1

ˆ[ ]

[ ( )

i
T

i j prev j j prev j
j

i
T

i j prev j j prev j
j

i

−

=

− +

=

−

=

=

∑

∑ A

J A J H

J A J J H

J A H

]T .       (29) 

Then, the TDE term, (29), linearizes the closed-loop 
dynamics, (28), as follows: 

1
| ( )

1

k
T

i i j prev j j
j i

acceleration from the force with thelower priority

−

= +

= ∑x J A J F .             (30) 

From (7), the right-hand side of (30) becomes 
1 1

| ( ) | ( )
1 1

1
( )

1
( )

k k
T T

i j prev j j i j prev j j
j i j i

k
T T

i prev j j
j i

− −

= + = +

−

= +

=

=

=

∑ ∑

∑

J A J F J A J F

J A N J F

0

j ,    (31) 

Hence, the control forces for the tasks with the lower priority 
do not generate any acceleration of the i th task.  □ 
 
Remark 1. Under finite time-delay , the estimation error of 
TDE scheme, named by the TDE error, is inevitable [11]-[14]. 
The TDE error of the i th task, , is defined as 
follows: 

L

iε im∈ℜ

1
| ( ) | ( ) | ( )

ˆ( )i i prev i i prev i i prev i
−= −ε Λ H H .            (32) 

Then, the TDE error is involved in (30) as follows: 1 Compliant control is often desirable in many new robotic systems that 
are supposed to be operated safely in human environment [9]. 

i =x εi                                    (33) 
2 The contact environment is modeled as a simple spring [20]. 
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Hence, the OSFTDE realizes near dynamic consistency 
under finite time-delay L . Although TDE has the inherent 
limitation, the TDE error, we claim that TDE more accurately 
and easily enables the dynamic decoupling property than 
direct usage of robot dynamics models in the face of 
modeling error. This is to be validated in the following 
chapter III, and chapter IV. 

X

Y

Base
(0.5,0.0) m

g

 
Fig. 1. Initial position of a 3 DOFs planar robot. Each link has 0.5 m 
length, and 1.0 kg mass. The orientation of the end-effector is 
controlled in the null space of end-effector’s (x,y) position. 
 

III. COMPARISON WITH THE OSF 
The OSFTDE is to be compared with the OSF through 

simulations in two regards: robustness for the modeling error 
of the inertia and computational efficiency.  

The OSF is given as follows [2], [3]: 
1 1 2| (2) 2 | ( )
T T
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prev k prev k k= + + +Γ J F J F J F , and      (34) 
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ˆ ˆ( ) ( , )

i i prev i i i bias i prev i

i prev i i prev i i prev i
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+ + + e

F Λ q x x μ q q

p q η q q F
,       (35) 

where 
1 1

| ( ) | ( ) | ( )
ˆ ˆ( ) [ ]T

i prev i i prev i i prev i
− −=Λ q J A J , 

ˆ
| ( ) | ( ) | ( ) | ( )

ˆˆ ( , ) ( ) ( , ) ( )T
i prev i i prev i i prev i i prev i

+= −Aμ q q J b q q Λ q J q , 
ˆ

| ( ) | ( )ˆ ( ) ( ) ( )T
i prev i i prev i

+= Ap q J g q , 
ˆ

| ( ) | ( )ˆ ( , ) ( ) ( , )T
i prev i i prev i

+= Aη q q J f q q , 
ˆ

| ( ) | ( )( )T T
i prev i i prev i i i

+= A
e eF J J
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and 

1
ˆ

( ) | ( ) | ( )
1
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prev i j prev j j prev j
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−
+

=

= − ∑ AN I J J .               (37) 

The differences of two control laws, the OSF and the 
OSFTDE, are summarized as follows: 1) the OSFTDE 
introduces TDE terms while the OSF uses explicit dynamic 
models, 2) for the inertia model, the OSFTDE uses a constant 
nominal model, A , while the OSF uses time-varying 
estimate, .  ˆ ( )A q
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A. Robustness for the Modeling Error of Inertia 
Now, to compare the robustness for the modeling error of 

inertia, consider the example 3 : the orientation task is 
performed in the null space of end-effector’s ( , )x y  position. 
The 3-DOF planar robot manipulator was used in this 
simulation as illustrated in Fig. 1. Each link has 0.5 m length 
and 1.0 kg mass. 

(c)                                               (d) 
Fig. 2. Comparison of the dynamic consistency: (a) pseudo-inverse 
method, (b) the OSF without modeling error, (c) the OSF under 5% 
modeling error, (d) the OSFTDE under 5% modeling error. The 
inaccurate inertia contaminates the dynamic decoupling property in the 
OSF. In contrast, the OSFTDE achieves relatively robust dynamic 
decoupling under the same amount of the modeling error.

1) Dynamic Consistency: If the orientation task dynamics 
is decoupled with the dynamics of the end-effector’s 
( , )x y position, then the control force for the orientation task 
should not affect the end-effector’s ( , )x y  position. 

Typical non-dynamical-consistent control, based on 
pseudo-inverse of Jacobians, showed large deviation of 
end-effector’s ( , )x y  position due to the dynamic coupling as 
shown in Fig. 2(a). Without modeling error of inertia, the 

OSF perfectly achieved the dynamic decoupling property as 
shown in Fig. 2(b). However, under 5 % the modeling error of 
inertia, the dynamic decoupling property of the OSF is 
contaminated so that relatively large deviation of the 
end-effector’s ( , )x y  position occurred as shown in Fig. 2(c). 
In contrast, the OSFTDE realized relatively accurate dynamic 
decoupling property under the same amount of modeling 
error in inertia as shown in Fig. 2(d).  

2) Control Performance: Let us compare the control 
accuracy of the orientation task. The simulation results are 
shown in Fig. 3 and summarized in Table I. Under the same  

3 The example is a modified version of the one originally devised in [21]. 
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(c) 

amount of modeling error in inertia, the OSFTDE showed 
15% tracking error of the OSF.  

B. Computational Efficiency 
The computational efficiency of the OSFTDE was 

compared with the OSF by examining the required 
computational effort to evaluate control torque. The 
computational effort is measured in terms of FLoating point 
OPerations (FLOPs) that denotes total number of the four 
arithmetical operations [22].  

For the sake of simplicity, assume that all tasks require the 
same  DOFs. The comparison of computational effort is 
first generalized in terms of m  and  in Table II, and a 
simulated result is displayed in Fig. 4. The results show that 
the OSFTDE has about three times better computational 
efficiency than the OSF. 

m
n

The difference of the computational effort mainly comes 
from TDE scheme as follows:  

1) The OSF requires the explicit computation of , 

and 

ˆ ( )A q
ˆ ˆ[ ( , ) ( )]+b q q g q  that take computational cost O n  [8]. 

In contrast, the OSFTDE saves this computation but requires 
the TDE terms, 

2( )

( ) | ( ) | ( )( )( )

| ( )(rev i t L

i t L i prev i i prev i t L− −F Λ x −

i p

, that take 

 (generally, ). Note that and 2( )O m m n<< ( )i t L−F )−x  
are already computed in the previous step. 

2) Also, the OSF needs to compute  on-line that 

takes computational cost  [8], [10]. In OSFTDE, 
however, the expensive computation can be saved since the 
inverse of constant nominal model of inertia, 

1ˆ ( )−A q

3( )O n

1−A , can be 
obtained off-line. 

3) Finally, the OSF needs to differentiate the 
task-consistent Jacobians for . However, the 
OSFTDE does not require the explicit computation of 

 since it is implicitly estimated by TDE. 

| ( )i prev iJ q

q| ( )i prev iJ

IV. CONCLUSION 
The OSF was enhanced with TDE in practical aspects: 

robustness for the modeling error and computational 
efficiency. TDE provides an accurate estimate of nonlinear 
robot dynamics so that the robot dynamics is linearized with a 
known value of inertia. By virtue of TDE, dynamic 
decoupling property is realized under the modeling error of 
inertia and robust control performance is obtained. Also, 
TDE saves expensive computations: inversion of inertia, 
explicit computation of dynamics models, and differentiation 
of Jacobians. Through simple but obvious simulation, the 
practical advantages of the proposed control were 
demonstrated.  

The proposed control can be immediately applied to 
control of high-DOFs robots such as humanoids. Further 
experiments with 2-DOFs robot manipulator are to be 
performed. Also, the effect of the TDE error on the dynamic 
consistency appears to deserve further investigations. 
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