
Mixing Differential Inclusions with Markov Decision Processes

Nelson Gonçalves and João Sequeira

Abstract— This paper describes a behavioral approach to the
synthesis of controllers for the execution of tasks by mobile
robots. The paradigm integrates two distinct methods for
decision making under uncertainty, namely Markov decision
processes and differential inclusions. The target application
is surveillance systems where mobile robots can approach
intruders to take their mugshot or block exit pathways. An
hybrid model of the system is described and stability conditions
discussed. The main ideas are exemplified in a search and
pursue application and some preliminary experimental results
with a navigation behavior are also presented.

I. INTRODUCTION

This work proposes an approach to the synthesis of

controllers for the execution of tasks by mobile robots. The

paradigm is based on the mix of Markov decision processes

to model the environment and differential inclusions to

model robot behaviors. The target application is surveillance,

where the robots must execute a set of heterogeneous tasks,

e.g., patrolling the environment, searching for intruders and

intercepting them, blocking their exit pathways, and moving

in formation. The purpose of the latter is to increase the

effectiveness of the robots. For instance, a group of robots

moving in the adequate formation can block the exit of an

intruder more effectively than a single robot.

The environment where surveillance takes place is adver-

sarial, with unstructured dynamics and subject to uncertain-

ties that affect its state. The execution of tasks by the robots

is thus formulated as a problem of real-time decision making

under uncertainty. The proposal in this work is to model the

execution of tasks with two different, but complementary

frameworks. The two resulting models are integrated then

into a single, hybrid model that the robot will use to execute

a task.

The framework of Markov decision processes (MDPs)

is employed to model the dynamics of the environment,

estimated from the outcomes of the behaviors by the robots

during a task execution. This is a mathematically sound

approach to sequential decision making under uncertainty

[1]. It is also a natural choice because MDPs provide a first

order approximation to the human decision making process

[2].

Within MDPs, uncertainty is identified with the lack of

knowledge on which environment state results from the

actions of the robots. Uncertainty is represented through

N. Gonçalves is with Instituto Politécnico de Tomar, Tomar and Institute
for Systems and Robotics, Lisbon, Portugal. J. Sequeira is with Instituto
Superior Técnico and Institute for Systems and Robotics, Lisbon, Portugal.
Email: {ngoncalves, jseq}@isr.ist.utl.pt

This work was supported by ISR/IST plurianual funding through the
POS Conhecimento Program that includes FEDER funds.

stochastic state transition functions. It can also be extended

to include partial state observability [3] or poor knowledge

of the state transition functions [4].

The kinematics of the robots, during the execution of the

task, are modeled using differential inclusions (DIs) (see for

instance [5]), representing robot behaviors (see [6] for an

example of the synthesis of navigation behaviors). The idea

is to constrain the robot pose to a convex and compact region

while tracking a velocity reference. Reference poses and

paths for the robot are not required to be known explicitly

when modeling behavior by DIs. Instead, only bounds for

the desired poses or path are used. The advantages of using

DIs are twofold. First, surveillance applications usually do

not require the precise specification of reference poses for

robots; in fact when a robot is trying to block an exit the

key factor is how intruders perceive the intention of the robot.

Second, specifying robot behaviors through bounding regions

implicitly enables the embedding of some the uncertainty and

avoids requiring accurate world maps and localization.

Navigation behaviors are synthesized by specifying the

constraints the robot trajectories should verify, instead of

computing optimal trajectories. In a sense, behaviors can be

synthesized with less information. For instance, the search

for an intruder can simply be constrained to a bounded region

instead of computing an optimal path from the sensors on

the robot, the map of the environment and the motion model

of the intruder.

The two frameworks are complementary as they model

different aspects of task execution. The MDPs consider the

dynamics of the environment while the robot kinematics and

dynamics are addressed by the DIs. The two frameworks

also account differently for uncertainty in task execution. In

MDPs, it is not known which environment state will result

from the actions of the robots. This uncertainty is structured

because the state transitions, as function of the robot actions,

are stochastic and with known distributions. In what concerns

behavior modeling using DIs, the robot pose can take any

value as long as it remains inside a convex and compact,

bounding region, [6]. Thus in the DIs framework, uncertainty

can be identified with ambiguity in the selection of a path

for the robot.

The models obtained with the two frameworks are inte-

grated into an hybrid model (see for instance [7] on hybrid

systems). The discrete variables represent the state of the

environment and the navigation behaviors which the robot

can produce. The continuous variables represent the pose and

velocity of the robot. They are determined by the navigation

behavior which is currently active in the robot. The execution

of tasks is thus modeled as the sequential activation of

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 2462

navigation behaviors with the purpose of producing a desired

state of the environment.

The remainder of this paper is as follows. The synthesis

of navigation behaviors for the mobile robots using DIs is

detailed in Section II. It is followed by a brief description

of the MDP framework in Section III. The two frameworks

are integrated into a single, hybrid model for the execution

of tasks in Section IV. In this section are also derived

stability conditions for the hybrid task models. The approach

is applied in Section V to a search and pursue problem. The

paper is concluded with Section VI, with a brief summary

and a discussion of the proposed behavioral approach .

II. SYNTHESIS OF NAVIGATION BEHAVIORS

The class of robots considered in this paper is composed

by wheeled mobile robots moving on a 2D plane. Their

kinematics are modeled by a differential equation

q̇ = f (q,u) (1)

where q ∈ R
n is the robot pose in a frame of reference,

u ∈R
m are the control inputs and f is a Lipschitz continuous

function. This is a suitable model for common wheeled

robots, such as the unicycle, and vehicles with limited mini-

mum turning radius. In practice, the control inputs available

to the mobile robot are bounded, which is modeled by the

differential inclusion (DI)

q̇ ∈ F(q,U) = {p ∈ R
n,u ∈U | p = f (q,u)} (2)

where F is a set-valued map and U is a compact subset of

R
m. Assuming f to be Lipschitz continuous, from Propo-

sition 2.4 in [5] it can be asserted that F is a Lipschitz

continuous set-valued map. A strictly positive Lipschitz

constant is assumed and the output values of F are convex,

closed and contained in a ball centered at the origin. DIs

with such set-valued maps are denoted Lipschitzian, [5]. In

the remainder of the paper, the kinematics of the mobile

robots are modeled by the differential inclusion (2).

The method for behavior synthesis is based in constraining

the robot pose to a compact and convex region during a finite

time interval [t0, t1], t1 < ∞.

Definition 1 (Viable Set): A viable set is represented by

the output values of the Lipschitzian set-valued map C(t),
C : Rn × [t0, t1]→ R

n. The robot pose is viable at time t if

q(t) ∈C(t). The trajectory of a robot is viable if the pose is

viable for all t ∈ [t0, t1].

In mobile robotic applications, the obstacle free space sur-

rounding a mobile robot is the natural candidate from where

to extract viable sets. In another example, when the robot

is pursuing an intruder, a natural viable set is the compact

region in free space containing both the mobile robot and the

intruder, if it exists. Other bounding regions include hallways

and rooms, where surveillance missions are taking place.

Depending on the mission requirements, the viable sets can

be static or time-variant.

In general, a robot can execute an infinite number of viable

trajectories. However, not all of them correspond to navi-

gation behaviors useful to surveillance missions. Consider,

for example, the navigation behavior of patrolling a region

modeled by a static viable set, and assume that the initial

pose of the robot is viable. In this case, the trivial trajectory,

with q̇ = 0, is viable but is not suitable for the purpose

of the task. For this reason the robots are also required to

track (but not necessarily follow) a suitable velocity reference

q̇re f (t). Returning to the case of the patrolling behavior,

this reference can lead the robot to produce a spiral shaped

trajectory.

Definition 2 (Navigation Behavior): A navigation behav-

ior is the tuple B = (C, q̇re f , t0, t1) where C(t) is the viable

set, q̇re f (t) is the desired velocity reference and [t0, t1] is the

temporal duration of the behavior.

The trajectory that the robot must follow is determined by

projecting the desired velocity reference, q̇re f , in the set of

viable directions of motion V (.)

q̇ ∈V (q,U,C) (3)

where the set-valued map V (.) is such that any solution of the

(3) is invariant in the set C(t). That is, if initially q(t0)∈C(t0)
then all of the solutions of (3) remain inside C(t), t ∈ [t0, t1].

Proposition 1 (Viable Directions of Motion): Assume

that initially the robot pose is viable, q(t0) ∈ C(t0). Let

DC(t)(1,q) be the tangent derivative of C(t) at point q and

in the direction of increasing time. Then any solution of the

differential inclusion

q̇ ∈V (q,F,C) = F(q,U)∩DC(t)(1,q) (4)

is viable for t ∈ [t0, t1] if F(q,U)∩DC(t)(1,q) 6= /0.

Proof: Assume the existence of solutions of (4) for any

initial pose inside the viable set, q(t0) ∈C(t0). Let q̃(t) be a

non-viable solution of (4), with q̃(t0) ∈C(t0). Then, for this

non-viable solution, there is a time instant τ ∈ [t0, t1] where

it leaves the viable set. That is, at instant τ ∈ [t0, t1] a non-

viable direction of motion is selected, v ∈V (.). However, by

construction the tangent derivative contains only the viable

directions of motion and therefore v 6∈ DC(τ)(1, q̃). Thus

no solution of 4) can leave the viable set. The existence of

solutions for (4) is asserted as follows. The tangent derivative

is a map in the form D : grC → R
n, where grC is graph of

C(t). By construction, the output values are closed cones.

The set-valued map F(q,U) is Lipschitzean with compact

output values, hence closed. From Proposition 2.3 in [5] the

set-valued map V (.) = F(.)∩D(.) is upper semi-continuous

for any point (t,q) ∈ grC. Now we are in the conditions of

Theorem 5.4 in [5], and solutions to (4) exist if F(q,U)∩
DC(t)(1,q) 6= /0.

The expression of the set-valued map in (3) is thus

the intersection between the set-valued maps of the robot

kinematics (2) and the tangent derivative of C(t). The latter

can be understood as the set of directions of motion along

which the robot can travel without leaving C(t).

2463

Fig. 1. Geometric interpretation of the tangent derivative.

Figure 1 depicts a geometric interpretation of the tangent

derivative (check [5] for a formal definition). Let x, z and

y be different viable robot poses at t0 and let ∆ be an

arbitrarily small value. The tangent derivative is then the set

of directions of motion p ∈R
n such that the robot pose will

remain viable for a small displacement of the viable set. If

the robot pose is in the interior of the viable set, point x,

then any direction of motion can be selected by the robot.

However, if the robot pose is on the border of the viable set,

points y or z, only the directions which belong to the cone

containing C(t0 +∆) can be selected. Since the point z is in

the interior of C(t0 +∆), the cone degenerates to R
n.

When the viable set is static the tangent derivative is

simply the tangent cone of the set, [5]. Any direction of

motion is viable at the points in the interior of the set. For

the points in the border of the set, only the directions that

point to the interior of the set or are tangent to the border

of the set.

At each time instant, the output value of V (.) is then set

of directions of motion such that the robot pose will remain

viable. The direction of motion that the robot will follow is

determined by projecting q̇re f on to the output of V (.):

v(t) =







0, i f V (q,F,C) = /0

Pro j(q̇re f (t),V (q,F,C)), otherwise

(5)

where Pro j(.) is the euclidean projection of a point to a set

and v(t) is the selected direction of motion. The output values

of V (.) are convex and compact by construction, therefore

the direction v(t) is always uniquely defined for t ∈ [t0, t1].
Expression (5) reduces to the robot kinematics (2) if

the robot pose is in the interior of the viable set. This

is because any direction of motion is viable when q(t) ∈
intC(t), since the tangent derivative degenerates and is equal

to R
n. Although in general it is not trivial to compute the

tangent derivative, the main practical difficulty with this

approach occurs when the robot pose is close to or on the

border of the viable set. In practice, it is difficult to obtain

an accurate estimate of the robot pose and only an estimative

is available, affected by sensor noise. Thus, when it is close

to the border of the viable set, the pose estimate can quickly

switch between the viable and non-viable conditions. This

is undesirable because the robot will stop instead of moving

along the border of the viable set.

Since it is not possible to eliminate the noise and un-

certainty present in the estimation of the robot pose, this

problem will always be present. An alternative is to use the

robot body frame of reference because the pose in this frame

is always constant. Since the pose is known, the evaluation of

(5) is not susceptible to the pose estimation errors. However,

this is at the cost of limiting the range of behaviors to those

that can be expressed in the robot body frame. That is, both

q̇re f and C(t) must be expressed in the robot body frame.

Nevertheless, if the viable set is determined from the on-

board sensors of the robot, such as range devices, it is also

affected by noise and uncertainty. It is possible to verify

the convexity and Lipschitzean conditions by filtering and

smoothing the sensors inputs, but at the cost of additional

processing time and more conservative estimates for the

viable set.

III. SEQUENTIAL DECISION

The execution of a task by a mobile robot is understood

as the sequence of actions it makes with the purpose of

reaching a desired environment state. Only the tasks which

can be executed without knowledge of the state past history

are considered in this work. More complex tasks can be also

be accomplished by first decomposing them into smaller sub-

tasks of the type considered.

It is assumed that the robots know only the current state

of the environment and the actions they can perform in

that state. Furthermore, the actions of the robot produce a

change of the state in the environment. This is modeled

by a stochastic transition function, specific to each task and

robot. Since the surveillance environments are dynamic, the

robot must decide in real-time the action to perform given

the current state it perceives.

The execution of a task by a robot is thus modeled by

a Markov Decision Process (MDP), and a brief description

of this framework is presented. A more inclusive description

can be found in [1], for instance. An MDP is represented by

the tuple,

m = (S,A, p,ϕ) (6)

where S is the discrete, finite set of states of the environment,

A is a finite set of actions, p(.) is the state stochastic

transition function and ϕ(.) is the cost of transition between

states using a given action. The environment dynamics are

therefore modeled by the set of states S and the transition

function p(.), and include the interactions between the robots

and the environment.

The environment state is an abstract concept, meaningful

only in the specific context of each task. In general, the envi-

ronment states can be mapped directly onto the environment

features which the robot can perceive. For instance, the set

of states can correspond to a region on a map or the relative

position of an intruder with respect to the robot. Thus the

set of environment states and the transition function can be

understood as an instance of the information spaces described

by Lavalle in [8].

2464

The transition function p(.) is defined as the probability

of reaching state s′ given that the action a is executed in

state s, p : S ×A× S → [0, 1]. The uncertainties about the

environment dynamics are accounted for in this function.

The cost function ϕ(.) is defined as the immediate numerical

value collected by the environment because action a was

performed in state s, ϕ : S×A →R. The purpose of the task

is encoded in this function, since the robot must select the

sequence of actions which minimize the expected sum of the

cost of actions.

The actions of the robot are determined by a policy, π :

S×A → [0,1], that maps for each state s ∈ S the probability

of selecting each of the actions a ∈ A. Typically, the robot

will use the policy, π∗, that minimizes the expected sum

of the cost of the actions during the execution of the task.

Although the policy can be a function of time and the state

history, in this work only stationary and Markovian policies

are admissible.

IV. HYBRID TASK MODEL

In the MDP framework, the robots execute the tasks

using a standard ”sense-think-act” loop. First, the current

environment state is determined using the robot sensors. An

action is selected, and performed by the robot, based on the

policy it is using. The robot then waits for the environment

to change state and the procedure is repeated until either a

finite number of actions were performed or the goal state was

reached. In either cases, the robot is not allowed to perform

any more actions and further state changes are ignored.

The execution of an action, in this work, is identified with

the activation of a navigation behavior. That is, the desired

velocity of the robot is determined by selecting a navigation

behavior, Definition 2, and solving (5) with the correspond-

ing values for q̇re f and C(t). The viable set and the velocity

reference of the behavior are fixed and cannot change on-

line. For instance, the robots cannot activate a generic ”go

to” behavior, where the viable set and the velocity reference

are determined when it is activated. Instead, these parameters

are fixed at the start of the robot operation.

The robots can only activate navigation behaviors for

which their pose is viable. The reason is that if the pose is

not viable for a given behavior, the robot remains stopped.

Since the viable sets of the behaviors are time-variant, the set

of actions available at each will also be time-variant. This

is modeled in this work, by introducing uncertainty in the

distributions of the state transition functions.

Let the instants at which an action is selected be indexed

by the variable n. At each instant, the matrix with the

transition probabilities for any pair of states s,s′ ∈ S, under

action a ∈ A is Pa
n . The values in this matrix are known only

to lie inside confidence intervals. That is, each row of matrix

Pa
n is a subset of the probability simplex in R

|S|, where |S| is

the number of environment states. This uncertainty model for

the transition function p(.) of an MDP was introduced in [4],

and it can accommodate for different methods in estimating

the confidence intervals.

The execution of a task is then modeled as the sequential

activation of navigation behaviors until a desired environ-

ment state is observed. Since the navigation behaviors are

synthesized with DIs and the selection of the behaviors

with MDPs, the tasks are modeled by combining these two

frameworks.

Definition 3 (Task Hybrid Model): A model of a task is

the tuple (S, q, P, B, ϕ) where S is the set of environment

states, q ∈ R
n is the robot pose, P is the set of confidence

intervals for the transition matrices, B is the set of navigation

behaviors and ϕ is the state transition cost function.

The task model is hybrid as the state is composed by

both continuous time variables, q ∈ R
n, and discrete-time

variables, s∈ S (see for instance [7] on hybrid systems). It is a

well known problem in hybrid systems that not all sequences

of discrete state transitions result in stable continuous state

trajectories. In the case of the task hybrid model, some of the

policies can result in unstable trajectories of the robot pose.

Thus, in addition to minimizing the expected cost during the

execution of the task, the policy used by the robot must also

verify a stability constraint for the robot pose.

A. Stability of Optimal Policies

The stability analysis of hybrid systems in general, re-

quires that suitable Lyapunov functions are found for each

of the continuous dynamic modes of the system, [7]. In

the case of the task hybrid model, a Lyapunov function

must first be determined for each navigation behavior. Then,

a given discrete state trajectory is stable if the Lyapunov

functions of the respective sequence of navigation behaviors

are upper-bounded by positive definite and monotonously

decreasing function (see for instance the theorem on Weak

Stability in [5]). The main difficulty with this approach is

the computation of suitable Lyapunov functions for each

behavior. For this reason, a different approach is pursued in

this work. We begin with an intuitive definition of stability

for the hybrid task models. It is then show that this definition

is useful to show practical stability, [9], for the hybrid task

model without explicitly determining the Lyapunov function.

Since the navigation behaviors are synthesized by con-

straining the robot pose to a compact and convex region,

it is natural to specify a similar region for the execution

of the task. For instance, in a patrol task, the robot must

remain inside the, possibly non-convex but compact, region

containing the desired patrol route and check-points. In

search tasks, the robot is required to remain inside the region

suspected of containing intruders.

Definition 4 (Task Stability): Let T (t) be a set-valued

map with compact and connected output values containing

the start and goal poses. A trajectory of the robot pose, q(t)
with t ∈ [t0, t1], is task stable if and only if q(t) ∈ T (t) is

verified ∀t ∈ [t0, t1].

This notion of stability can be found in the concept of Foot

Rotation Indicator (FRI) [10], which is used to classify the

stability of the gaits of biped robots. The FRI is a function of

the robot dynamics and it is only required that the output FRI

2465

point does not leave the convex hull of the foot support area.

A given gait is stable, in the sense that the robot does not

fall, if the robot state variables and their derivatives verify a

convex constraint.

In the tasks for which the set-valued map T (t) is constant,

the task stability can be identified with traditional notion of

Lyapunov stability for dynamical systems.

Proposition 2 (Bounded Stability): Let π be a policy of

a task hybrid model. Then there is a compact and constant

set-valued map T (t) = T , where initially q(0) ∈ T , such that

the policy is task stable and also Lyapunov stable.

Proof: Let b be the largest bounding ball of all output

values of any of the viable sets C(t). By construction, this

bounding ball always exists and it has a finite radius because

there is only a finite number of behaviors. From Proposition

1 and (5), any trajectory of the robot pose q(t) is either

viable, that is constrained to a bounded set, or otherwise

constant since V (.) = /0 and in this case v(.) = 0. Then for

any ε > 0 such that ‖q(0)‖< ε there exists a finite δ (ε)> 0

such that ‖q(t)‖< δ (ε) for all t > 0, where δ (ε) is greater

than the radius of b. Thus, by definition all of the robot pose

trajectories q(t) are stable in the Lyapunov sense. The set T

is the bounding ball with radius δ (ε).

Thus, if the robot pose is only required to be constrained to

a constant region T , it can be assessed that all policies are

stable in the Lyapunov sense. However this result is not very

useful in practice since the region T can be arbitrarily large.

It is possible to study the Lyapunov stability of policies

for time-varying T (t) by imposing some conditions on this

set-valued map and also the navigation behaviors available

to the robots. Consider a collection of compact and convex

sets, each associated with a discrete environment state

T = {∀s ∈ S : Ts} (7)

The navigation behaviors available to the robots either con-

strain their pose to the set Ts ∈ T of an environment state

or allow the robots to move between the respective sets of

any pair of states. That is, for any pair of environment states

s, s′ ∈ S, the velocity reference of the behaviors are in the

form

q̇s,s′ =
T 0

s′
−T 0

s

t1 − t0
(8)

where T 0
s′
, T 0

s are the center points of the respective sets and

(t1 − t0) is the duration of the behavior. The viable set is the

Lipschitzean map Cs,s′(t) such that







Cs,s′(t0) = co{Ts, Ts′}

Cs,s′(t1) = bε(T
0

s′
)

(9)

where co{.} is the convex hull and b is a ball of radius ε
centered at point T 0

s′
. Thus the viable set can be understood

as a region initially containing both Ts and Ts′ , but shrinking

with time to a ball around the center point of Ts′ .

Proposition 3 (Behavior Practical Stability): Any viable

trajectory of the mobile robot generated by the navigation

behaviors in the form B = (Cs,s′(t), q̇s,s′ , t0, t1) verifies the

conditions for uniform practical stability, [9].

Proof: By construction, any viable trajectory of the

navigation behavior B = (Cs,s′(t), q̇s,s′ , t0, t1) will reach the

ball bε(T
0

s′
) at time t1. Since the viable trajectories are also

bounded, they verify the conditions for uniform practical

stability [9]. That is, for any initial viable robot pose q(t0) ∈
Cs,s′(t0), the corresponding viable trajectory is bounded and

is attracted to the ball bε(T
0

s′
).

This result agrees with the fact that the viable sets of the

navigation behaviors B = (Cs,s′(t), q̇s,s′ , t0, t1) were designed

to verify the conditions for practical stability. In practice,

the radius of the ball bε(T
0

s′
) is dependent on the robot

kinematics and the initial pose. Furthermore, the existence

of viable trajectories also depends on these two factors.

However, it is always possible to adjust the temporal duration

of the navigation behavior and the viable sets such that

V (q,F,Cs,s′) 6= /0 for any q ∈ Cs,s′ . That is, the robot is

only required to move at a slow enough pace. With these

navigation behaviors, it is possible to show that the robot

pose trajectory is uniformly practically stable.

Proposition 4 (Policy Practical Stability): Let sg ∈ S be

the goal environment state, s0 ∈ S the initial state and π∗

the optimal policy. The available navigation behaviors are in

the form B = (Cs,s′(t), q̇s,s′ , t0, t1). If sg can be reached from

s0, then the robot pose trajectory is uniformly practically

stable.

Proof: From Proposition 2 all trajectories of the robot

are bounded by a ball b containing the initial pose and the

center of the set Tsg . In order for the robot pose trajectory

to be uniformly practically stable, it must be bounded and

attracted to a ball of radius ε centered at T 0
sg

. By construction,

all of the viable sets are bounded and employing similar

arguments to those of Proposition 2, all viable trajectories are

bounded. Consider now a sequence of discrete states, pro-

duced by policy π∗, beginning at s0 and ending in sg. Using

Proposition 3, for any two consecutive discrete states si,si+1,

the robot pose begins in Tsi
and ends in a ball centered at

T 0
si+1

. Thus, for the last discrete state in the sequence before

the goal, the behavior B= (Csg−1,sg(t), q̇sg−1,sg , t0, t1) leads the

robot pose trajectory q(t) to a ball centered at T 0
sg

The use of the viable sets Cs′,s(t) allowed the stability

analysis of the robot pose trajectories without using Lya-

punov functions. This was possible because the sets where

designed such that the viable trajectories verify the properties

required for uniform practical stability. This was the motive

for proposing the concept of task stability. In general, the

objective of stability analysis is to find a Lyapunov function,

and a suitable controller, such that the dynamical system

verifies the stability conditions. With the notion of task

stability, instead the trajectories of the dynamical system are

constrained to those that verify the stability conditions.

2466

s’
Ts

T

Fig. 2. Behaviors viable set

V. APPLICATION EXAMPLE

The proposed approach is applied to a search and pursue

problem, where a mobile robot must search and intercept an

intruder present inside a bounded region. The boundaries of

the region are known, and it is subdivided in cells with a fixed

size. The cell which contains the intruder and the probability

distribution of obstacles over the cells are time-variant.

The formulation of the task hybrid model is divided in two

parts. The first is the MDP where the environment states are

the cells of the environment and the cells containing the robot

and the intruder. It is assumed that the optimal policy has

been computed and the reader is referred to [4] for details on

the available algorithms. A similar problem is also described

in [4], where a plane must avoid areas of turbulence. Their

probability distribution is also time-variant and known only

within some bounds.

The collection of sets T is composed by the cells of

the map. Since the elements of T are only required to be

compact and convex, any finite cover of the search region

could have been used instead. The navigation behaviors are

built using the cells of the map and their respective velocity

references are obtained without effort. The main difficulty

is computing the viable sets and their tangent derivatives,

necessary for the evaluation of (5).

The convex sets are assumed to be described as the finite

intersection of the hyperplanes represented in matricial form,

{x ∈R
n : Ax ≤ h}. The normal vector to each hyperplane is

a row of matrix A and the respective element of vector h is

the dot product of the normal vector with any point on the

hyperplane, ai · x−hi = 0.

This is a very convenient representation because the in-

tersection of two convex sets is simply the concatenation

of the respective matrices and vectors. The hyperplanes can

also be moved along the direction of the normal vector, by

scaling or adding the respective element of h with a positive

value. Thus it is possible to generate the outputs of the set-

valued map Cs,s′(t) required by Proposition 3. An example

is depicted in Figure 2, where the boundaries of the cells

have dashed lines, the hyperplanes have solid lines and their

normal vectors are pointing outwards. When the robot is in

the same cell as the intruder, a similar viable set is used for

the interception behavior.

The tangent derivative is the entire space R
n if the robot is

not on the boundary of Cs,s′(t). Otherwise it is expressed also

as the intersection of hyperplanes in the form {x∈R
n : Atx≤

ht}. The rows of At are the normal vectors of the hyperplanes

in the viable set which the robot pose is touching, ai ·x−hi =

V
max

W
max

-W
max

-V
min

x

Fig. 3. Kinematics inclusion for a unicycle drive

Fig. 4. Occupancy grid pap of the environment

0. The components of vector ht are (−ai ·η)∆t, where ai is

the normal vector of the hyperplane, η the velocity of the

viable set and ∆t is the time between consecutive evaluations.

Thus, the tangent derivative imposes lower bounds on the

velocity of the robot when it is on the boundary of the viable

set.

Finally, the differential inclusion that models the kine-

matics of the robots is also expressed as the intersection of

hyperplanes. The polyhedron that models the kinematics in-

clusion for the P3-AT unicycle robot is represented in Figure

3, in the robot body frame. The maximal linear and angulat

velocities are Wmax and Vmax respectively, while Vmin is the

maximum negative linear velocity. Since robots with unicycle

drives cannot move sideways, the linear velocity along y is

always constrained to be zero and is not represented in the

figure. The polyhedron encodes the natural constraints of

bounded control inputs on a unicycle robot. For instance,

if both motors rotate in the same direction, at the maximal

input voltage, then the linear velocity is maximal and the

angular velocity is constrained to zero.

A. Navigation Behavior

A preliminary experiment was conducted on a rectangular

environment to evaluate the proposed approach for a simple

navigation behavior. A Pioneer P3-AT robot is placed inside

a bounded rectangular space, with approximately 6 meters

meters by 11 meters. The Player/Stage software framework,

[11], was used to build the occupancy grid map with a reso-

lution of 0.1m, represented in Figure 4. The pose estimation

was obtained using the particle filter method available from

the same software framework. The purpose of the experiment

is to evaluate the performance of a navigation behavior

together with a standard approach for estimating the pose of

the robot under almost ideal conditions, a static and known

environment without obstacles.

The two viable sets for the navigation behavior are rep-

resented in Figure 5, with the bottom and left hyperplane

2467

-4

-3

-2

-1

0

1

-4 -3 -2 -1 0 1

Y
 [

m
]

X [m]

Fig. 5. Navigation behavior results

of the larger viable square moving towards the smaller one

at the rate of 0.1m/s, during 40 seconds. The robot initial

pose is (−2.8,−3.7,−0.2), represented in the figure by a

circle at the left bottom of the image. The desired velocities,

expressed in the robot body frame, are respectively 0.25m/s

and 0.05rad/s. Since the pose estimation is not accurate, the

pose is assumed to be touching an hyperplane if it is at less

than 0.2m away, which is twice the resolution of the grid

map.

The robot moves, initially in the direction of the bottom

hyperplane which is simultaneously moving upwards. When

it is closer than 20cm, the bottom hyperplane imposes a

constraint on the motion of the robot, forcing it to move

tangent to the hyperplane with a smaller linear velocity.

Since it has also an angular velocity, eventually it is oriented

towards the right hyperplane and the constraint of the bottom

hyperplane is no longer active. The robot then moves freely

until being close enough to the right hyperplane for the

constraint to become active. Again it will slowdown and

rotate until the motion constraint becomes inactive, then

moving towards the interior of the smaller viable set.

Since a reasonable degree of accuracy is required in the

pose estimative, a large amount of particles was used. This

introduced a non-negligible time delay in the estimative that

cause a sluggish reaction to when constraints became active.

Another difficulty is that pose estimative exhibited abrupt

changes in the values because of the estimation variance.

This forced the use of a tolerance margin to the proximity

with the hyperplanes and also limited their velocity.

This experiment suggests that the features of the pose

estimation methods have a strong influence on the naviga-

tion behaviors. A possible solution is to employ multiple

viable sets for the same navigation behavior and select the

one where robot is further away from the border. Another

possible approach is to use the robot body frame, since the

pose is known and constant in this case. This is the future

direction of research for this work.

VI. CONCLUSIONS

A behavioral approach for the synthesis of controllers

for mobile robots was presented in this work. The tasks

the robots must execute are modeled with two different

frameworks, MDPs and DIs. In short, the synthesis of

navigation is accomplished with DIs while MDPs are used to

plan the sequence of behaviors such that the task goals are

accomplished. The resulting models are hybrid, containing

both continuous and discrete time variables. The concept

of task stability was proposed, in which the robot pose is

task stable if it is always constrained to a compact and

connected time-variant region. The region can be understood

as generalization of the viable sets used to synthesize nav-

igation behaviors, without the convexity and Lipschitzean

requirements .

The stability of the robot pose trajectories, during the

execution of a task, was studied with the help of the task

stability concept. It was shown that for any policy of the

task model, the robot pose trajectories are bounded and

stable in the Lyapunov sense. Also, by properly designing

the viable sets of the navigation behaviors it is possible to

show uniform practical stability of the robot pose trajectories.

The strategy is to determine the collection of sets that is

a finite cover of the time variant region where task takes

place. The collection is then used to build the viable sets,

and the velocity references, for each navigation behavior.

The stability analysis was accomplished without the need

to explicitly compute suitable Lyapunov functions for each

task hybrid model. This was possible because the viable sets

for the synthesis of navigation behaviors can be designed

according to the desired stability requirements.

A fundamental requirement of the behavior synthesis

method is the existence of viable trajectories for each navi-

gation behavior. That is, for any behavior there must always

exist at least one viable direction of motion. It can thus be

understood as a controllability requirement for the design of

the viable set.

REFERENCES

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:

An Introduction (Adaptive Computation and Machine Learning). The
MIT Press, March 1998.

[2] J. R. Hollerman and W. Schultz. Dopamine neurons report an
error in the temporal prediction of reward during learning. Nature

neuroscience, 1(4):304–309, August 1998.
[3] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial

Intelligence, 101:99–134, 1998.
[4] Arnab Nilim and Laurent El Ghaoui. Robust Control of Markov

Decision Processes with Uncertain Transition Matrices. Operations

Research, 53(5):780–798, 2005.
[5] Georgi Smirnov. Introduction to the Theory of Differential Inclusions

(Graduate Studies in Mathematics). American Mathematical Society,
1st edition, 2001.

[6] N. Goncalves and J. Sequeira. Modeling robot behaviors with hybrid
automata. In 8th Portuguese Conference on Automatic Control, 2008.

Controlo 2008, pages 706–711, July 2008.
[7] J. Lygeros. An overview of research areas in hybrid control. In

Decision and Control, 2005 and 2005 European Control Conference.

CDC-ECC ’05. 44th IEEE Conference on, pages 5600–5605, 2005.
[8] Steven M. Lavalle. Planning Algorithms. Cambridge University Press,

May 2006.
[9] Antoine Chaillet and Antonio Lorı́a. Uniform semiglobal practical

asymptotic stability for non-autonomous cascaded systems and appli-
cations. Automatica, 44(2):337 – 347, 2008.

[10] Ambarish Goswami. Foot rotation indicator (fri) point: A new gait
planning tool to evaluate postural stability of biped robots. In IEEE

International Conference on Robotics and Automation, pages 47–52,
1999.

[11] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The
player/stage project: Tools for multi-robot and distributed sensor
systems. In ICAR 2003, pages 317–323, Coimbra, Portugal, June 2003.

2468

