
Threat-aware Path Planning in Uncertain Urban Environments

Georges S. Aoude, Brandon D. Luders, Daniel S. Levine, and Jonathan P. How

Abstract— This paper considers the path planning problem
for an autonomous vehicle in an urban environment populated
with static obstacles and moving vehicles with uncertain intents.
We propose a novel threat assessment module, consisting of
an intention predictor and a threat assessor, which augments
the host vehicle’s path planner with a real-time threat value
representing the risks posed by the estimated intentions of
other vehicles. This new threat-aware planning approach is
applied to the CL-RRT path planning framework, used by the
MIT team in the 2007 DARPA Grand Challenge. The strengths
of this approach are demonstrated through simulation and
experiments performed in the RAVEN testbed facilities.

I. INTRODUCTION

Whether driving on highways or navigating in the mid-
dle of a battlefield, intelligent vehicles must be able to
quickly and robustly compute motion plans in very uncertain
worlds. The sources of this uncertainty may be internal, i.e.,
incomplete or imperfect knowledge of the vehicle model,
or external, i.e., incomplete or imperfect knowledge of the
environment, and may be present either in sensing or in
predictability [1]. This paper addresses problems involving
uncertainty in predictability, and in particular the intentions
of the other vehicles within our vehicle’s world.

To make meaningful predictions of other vehicles’ inten-
tions, a smart vehicle should be able to gather information
from the environment to build models approximating those
intentions. It is not safe to assume that all drivers obey all
“rules of the road,” as many collisions occur when this is
not the case, but classifying all other vehicles as hostile
would be overly conservative. The information gathered by
our vehicle might include onboard camera images, radar-
based measurements of surrounding objects, or messages
intercepted or shared on some communication channels.

The vehicle planner must be able to address the uncertainty
in each vehicle’s future state and actions, or at a higher level,
the behavior / intent governing those actions. Existing path
planners typically rely on a priori information to generate
trajectories, applying reactive maneuvers or replanning as
needed to correct the path online and maintain feasibility.
However, uncertainty in object predictability is typically not
considered explicitly in the global path planner. Instead,

G. S. Aoude, Ph. D. Candidate, Dept. of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA, gaoude@mit.edu

B. D. Luders, Ph. D. Candidate, Dept. of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA, luders@mit.edu

D. S. Levine, Ph. D. Candidate, Dept. of Aeronautics and Astronautics,
MIT, Cambridge, MA 02139, USA, denu@mit.edu

J. P. How, Richard C. Maclaurin Professor of Aeronautics and Astronau-
tics, Dept. of Aeronautics and Astronautics, MIT, Cambridge, MA 02139,
USA, jhow@mit.edu

moving vehicles are often assumed to follow known trajecto-
ries or policies, which the planner reacts to locally. While full
probabilistic representation of the environment is possible,
such as with POMDPs [2], [3], the corresponding solution
techniques are computationally intractible for real-time path
planning problems of even modest complexity or dimen-
sion. Recently, sampling-based techniques such as rapidly-
exploring random trees (RRTs) [4] have been extended to
incorporate motion patterns for moving obstacles learned of-
fline via Gaussian processes [5]. However, these patterns may
not be sufficient to capture all possible unexpected behaviors,
which are usually the main reason behind collisions.

The main motivation of this work is the set of challenges
faced by autonomous vehicles in the 2007 DARPA Grand
Challenge (DGC) [6], which involved navigating an outdoor
urban environment in the presence of other vehicles while
obeying all traffic regulations. One of the main challenges
of this race was negotiating traffic intersections, where sev-
eral vehicles were involved in collisions or near-collisions.
Several explanations have been offered for these occurrences,
but the one that motivated this work is the inability of the
autonomous vehicles to anticipate the intent of other vehicles
[7]. With some knowledge of those intentions, the motion
planner could incorporate the risk posed by those vehicles
when considering potential trajectories, improving safety.

This paper introduces a new framework for autonomous
vehicles which enables path planning algorithms to explicitly
incorporate both obstacle uncertainty and the corresponding
risk posed to the vehicle. A threat assessment module,
consisting of an intention predictor and a threat assessor, aug-
ments the host vehicle’s path planner with a real-time threat
value for each potential trajectory, reflecting the risks posed
by the estimated intentions of other vehicles. The strengths
of this approach are demonstrated through simulation and
experiments performed in the MIT RAVEN facility [8].

II. PROBLEM STATEMENT

Consider the autonomous system denoted by HV ,

ṡ(t) = f(s(t), u(t), t), (1)

where s is the state and u is the control input; we have that
s is constrained to the state space S , s ∈ S , while u is
contstrained to the control space U , u ∈ U . Our objective
for safe motion planning is to minimize some desired cost
functional over the duration of the motion,

L = Ψ(s(tf), tf) +

∫ tf

t0

Γ(s(t), u(t), t)dt, (2)

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 6058

subject to the vector of component-wise constraints

C(s(t), u(t), t) ≤ 0. (3)

Of the many constraints C might include, we are interested
in those necessitating collision avoidance with N other
vehicles, denoted here as OVi, i = 1 . . . N . These can
typically be written in the form

min
t0≤t≤tf

‖ps(t)− pri(t)‖ > ε ∀i = 1 . . . N, (4)

where ri(t) is the state of vehicle i at time t, ps(t) is the
position vector corresponding to s(t), pri(t) is the position
vector corresponding to ri(t), ε is the minimum allowed
distance between the HV and the OVs, and tf = t0 + Th
where Th is the time horizon of interest. We say that HV is
in collision with OVi if the tuple (ps(t), pri(t)) enters the
closed “collision” set Ωi,

Ωi = {ps(t) | ‖ps(t)− pri(t)‖ ≤ ε}. (5)

In uncertain and/or non-cooperative environments, ri(t)
is typically not available for the HV . For HV to maintain
guaranteed safety, some mechanism must be able to identify
the input sequence u(t) which yields a feasible path for all
possible realizations of ri(t), i = 1 . . . N . In the event that
no such path exists, the same mechanism should select u(t)
in order to minimize some threat level. Here we define the
threat level Ti for vehicle i as inversely proportional to tci ,
the earliest possible time of collision between HV and OVi:

Ti =
1

tci
, tci = inf{t | (ps(t), pri(t)) ∈ Ωi}. (6)

Equation (4) thus cannot typically be guaranteed at all
times, so this constraint is instead converted to a penalty in
the objective function. We define the new cost functional

J = L+ w · sup
i∈1...N

Ti, (7)

where L is defined in (2), Ti is the threat level defined in
(6), and w is a user-selected weighting factor representing
the tradeoff between safety and optimality. The constraints
(4) are then removed from (3), yielding

C̄(s(t), u(t), t) ≤ 0. (8)

Problem Definition (Threat-Aware Dynamic Motion
Planning): Given a state space S, a control space U , an
initial state s0 ∈ S and a final state sf ∈ S , compute the
control input sequence u(t), t ∈ [0, tf], tf ∈ [0,∞) that
minimizes (7) subject to the constraints (1) and (8).

III. THREAT-AWARE PATH PLANNING

Several global path planners, including sampling-based
planners, use the philosophy that collision detection should
be done in a “black box” which decouples the host vehicle’s
path planning from any specific geometric or kinematic ob-
stacle models [9]. This paper proposes that threat assessment
should be done in a similar “black box” framework, provid-
ing planners with a quantitative threat metric to identify safer
paths during trajectory generation. This threat assessment
considers the unknown intentions of moving OVs, which
may present a collision risk for the HV .

Fig. 1. High-level architecture of the TAM. The inputs of the TAM are
the measurement history z of the OVs and the candidate control sequence
u generated by the HV planner. The IP computes the intention vector b
for each OV , used by the TA to identify the threat level T .

A. High-level TAM Architecture

The proposed architecture features a threat assessment
module (TAM, Figure 1), consisting of an intention predictor
(IP) and a threat assessor (TA). The IP uses observations
taken by the HV of the OVs to make predictions of their
intentions. Instead of using low-level reasoning to predict
future trajectories, the IP uses higher-level logic and learning
to provide the planner with predicted future intentions, key
to earlier and more accurate prediction of future collisions.
The TA then converts this prediction into a set of potential
paths for the OV , and returns a threat value that a candidate
trajectory u(t) (or equivalently, s(t)), t ∈ [t0, tf] for HV in-
curs in the vicinity of these potential paths. As a result, the
planner generates paths that are threat-aware by construction,
thus improving the vehicle’s reactive behavior.

Several distinct representations have been proposed to
model intentions for humans and autonomous systems; here
we adopt the Ecological Recogniser architecture introduced
by [10]. Using the language of [10], the HV is the recog-
nising agent, while each OV is an intending agent. We
follow the abstract definition that these intentions are directly
responsible for the actions executed by the intending agents.
Intentions may be desired plans (e.g., following a straight
path) or other high level intentional states (e.g., not following
the rules of the road). Let the M -vector bi denote the
intention vector of OVi; the jth entry bji corresponds to
the belief OVi is operating under the jth intention. The
cost functional (7) is then modified to embed the intention
information,

J = L+ w · sup
i

∑
j

bjiTij , (9)

where Tij is the threat value of the trajectories followed
by OVi as a realization of its jth intention; note that i ∈
{1 . . . N} and j ∈ {1 . . .M}.

B. Agent Model

Each agent is modeled using the standard bicycle model

ẋ = v cos (θ), ẏ = v sin (θ),

θ̇ =
v

L
tan (δ), v̇ = a,

(10)

where (x, y) is the rear axle position, v is the forward speed,
θ is the heading, L is the wheelbase, a is the forward
acceleration, and δ is the steering angle (positive counter-
clockwise). The state of the vehicle is s = (x, y, θ, v) ∈ S,
while the input is u = (δ, a) ∈ U , including the constraints

6059

amin ≤ a ≤ amax and |δ| ≤ δmax. Each admissible control
sequence u : [0, tf] 7→ U is piecewise constant.

In the work that follows, we make several assumptions to
constrain the focus on the uncertainty in the prediction of
obstacles or other agents. We assume that the current states
and models of the HV and the OVs are perfectly known by
the HV within a detection radius (Section V-C), and that all
sensor measurements are noise-free. Additionally, the path
planner is provided with a complete map of the environment
a priori, excluding any dynamic obstacles or agents.

IV. DEVELOPED ALGORITHMS

This section describes the implementation of the IP and TA
components of the TAM and the resulting threat-aware path
planner, using closed-loop rapidly exploring random trees
(CL-RRT), into which they are embedded.

A. Intention Predictor (IP)
The Ecological Recognizer architecture [10] that the IP

adopts has two key components: a pattern matcher and a
reasoning module. The pattern matcher is a classifier that
is trained offline to recognise different possible intentions
by observing agent states, and operates online by giving
a continuous estimate of the intentions over time. The
reasoning module filters these estimates of intentions, along
with knowledge of previous encounters with the agent, to
give a final estimate of the intention vector b.

Here we are interested in estimating the intentions of
human vehicles in urban environments, specifically near
intersections. This Ecological Recognizer implementation is
based on an approach previously developed and demon-
strated by the authors in simulation [11] for classifying
agent intentions using support vector machines (SVM) and
Bayesian filtering (BF). The human driver intention classifi-
cation problem is very complex, due to the various nuances
of human behaviors. SVM is suitable for the IP because it has
been shown to be both robust and efficient for classification
problems [12], such as lane-change detection [13].

The IP design consists of an SVM combined with a
Bayesian filter that uses the SVM outputs over a specific
time period to compute the intention vector b. SVM-BF also
includes a threshold detector, such that the final vector b is
a unit basis vector specifying the most likely intention ac-
cording to the threshold value [11]. Based on experimenting
with different combinations of kernel functions and features,
the best results were obtained using the Gaussian radial basis
function and combining the following three features: 1) the
relative distance between the OVi and the entrance of the
intersection it is approaching, 2) the speed of the OVi, and 3)
the longitudinal acceleration of the OVi. Note that the SVM-
BF algorithm is only activated when the distance between the
OVi and the HV is within some detection radius, and both
vehicles are approaching the same intersection.

B. Threat Assessor (TA)
The threat-aware CL-RRT algorithm (Section IV-C) in-

corporates the computation of a threat value for each candi-
date trajectory it generates, given knowledge of the current

Algorithm 1 Intention-based Threat Assessment
1: Ti ← 0 ∀i
2: for each agent OVi do
3: Reach-Set ← Compute-Intention-Reachability (bi)
4: for each intention ej with probability bji do
5: Ti ← Ti + bji · Compute-Threat(Reach-Set,OVi, ej)
6: end for
7: end for
8: return maxi=1...N Ti

Algorithm 2 Compute-Threat (Reach-Set, OV , e)
1: for each path pathk in Reach-Set ending in region of intention e do
2: tk ← compute earliest time of collision of pathk with HV within

time horizon Th

3: Tk ← 1
tk

4: end for
5: return maxk Tk

OV states. We propose an approach, detailed in Algo-
rithm 1, that combines a fast sampling-based reachability
method with intention prediction information provided by
the IP (Section IV-A) to efficiently estimate the threat level.
The threat assessor has a finite time horizon, limiting the
HV lookahead horizon for possible future OV paths, in
order to focus computation on imminent threats. The choice
of horizon length is domain-specific, but should allow the
HV sufficient time to react in a dynamic environment.

The Threat-Assessor algorithm (Algorithm 1) begins by
calling the Compute-Intention-Reachability (CIR) subrou-
tine, discussed below, to create the reachability set for each
OVi. The resulting sets are biased based on the perceived
intentions of the OVs. For each intention ej of each OVi,
Algorithm 2 is called to compute the threat incurred by the
HV trajectory in the region reached by the paths correspond-
ing to ej . Note that the earliest time to collision is converted
into a threat value using (6) (line 3 of Algorithm 2). This
value is weighted by the probability bji provided by the IP.
Finally, the threat is computed as the maximum value of all
threats created by each OVi (line 8 of Algorithm 1).

The CIR algorithm (detailed in [14]) is also based on
the CL-RRT algorithm, but uses the resulting tree only
for simulation of the different possible paths of a OV
(which is not controlled by the operator). No best path is
selected, but rather the entire tree is biased towards regions
corresponding to the learned intentions of the OVs. This
biasing is achieved by devoting a portion of the tree samples
to regions corresponding to the intention ej , with remaining
samples being taken uniformly throughout the environment.
The algorithm also includes time-parametrization extensions
(introduced in [15]) that tailor the RRT algorithm to the
efficient computation of intented paths by the OVs.

C. Threat-Aware CL-RRT Planner

In this section, we present a global threat-aware planner
which builds on the CL-RRT implementation developed for
MIT’s Talos vehicle in the 2007 DGC competition [16]. The
CL-RRT algorithm extends the rapidly-exploring random tree
(RRT) algorithm [4], [9], which grows a tree of dynamically

6060

feasible trajectories by randomly sampling points toward
which the tree is extended. The CL-RRT algorithm adds a
path-tracking control loop in the vehicle prediction model,
such that sampling takes place in the reference input space
rather than in the vehicle input space. The algorithm thus
maintains the exploration bias of traditional RRT algo-
rithms, while allowing for generation of smooth trajectories
more efficiently. Furthermore, because the RRT algorithm is
sampling-based, the quality of the planning tree and resulting
paths are scalable with the available computational resources.
Please refer to [16] for a detailed description of the CL-RRT
planner, and [6] for an explanation of the planner integration
in the Talos system architecture.

The proposed threat-aware planner is shown in Algo-
rithm 3. The main addition is the threat computation in lines
6 and 10. This computation calls Algorithm 1 to efficiently
calculate the threat of colliding with the possible paths of
the other OVs (Section IV-B). Whereas the original CL-RRT
heuristic identifies nearest nodes based on path duration (in
the Dubins sense), we extend this heuristic to also include the
threat value (line 6). In line 10, the threat along the edge to a
new node is computed and stored at the new node. The best
path is then chosen in accordance with the cost defined in
(9) (line 15 of Algorithm 3), which includes both the total
time to the goal and the threat along the trajectory. These
modifications embed the threat computation in the CL-RRT
trajectory generation, leading to the selection of safer paths
which are threat-aware by construction.

Another related addition is the use of threat propagation
logic. First, the root node is initialized to have zero threat.
When adding a new node, if the path from the selected node
(initially the root) to the new node incurs a non-zero threat
(computed using Algorithm 1), then an intermediate node is
created at the location of the earliest collision, and both the
intermediate node and the new node inherit the computed
threat value. Note that if a node with a non-zero threat value
is chosen to be expanded, the new node inherits that value
and no new threat computation is required. The rationale
is that the threat value does not decrease along an edge
connecting a node with non-zero threat to its child (recall
(6)). A useful property of the threat heuristic is that it is
admissible: it underestimates the “true” cost. This is due
to the sampling-based nature of the CIR algorithm, which
underapproximates the earliest time of collision, as well as
the assumption that children nodes inherit the threat value
of their parent if the value is non-zero. Before choosing a
best path, the threat values of the tree are updated from the
bottom up (i.e., starting from the leafs) by reassigning each
parent’s threat value to be the minimum of the threat of its
children, and so on, until the root is reached.

V. EXPERIMENTAL RESULTS

This section presents experimental results which validate
the effectiveness of the threat-aware CL-RRT algorithm,
augmented with the TAM, in enabling an autonomous vehicle
to successfully identify and avoid an errant human-driven
vehicle under real-world uncertainty. These results focus on

Algorithm 3 Threat-Aware CL-RRT
1: repeat
2: Measure current vehicle states and environment
3: Propagate states by computation time limit
4: repeat
5: Generate sample for the input to controller
6: Sort nodes in tree using threat and time heuristics
7: for each sorted node do
8: Form controller input by drawing line from node to sample,

then propagate
9: if propagated portion is collision free then

10: Compute threat of propagated portion (Algorithm 2)
11: Add sample to tree break
12: end if
13: end for
14: until time limit is reached
15: Choose best path and repropagate from current states
16: if repropagated trajectory is infeasible then
17: Remove infeasible portion from tree and go to line 15
18: end if
19: Send best path to controller
20: until vehicle reaches target

the challenging task of avoiding collisions at intersections,
in particular with errant drivers who do not observe a stop
sign and enter the intersection out of turn.

First, a brief overview of the experimental infrastruc-
ture is provided. Next, we present a subset of hardware
results showing the interaction between an errant human
driver and an autonomous vehicle at intersections; additional
experiments can be viewed in the video attachment or at
http://acl.mit.edu/IROS10TAM.mp4. Further ex-
periments and infrastructure details are given in [14].

A. Hardware

Hardware demonstrations were performed in the Real-time
indoor Autonomous Vehicle test ENvironment (RAVEN) [8],
a testbed which uses motion-capture cameras to provide
high-fidelity vehicle state data. We have constructed a repre-
sentative road network within the RAVEN testbed, including
many intersection types and road signs, to emulate a realistic
driving environment (Figure 2).

All vehicles in this experiment use the iRobot Create
platform [17], a skid-steered vehicle, modified with a soft-
ware wrapper to emulate traditional automotive steering (10).
Each experiment consists of 1 or 2 autonomous vehicles
and 1 human-driven vehicle. The autonomous vehicles are
controlled through an off-board wrapper which receives way-
points from the threat-aware CL-RRT software (Section V-
B) and steers using pure pursuit [18]. The human-driven
vehicle is controlled through a wireless steering wheel [19],
including acceleration and brake pedals. A human driver may
steer their vehicle through simple visual inspection, or via
an onboard dual-camera (Figure 2) interface which emulates
the first-person driving perspective (Figure 3). This interface
includes a real-time “GPS” display, which guides the driver
through an intended sequence of waypoints (Section V-B).

B. Software

The planning software consists of two primary modules,
discussed below. The navigator module accesses an abstract

6061

Fig. 2. The road network used for experiments. In this image, both a
human-driven vehicle (front-right) and autonomous vehicle (back-left) are
approaching a four-way, stop-sign intersection.

Fig. 3. Human interface for the human-driven vehicle, including real-time
navigation and visual feedback.

representation of the road network and selects sequences
of waypoints, yielding the current goal location for the
vehicle. The CL-RRT motion planning module then uses
local knowledge of the environment (e.g., obstacles, terrain,
and other agents), including the TAM, to plan dynamically
feasible paths to this goal.

The navigator module leverages a sparse representation
of the RAVEN road network (Figure 4), constructed using
the Route Network Data File (RNDF) specification from the
2007 DGC [20]. As the RNDF represents the traversability
graph, an A∗ implementation is used to select the shortest-
distance waypoint path in the graph between the current
and desired waypoints, respecting lane directionality con-
straints [6]. As the vehicle (whether human or autonomous)
approaches each intermediate or desired waypoint, the navi-
gator selects the next waypoint on the list as the new target.
An arbitrary list of desired waypoints is provided for each
vehicle; the ultimate objective is to observe the vehicles’
interactions at intersections.

The threat-aware CL-RRT algorithm (Algorithm 3) is
implemented as an offboard, multi-threaded Java application,
designed to support arbitrary vehicle and environment mod-
els in both simulation and hardware. The CIR algorithm [14]
is embedded in this offboard planner as a separate thread
which runs asynchronously for each OV . Over fixed time
intervals (2s), the algorithm grows a new reachability tree
based on the current OV position in RAVEN. At the end
of each time interval, the reachability tree is relayed to the
host RRT thread, which then relays it to the TA algorithm
(Section IV-B). Figure 4 shows the display representation
generated by the application.

Fig. 4. Display view of the RAVEN road network for the host vehicle (blue
chevron, path history in blue). The host uses the CL-RRT tree (brown edges,
green nodes) to identify the best known path (red edges, black nodes) to
the current waypoint (purple). This path should avoid all obstacles (black
boxes), the human-driven vehicle (green circled chevron) and, if active,
their reachability tree (yellow edges, orange nodes). The other autonomous
vehicle is represented as the car-sized rectangle at bottom-center.

C. Results

The results below demonstrate the threat-aware closed-
loop RRT algorithm in the context of stopping at intersec-
tions. In each experiment, one human-driven vehicle and
one or two autonomous vehicles are navigating through the
RAVEN road network simultaneously. The human driver may
choose to not stop at an intersection and instead enter it out of
turn, violating the rules of the road. The human driver’s intent
is classified as either good or errant, based on whether or
not they correctly approach the intersections. The objective
of the autonomous vehicle(s) is then to not only avoid all
collisions, but also minimize the risk of collision with an
errant human driver in intersections.

The human-driven vehicle is perceived to be a threat
if three conditions are satisfied: (1) the IP module has
classified the drivers’ behavior as errant; (2) the errant driver
is within the host vehicle’s detection radius (Figure 4); and
(3) both vehicles are approaching the same intersection. In
this case, the autonomous vehicle is to avoid that vehicle’s
reachability tree constructed by the CIR algorithm; otherwise
the reachability tree is not an active constraint.

Over the course of this experiment set, 20 intersection
encounters occurred: 10 with one autonomous vehicle in the
network, and 10 with two autonomous vehicles in the world.
Of these encounters, only one resulted in a collision; in this
case, the human-driven vehicle aggressively approached the
autonomous vehicle, which had already stopped to avoid it.

Figure 5 demonstrates two particular scenarios in which
the human-driven vehicle interacts with an autonomous ve-
hicle at an intersection. In Scenario 1 (Figure 5(a)-(c)), both
vehicles are attempting to enter the same lane, with the
human-driven vehicle approaching from the left and making
a right turn, and the autonomous vehicle approaching from
the right and making a left turn. The autonomous vehicle
arrives first and, observing (through the IP) that the human
driver is decelerating, plans a path through the intersection
(Figure 5(a)). After entering the intersection, however, the
IP module detects the human driver accelerating, as if it will
enter the intersection out of turn. The IP module classifies

6062

(a) Scenario 1, Part 1 (b) Scenario 1, Part 2 (c) Scenario 1, Part 3 (d) Scenario 2

Fig. 5. Zoomed-in display view of two interactions between an autonomous vehicle (detection radius in black) and a human-driven vehicle in an
intersection. Figures (a)-(c) show snapshots of a scenario in which the human-driven vehicle is classified as errant; in Figure (d), the human-driven vehicle
is classified as good. Note that the reachability tree darkens if the driver is perceived to be a threat.

this behavior as errant, and thus the TA module seeks
to minimize the corresponding threat level T . Though the
autonomous vehicle cannot avoid the reachability tree’s outer
reaches, it does avoid the inner nodes (where the time to
collision is lower) by quickly coming to a stop (Figure 5(b)).
Once the errant driver is no longer a threat, the autonomous
agent finishes crossing the intersection (Figure 5(c)).

In Scenario 2 (Figure 5(d)), the autonomous driver is
making a left turn, while the human-driven vehicle is cross-
ing the intersection (from left to right in the figure). Here,
the human-driven vehicle has correctly come to a stop at
the intersection, and the IP module has classified it as a
good driver. Unlike Figure 5(b), the autonomous driver then
proceeds through the intersection, perceiving that the human
driver is likely to obey the rules.

VI. CONCLUSION

This paper has introduced a new approach for path plan-
ning in urban environments subject to uncertainty in the
intentions of other vehicles. This work combines an intention
predictor (IP) and a threat assessor (TA) to create a threat
assessment module (TAM), embeddable in path planning
algorithms, which runs efficiently and is suitable for real-
time implementation. The IP uses high-level logic based on
the Ecological Recogniser, while the TA uses sampling-based
techniques to efficiently compute reachable future paths for
surrounding vehicles. Using TAM applied to the CL-RRT
planner, an autonomous vehicle can successfully identify and
avoid an errant driver in realistic intersection scenarios, as
demonstrated through hardware results.

ACKNOWLEDGEMENTS

Research funded by Ford Motor Company and Le Fonds
Québécois de la Recherche sur la Nature et les Technologies
(FQRNT) Graduate Award. The authors would like to thank
Dr. Tom Pilutti, Kenneth Lee, Vishnu Desaraju, Alejandro
Dos Reis, and Kevin Kleinguetl for their contributions to
this research effort.

REFERENCES

[1] S. M. Lavalle and R. Sharma, “On motion planning in changing,
partially-predictable environments,” International Journal of Robotics
Research, vol. 16, pp. 775–805, 1997.

[2] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, D. Smith,
and R. Washington, “Planning under continuous time and resource
uncertainty: A challenge for AI,” in AIPS Workshop on Planning for
Temporal Domains. Citeseer, 2002, pp. 91–97.

[3] A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte, “Para-
metric POMDPs for planning in continuous state spaces,” Robotics and
Autonomous Systems, vol. 54, no. 11, pp. 887–897, 2006.

[4] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Iowa State University, Tech. Rep. 98-11, October 1998.

[5] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, “Probabilistic nav-
igation in dynamic environment using rapidly-exploring random trees
and gaussian processes,” in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, 2008, pp. 1056–1062.

[6] J. Leonard, J. How, S. Teller, et al., “A Perception-Driven Autonomous
Urban Vehicle,” Journal of Field Robotics, vol. 25, no. 10, pp. 727 –
774, 2008.

[7] L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How,
J. Leonard, I. Miller, M. Campbell, D. Huttenlocher, A. Nathan, and
F. R. Kline, “The MIT - Cornell Collision and Why it Happened,”
Journal of Field Robotics, vol. 25, no. 10, pp. 775 – 807, Oct. 2008.

[8] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time
indoor autonomous vehicle test environment,” IEEE Control Systems
Magazine, vol. 28, no. 2, pp. 51–64, 2008.

[9] S. M. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
[10] C. Heinze, “Modelling Intention Recognition for Intelligent Agent

Systems,” Ph.D. dissertation, Melbourne, Victoria: Defence Science
and Technology Organisation, 2004.

[11] G. S. Aoude and J. P. How, “Using Support Vector Machines
and Bayesian Filtering for Classifying Agent Intentions at Road
Intersections,” Massachusetts Institute of Technology, Tech. Rep.
ACL09-02, September 2009. [Online]. Available: http://hdl.handle.
net/1721.1/46720

[12] V. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[13] H. M. Mandalia and D. D. Dalvucci, “Using Support Vector Machines
for Lane-Change Detection,” Human Factors and Ergonomics Society
Annual Meeting Proceedings, vol. 49, pp. 1965–1969, 2005.

[14] G. S. Aoude, B. D. Luders, K. K. H. Lee, and J. P. How, “Threat
Assessment Design for Driver Assistance System at Intersections,”
in IEEE Conference on Intelligent Transportation Systems, Madeira,
Portugal, September 2010.

[15] G. S. Aoude, B. Luders, and J. P. How, “Sampling-Based Threat
Assessment Algorithms for Intersection Collisions Involving Errant
Drivers,” in IFAC Symposium on Intelligent Autonomous Vehicles,
Lecce, Italy, September 2010.

[16] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 5, pp. 1105–1118, September 2009.

[17] iRobot, “iRobot: Education & research robots,” online http://store.
irobot.com/shop/index.jsp?categoryId=3311368.

[18] S. Park, J. Deyst, and J. P. How, “Performance and Lyapunov stability
of a nonlinear path-following guidance method,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 6, pp. 1718–1728, November-
December 2007.

[19] Microsoft, “Description of the Xbox 360 wireless racing wheel,” 2010.
[Online]. Available: http://support.microsoft.com/kb/927344?sd=xbox

[20] DARPA, “Urban challenge: Route network definition file (RNDF)
and mission data file (MDF) formats,” Defense Advanced Research
Projects Agency, Tech. Rep., March 2007. [Online]. Available:
http://support.microsoft.com/kb/927344?sd=xbox

6063

