
The Design of LEO: a 2D Bipedal Walking Robot for Online
Autonomous Reinforcement Learning

Erik Schuitema, Martijn Wisse, Thijs Ramakers and Pieter Jonker

Abstract— Real robots demonstrating online Reinforcement
Learning (RL) to learn new tasks are hard to find. The specific
properties and limitations of real robots have a large impact
on their suitability for RL experiments. In this work, we
derive the main hardware and software requirements that a
RL robot should fulfill, and present our biped robot LEO
that was specifically designed to meet these requirements.
We verify its aptitude in autonomous walking experiments
using a pre-programmed controller. Although there is room
for improvement in the design, the robot was able to walk, fall
and stand up without human intervention for 8 hours, during
which it made over 43, 000 footsteps.

I. INTRODUCTION

The unpredictability of the home environment requires that
future domestic robots will be able to learn new motions for
new tasks. Their users will generally not be trained roboti-
cists, so the robots will have to learn from sparse and simple
feedback. The success criteria may be different for each task,
and the system or environment may change over time. This
is a learning problem with a difficult set of requirements.
One of the increasingly popular solutions is the concept
of Reinforcement Learning (RL), a generic framework in
which systems can autonomously learn complex behaviors
from coarse feedback in the form of rewards for good and
bad behavior. Most publications on this topic, however, are
limited to simulation studies only.

Successful applications of RL to the problem of learning
sensori-motor skills on real robots are rare. In [1], a three
link robot learned to stand up using actor-critic and Tempo-
ral Difference (TD) learning methods inside a hierarchical
framework. In [2], a 3D bipedal robot, which is intrinsically
stable, increased its walking performance using actor-critic
TD-learning. In [3], bipedal locomotion was learned from
demonstration using a central pattern generator. In [4], a
complex humanoid robot learned various movement skills
from demonstration. The successful learning behaviors of
these studies demonstrate the potential of Reinforcement
Learning. However, it is striking that there are only so
few studies with real robots, and even these were always
restricted in one way or another. The allowed control poli-
cies were restricted to be predefined, parameterized and
sometimes partially pre-programmed policies. The learning
process often had to be initialized by learning in simulation
first, or by priming the solution with a demonstration of the

E. Schuitema, M. Wisse, M.J.G. Ramakers and P.P. Jonker are
with the Delft Bio-Robotics Lab, Faculty 3ME, Delft University
of Technology, Mekelweg 2, 2628CD, Delft, The Netherlands. Tel:
+31152782578, Fax: +31152784717. {e.schuitema, m.wisse,
p.p.jonker}@tudelft.nl

task by a human. The hardware is often the cause of such
restrictions. Most hardware lacks the robustness to withstand
a large number of learning trials with random exploration.
Although these limitations are known by experienced re-
searchers, we found no publication that explicitly maps the
essential requirements of the RL framework onto hardware
(and software) requirements, making it difficult to develop
robots suitable for RL. Therefore, this paper reports the
design of a robot (named ‘LEO’) that we explicitly developed
for online, autonomous RL research.

The robot LEO (Fig. 1) is a 2D biped (two-legged) robot.
We selected the bipedal walking motion as our example
task for two reasons. It is a complex, challenging task, and,
we have extensive experience with it from previous work
[5]. In this paper, we derive system requirements from the
fundamentals of RL in Sec. II, provide a system overview of
LEO in Sec. III, followed by detailed hardware and software
requirements and their implementation in Sec. IV to VIII.
The paper ends with conclusions in Sec. IX.

Fig. 1. LEO: a 2D walking robot designed for Reinforcement Learning.
LEO is equipped with seven servo motors (hips, knees, ankles and shoulder)
and is connected to a boom construction that provides power and lets it walk
in circles. It is allowed to fall, after which it stands up autonomously.

II. REINFORCEMENT LEARNING REQUIREMENTS

The concept of RL (see for example [6] for an intro-
duction) has important implications for the hardware and
software design of a robot that is to be controlled online by
RL. Here we summarize the key properties of RL and the
robot design requirements that follow from it. The resulting
requirements will be numbered for easy reference and will
be further explained in the subsequent chapters.

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3238

A. Robustness

A key aspect of on-line RL is that the learning agent tries
something new every now and then, i.e. it explores. Although
exploration can be guided, it can in principle lead to system
damage. For a humanoid robot, the cause is usually a fall or a
self-collision. From simulation of a biped with a complexity
comparable to LEO [7], [8], we know that learning a walking
behavior from scratch by controlling two hip motors takes
approximately 20 hours or more (without counting the time
required to stand up) and hundreds of falls. This leads to the
following requirement:

1) The robot can walk over a period of days and is robust
against falls and self-collisions.

In Sec. IV, we discuss how this requirement has influenced
the design of our robot.

B. State transitions

The common framework for RL is that of the Markov
Decision Process (MDP). The learning system is modeled as
an MDP with discrete time steps labeled k = 0, 1, .. ∈ Z and
is defined as the 4-tuple 〈S,A, T,R〉. Here, S is a set of states
and A is a set of actions. The state transition probability
function T defines the probability that the system reaches
state sk+1 ∈ S after executing action ak ∈ A in state sk ∈ S.
The reward function R defines the scalar reward of a state
transition as rk+1 = R(sk, ak, sk+1). The goal of the learner
is to find a control policy that maps states to actions and that
maximizes the expected cumulative sum of rewards from R.

An MDP has the Markov property, which means that T
and R only depend on the current state-action pair and not
on past state-action pairs, nor on information excluded from
s. The on-line learning robot will experience a stream of
events of the form s0, a0, r1, s1, a1, r2, s2, ... For the Markov
condition to be true, every observation [sk, ak, rk+1, sk+1]
has to be in accordance with T at any moment during a
learning experiment, which might take days. In this period,
T must be static. This leads to the following robot design
requirements:

2) The robot can observe state s, which holds all infor-
mation relevant to the learning problem.

3) The effect of action a in every state s is predictable.
4) The sampling time is constant.
5) T must be static within a time frame of tens of hours.

In addition, within the MDP framework, a control action
ak that is based on state observation sk is assumed to take
place immediately after the observation itself, which poses
an additional requirement:

6) The time between measurement sk and action ak is
zero.

In a real robot, these conditions can only be met approx-
imately. The system will suffer from sensor and actuator
noise, finite accuracy in the periodic timing, and compu-
tational delays due to, e.g., running the learning algorithm.
However, we made specific design decisions that should keep
the violation of these requirements to a minimum. These are
discussed in Sec. V, VI, VII and VIII.

C. System complexity
For the learning system to discover the long term value of

all actions a ∈ A in all states s ∈ S, in principle, it should
experience all actions in all states at least a number of times.
This search space can be limited in several ways by changing
the learning algorithm. Examples are restricting the allowed
policies by parameterizing them (policy search and policy
iteration methods), extracting recurring tasks by using hier-
archies of learning tasks (Hierarchical Reinforcement Learn-
ing), and assuming that neighboring states and actions have
related values (function approximation and generalization).
However, applying RL to complex robots still remains one
of the greatest challenges in the field. Therefore, our robot
design should meet the following additional requirement:

7) The number of degrees of freedom should allow for
currently viable learning tasks, as well as more com-
plex ones.

This requirement is further discussed in Sec. III.

III. SYSTEM OVERVIEW

The robot was designed by checking all 7 requirements as
detailed in the subsequent chapters. Although the complete
system design is the final result (i.e., the conclusion) of this
paper, we provide the overview here at the start of the paper
for ease of understanding.

LEO (Fig. 1) is small, approx. 50 cm in height, and light,
approx. 1.7 kg. It has foam bumpers on both sides of the top
of the torso and between the hip motors, thereby capable
of taking numerous falls in a wide range of configurations.
From simulation results on bipedal walking robot ‘META’
[7], [8], we know that learning to walk can take place
in an acceptable time frame of days for a robot with 7
degrees of freedom. Therefore, to comply with requirement
7, we designed our robot to have a number of degrees
of freedom comparable to robot META. LEO has 7 servo
motors (Dynamixel RX-28; max. torque 3 Nm): two in the
ankles, knees and hips and one in its shoulder. The servo
motors communicate with an embedded computer (VIA Eden
1.2GHz CPU and 1GB RAM) over RS-485 serial ports.
They are capable of position control and voltage control,
and can communicate their current position and temperature.
While previous research has showed the added advantage
of accurate torque control [9], which these servo motors
cannot accomplish, they are commercially available, all-in-
one, easily replaceable packages. The feet have pressure
sensors that measure foot contact. LEO has an arm that
enables it to stand up after a fall.

LEO is connected to a boom (length 1.6m) with parallelo-
gram construction. This keeps the hip axis always horizontal,
which makes it effectively a 2D robot and thus eliminates the
sideways stability problem. The boom also supplies power
to the robot and makes it walk in circles, which together
guarantee long-term continuous operation. An encoder in the
hip joint measures the absolute angle between the torso and
the boom. The foot contact points can roll sideways, see
Fig. 1, which is needed to counter the effects of running in
circles.

3239

A wide variety of learning tasks can be conducted, ranging
from learning a walking motion by actuating the two hip
motors (keeping the ankles stiff; virtual constraints on the
knees), to learning optimal ankle push-off, to learning a
complete stand up behavior using all 7 motors.

The video accompanying this paper shows LEO being
controlled by a pre-programmed (i.e., non-learning) limit
cycle walking controller [10]. Typical walking strides from
this process are shown in Fig. 2 by means of the evolution
of the angles of both hip motors and the torso.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

Time [s]

A
n
g
le

 [
(r

ad
)]

Left hip Right hip Torso

Fig. 2. The hip angles and torso angle for typical strides of LEO when
using a limit cycle walking controller. The strides are aligned at left heel
strike.

IV. ROBUSTNESS

In order to comply with requirement 1, the robot should be
able to walk over a period of days and be able to withstand
falls and self-collisions. This has led to the following design
choices.

By keeping the robot small, approximately 50 cm in
height, the impacts during a fall are kept small as they scale
more than cubically with the robot’s height. By choosing
’smart’ actuators with internal protection against overloading
and overheating, the actuators are less likely to fail. In case
they do fail, they are easy to replace. To reduce the impact
on the torso during a fall, foam was placed on both sides of
the top of the torso. A strong leaf spring with added foam
between the two hip motors protects them at all possible hip
joint angles. In the construction of previous robots, we used
micro switches in the feet to detect foot contact, which were
quite sensitive to failure. To increase the robustness of this
design, we used pressure sensors in the feet, which reduced
the number of moving parts.

A. Empirical verification

The first tests with our robot exposed a number of weak
mechanical links. The weakest links were the aluminium
brackets bought with the servo motors, which broke several
times. In the hips, we replaced these with custom designed
brackets that had increased flange thickness (2.5mm) and
were made of higher quality aluminium; in the knees, we
improved the mounting of the bracket to the lower leg to
decrease the chance of fatigue.

The single board computer formed a weak link as well.
At each impact with the floor, the inertia of the heavy CPU
cooler caused significant bending of the motherboard, which
ultimately led to loose contacts in the motherboard area
around the CPU. To solve this, we improved the mounting
of the CPU cooler and the mounting of the motherboard to
the robot.

After implementing the above mentioned changes, we
tested the robustness of the robot by letting it walk using a
pre-programmed (i.e., non-learning) limit cycle walking [10]
controller until it failed. The hip angle was controlled to a
fixed reference angle using voltage control until the detection
of the next heel strike. Upon foot contact, the back leg
performed knee flexing while swinging forward. The torso
was controlled to a reference angle as well. The robot made
over 43, 000 footsteps and walked more than 6, 000 meters in
a period of about 8 hours, of which 2.3 hours were spent to
periodically let the motors cool down by resting on the floor.
The robot fell 30 times (mostly automatically, to cool down)
and stood up by itself afterward. The experiment stopped due
to a rare software bug (that has now been fixed). Inspection
of the machine revealed the failure of the potentiometer of an
ankle motor. One foot sensor also stopped working. Although
the robot did not meet our goal of days of autonomous
operation, the achievement is approaching the same order
of magnitude. We are currently looking into replacing the
potentiometers inside the servo motors by optical or magnetic
encoders to increase the robustness.

V. RELIABLE STATE INFORMATION

To produce reliable and reproducible state information
(requirement 2), the robot should be able to accurately
measure its complete state and that of the environment. This
section describes the robot’s sensors.

A. Sensors

The Dynamixel RX-28 servo motors use a potentiometer
to record the angular position. According to the specifica-
tions, positions can be measured in the range [0, 300]◦ with
10-bits accuracy, or 0.3◦. To verify this, we compared the
position readout from 30 servo motors with the readout
from a 13-bit absolute magnetic encoder by means of a
custom made calibration device. This revealed a large spread
in linearity and range of the position information. Local,
nonlinear deviations of up to 4◦ and (linear) range deviations
up to [10, 280]◦ have been observed. A few typical error plots
are shown in Fig. 3. In addition, typically 33% of the 1024
possible positions are never observed. Therefore, the local
accuracy varies between 0.3◦ up to 1.0◦ (when two adjacent
positions are never observed).

While any (static) non-linearities in the position readout
will not matter for the learning process - the learning agent
simply maps states to actions and does not have a notion
of absolute angles - it does pose a problem when a servo
motor needs to be replaced. In that case, the learning agent
would have to adapt to the new mapping from true angles
to measured angles, which is typical for each motor. We

3240

addressed this by creating a lookup table for each servo
motor, which maps the measured angles to the calibrated
reference angles.

0 200 400 600 800 1000
−10

−5

0

5

10

Position

E
rr

o
r

[°
]

Fig. 3. Typical angle measurement errors from Dynamixel RX-28 servo
motors from calibration with a 13-bit absolute magnetic encoder.

The servo motors also provide a velocity signal. However,
we found the update rate of that signal to be 7.5Hz, which is
too low for our purposes. Therefore, we derive the velocity
signal ourselves from the position signal.

A 13-bit absolute magnetic encoder in the hip joint mea-
sures the angle between the torso and the parallelogram
construction of the boom, which serves as our vertical
reference.

The robot lacks a sensor that measures its elevation. Its
state is only fully determined from the other sensors if it
makes contact with the floor. Therefore, we have to verify
during learning experiments that the robot touches the floor
at all times.

The foot impact with the floor creates vibrations through-
out the combined construction of robot and boom. Such
vibrations are visible in the form of large state transitions,
especially in the velocity state variables. The vibrations form
a disturbance on top of the average dynamics of the robot
and can make the learning problem harder. The initial boom
construction with two ∅25 × ∅23.5 mm carbon composite
tubes was not stiff enough and caused large vibrations, which
especially disturbed the torso angle measurements. The lower
tube was replaced with a ∅55 × ∅53 mm tube, which
increased the stiffness of the construction. This reduced the
vibrations and increased their frequency. When calculating
joint velocities, we filter the differentiated position signal
with a third order Butterworth filter with a low cutoff
frequency (10Hz). This further reduces the effect of the
vibrations on the velocity signals.

B. Environment

When the environment can be considered static, its proper-
ties are not part of the state signal. This requires the floor to
be constant over the whole walking circle. We encountered
problems with height irregularities in the floor; although
they are small - several millimeters - they are significant in
relation to the leg length of the robot. This is a disadvantage
of our small robot design. Our tests have shown that the
floor height variations have a significant negative impact
on the walking behavior. Since the position of the robot

within the circle is not measured (we do not want the
robot to ’memorize’ this particular floor), the floor height
irregularities have to be treated as noise.

VI. RELIABLE ACTUATION

The RX-28 servo motors provide position control, velocity
control and an open loop actuation mode. Although the
manufacturer describes the latter as torque control (literally
denoted as ”endless turn mode”), this mode is actually
voltage control.

The motor torque at a given voltage Vmotor depends on the
temperature of the motor, which is measured inside the RX-
28. While temperature effects are probably not noticeable
when the motor uses its internal control loop for position or
velocity control, this effect is important in voltage control
mode. In our robustness test, the pre-programmed controller
was based on voltage control.

To comply to requirement 3, we compensated for the tem-
perature dependency. We used the following model (omitting
gear box friction) for the output torque M

M = kG
U − kGω

R
(1)

with k the torque constant, R the winding resistance, G the
gearbox ratio, U the voltage and ω the joint angle velocity.
The winding resistance R will change with temperature θ
according to

R(θ) = Rref(1 + (θ − θref)αCu) (2)

with αCu the thermal resistance coefficient of copper. The
torque constant k will change according to

k(θ) = kref(1 + (θ − θref)TKBr) (3)

with TKBr the temperature dependency of the magnetic flux
density of the permanent magnets.

For voltage control, we can keep the generated torque at a
given voltage Uref constant with temperature by calculating
U(θ) from (1), (2) and (3) as

U(θ) = Uref
kref
k(θ)

R(θ)

Rref
+ ωkrefG

(
k(θ)

kref
− kref
k(θ)

R(θ)

Rref

)
(4)

The DC motor inside the RX-28 was identified as the Maxon
RE-max 17, type 214897. We used catalog values for the
motor parameters: k = 9.92e − 3Nm and G = 193. We
used αCu = 3.93e − 3K−1. We chose TKBr = 0, because
its true value is unknown and relatively small compared to
αCu. Detailed experiments on individual motors can further
improve the model and its parameters.

We tested the temperature compensation by letting LEO
walk using the pre-programmed controller. With compen-
sation according to (4), we observed qualitatively similar
walking behavior in the temperature range of 45◦C to 70◦C.
Above 70◦C, the robot would start to fall more frequently.
Without compensation, the robot noticeably fell more fre-
quently at much lower temperatures. We can conclude that
temperature compensation is important when using voltage
control, and that there is room for improvement in our model
(parameters).

3241

Ψ
k,m

Ψ
k
,v

4 8 12 16

4

8

12

16

R
M

S
E

(Ψ
k
,m

|Ψ
k
,v

)

10

20

30

40

50

60

Fig. 4. Root mean squared error comparison between data sets recorded
every 20 minutes during the robustness test. The RMSE generally grows
when the time between the model data set and validation data set becomes
larger, which indicates that the system is not time invariant. Data sets
recorded at a later time generally produce larger RMSE values.

VII. SYSTEM INVARIABILITY

The MDP framework is defined for a static state transition
function T . For this to be true for a robotic learning task,
the robot and its environment should be invariable during the
length of a learning experiment (requirement 5), or at least
change slowly enough so that the learning system is able to
adapt in time to the changing situation.

To verify the robot’s invariability over time, we performed
the following test during the robustness experiment described
in Sec. IV. After every 20 minutes of walking, we recorded a
two minute data set Ψt of state measurements and actuation
patterns: Ψ1,Ψ2, ..,Ψ16. We used half of each data set,
Ψt,m, to build a state transition model using Local Linear
Regression (LLR) (see, e.g., [11]), and the other half, Ψt,v ,
for validation. If the system behavior does not vary over time,
or changes slowly enough, the model built from any Ψt1,m

should be able to predict state transitions from any other data
set Ψt2,v .

To calculate a measure for the predictive power of data set
Ψt1,m with relation to data set Ψt2,v , we did the following.
For every state transition (sk+1|sk, ak) from Ψt2,v , the 40
nearest neighbors around (sk, ak) in Ψt1,m were used to
build a local linear model. This model was then used to
produce prediction (ŝk+1|sk, ak,). The root mean squared
prediction error RMSE(Ψt2,v|Ψt1,m) over the total valida-
tion set (of N samples) then served as our measure:

RMSE(Ψt2,v|Ψt1,m) =

√√√√√N−1∑
k=0

∑
ij

(ŝ
(ij)
k+1 − s

(ij)
k+1)2

N
(5)

This error can be compared with the cumulative predic-
tion error from simultaneously recorded data by calculating
RMSE(Ψtk,v|Ψtk,m). In Fig. 4, RMSE(Ψt2,v|Ψt1,m) is
plotted for all combinations of the 16 data sets that were
recorded during the 8 hour test described in Sec. IV.

From the results, two things become apparent. We can see
that in general, RMSE(Ψt2,v|Ψt1,m) increases when t1 and
t2 are further apart. We can also see that data sets recorded

near the end of the testing period generally produce larger
cumulative error sums than data sets from the beginning of
the experiment. In both cases, the difference is approximately
a factor three. We must conclude that the system is not time
invariant. Detailed inspection of the recorded data revealed
that the position signal from the right ankle’s servo motor
was heavily deteriorating during the experiment (the signal
showed more and more random spikes). This is the most
likely cause of the observed time variance of the system.

The noise in the graph can be (partially) explained by
the difference in motor temperatures (the robot cooled down
after every 30 minutes of walking), floor height variations,
and by the fact that the robot would sometimes switch to
a slower walking gait during a significant part of the data
recording time.

VIII. REAL-TIME CONTROL

In the MDP framework, it is assumed that state transitions
occur periodically, i.e., that the sampling time is constant
(requirement 4). Furthermore, there should be no control
delay, by which we mean the delay between the moment
of measuring the state and the moment of acting upon that
state (requirement 6). In reality, these requirements can only
be approximately satisfied.

A. Periodic sampling

When the length of a sampling period is not constant,
this means that control actions have varying length and
therefore varying effect. This makes the learning problem
harder, because the more variation in sampling period, the
more learning experience is needed to learn the average effect
of taking a control action in a certain state. Good periodic
behavior requires hard real-time behavior. For LEO, we used
Linux with the Xenomai real-time extension. On a sampling
period of 6666.6µs, we measured an average standard de-
viation of 230µs (3.4%). Although this is generally a good
result, the magnitude and frequency of allowable sampling
time irregularities on RL are as of yet unknown.

B. Control delay

Control delay reduces the stability of a system and the
possibility to accurately control it. Control delay is also not
modeled in the MDP framework. The consequence of control
delay for a RL system is that control actions take effect in
future states, instead of immediately. However, the learning
update is by default performed as if the control action was
performed in the measured state. This can cause convergence
problems [12].

To minimize the control delay in our robot, all process-
ing is done on-board, which avoids transporting state and
actuation signals over a network (transporting all sensor and
actuator lines individually over the central boom joint is im-
practical). The RX-28 motors are controlled by a serial link,
through which they are addressed one after another. Although
this causes extra delay compared to parallel connection, the
serial bus needs only two data cables to address all motors.
Despite the relatively high serial bus speed of 0.5 Mbaud,

3242

the process of requesting position data and sending actuation
commands still takes several milliseconds. By operating two
RS-485 serial ports in parallel, each port controlling the
motors of a single leg, this time was roughly cut in half while
avoiding extra cabling. The foot sensors and hip sensor are
read out over a much faster Serial Peripheral Interface (SPI)
bus, causing a small delay in the order of microseconds. In
total, measuring the complete state of the system takes on
average 1850µs with a maximum of 2350µs.

Delay in the context of RL has been studied, see e.g. [13],
but not specifically in the context of robotics. In [12], it
is shown that a delay of less than a time step can already
have a negative influence on the learning performance of a
robotic system. Both studies show the benefit of extending
the MDP framework to incorporate the delay. In [12], on-
line temporal difference learning algorithms are proposed
that improve the learning performance of a robotic system
suffering from delay, while maintaining low computational
complexity.

C. Software

LEO’s software architecture is event based. The controller
software is separated from the rest of the software. The robot
produces state information at regular intervals, to which a
controller (and also a logger, visualization program, etc.)
can subscribe. The state information producing loop is the
only periodic loop in the system; controller calculations
and logging are purely reactive because the system is event
based. The periodic state measurement loop does not wait for
actuation signals, which guarantees real-time periodic state
information for all its subscribers. The robot provides an
actuation interface to the controller, containing functions that
can change the actuation signals and return key properties of
the actuators.

Because of the abstraction of the state information inter-
face and actuation interface, these interfaces can be replaced
by simulated versions. As a result, the controller code
can be used both on the robot and in simulation without
modification, which facilitates development. In addition, any
controller, whether pre-programmed or learning, can be
connected to the state information and actuation interfaces
and can be replaced on-line. For example, during the process
of learning to walk, a pre-programmed stand up behavior can
seamlessly take over control after a fall.

IX. CONCLUSIONS

With LEO, we designed and built a bipedal walking robot
specifically for online, autonomous Reinforcement Learning
experiments. Due to its boom construction which makes it
run in circles and supplies power, its fall protection and
its ability to stand up by itself, LEO can perform RL
experiments without human assistance.

We checked the robustness of the system by letting it
walk for 8 hours using a pre-programmed controller, during
which it made 43, 000 footsteps and fell 30 times before
failing. Although this is an amount of effort comparable to
that needed for a learning experiment, we believe it should

be, and can be improved, mainly by finding an alternative
for the position recording potentiometers in the actuators.

We made the actuation more predictable by compensating
for the temperature of each motor. We verified the invariabil-
ity of the system over a period of 8 hours by periodically
building a model from measured state transitions, and val-
idating this model with measurements recorded later. This
showed that the system is not completely time invariant,
which was mostly caused by a deteriorating position record-
ing potentiometer in one of the actuators.

We discussed the timing characteristics of our real-time
control loop. The control delay between measuring the
state and actuating the motors is significant and negatively
influences learning performance in simulation. Therefore, the
framework of constant delay MDPs is more adequate for
online RL experiments on this robot, which requires different
learning algorithms.

X. ACKNOWLEDGMENTS

The authors would like to thank the Dutch Technology
Foundation STW for financially supporting this research, and
Guillaume Feliksdal, Jan van Frankenhuyzen, Guus Liqui
Lung and Gijs van der Hoorn for their contributions to the
development of the robot.

REFERENCES

[1] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a
real robot using hierarchical reinforcement learning,” Robotics and
Autonomous Systems, vol. 36, no. 1, pp. 37–51, 2001.

[2] R. Tedrake, “Applied optimal control for dynamically stable legged
locomotion,” PhD thesis, Massachusetts Institute of Technology, 2004.

[3] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems, vol. 47, no. 2-3, pp.
79–91, 2004.

[4] A. J. IJspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in neural
information processing systems, S. T. S. Becker and K. Obermayer,
Eds. Cambridge, MA: MIT Press, 2003, vol. 15, pp. 1547–1554.

[5] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
p. 1082, 2005.

[6] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduc-
tion,” 1998.

[7] E. Schuitema, D. G. E. Hobbelen, P. P. Jonker, M. Wisse, and
J. G. D. Karssen, “Using a controller based on reinforcement learning
for a passive dynamic walking robot,” 5th IEEE-RAS International
Conference on Humanoid Robots, pp. 232–237, 2005.

[8] S. Troost, E. Schuitema, and P. Jonker, “Using cooperative multi-
agent Q-learning to achieve action space decomposition within sin-
gle robots,” in 18th European Conference on Artificial Intelligence,
workshop ERLARS, Patras, Greece, 2008.

[9] D. Hobbelen, T. de Boer, and M. Wisse, “System overview of bipedal
robots flame and tulip: Tailor-made for limit cycle walking,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS2008,
Nice, France, 2008, p. 24862491.

[10] D. Hobbelen, “Limit cycle walking,” PhD thesis, Delft University of
Technology, 2008.

[11] A. C. Rencher and G. B. Schaalje, Linear models in statistics. Wiley
New York, 2000.

[12] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay in
reinforcement learning for real-time dynamic systems: a memoryless
approach,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Taipei, Taiwan, October 2010.

[13] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and
planning in environments with delayed feedback,” Autonomous Agents
and Multi-Agent Systems, vol. 18, no. 1, pp. 83–105, 2009.

3243

