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Fig. 1: The main idea in this paper is to combine the advantages of direct and iterative methods: we identify a subgraph that
can easily be solved using direct methods, and use that as a preconditioner in conjugate gradients. This is illustrated above with
a map of Beijing, where the subgraph is a spanning tree (in black), and the remaining loop-closing constraints are shown in red.

Abstract— In this paper we propose an efficient precondi-
tioned conjugate gradients (PCG) approach to solving large-
scale SLAM problems. While direct methods, popular in the
literature, exhibit quadratic convergence and can be quite
efficient for sparse problems, they typically require a lot of
storage and efficient elimination orderings to be found. In
contrast, iterative optimization methods only require access to
the gradient and have a small memory footprint, but can suffer
from poor convergence. Our new method, subgraph precondi-
tioning, is obtained by re-interpreting the method of conjugate
gradients in terms of the graphical model representation of the
SLAM problem. The main idea is to combine the advantages of
direct and iterative methods, by identifying a sub-problem that
can be easily solved using direct methods, and solving for the
remaining part using PCG. The easy sub-problems correspond
to a spanning tree, a planar subgraph, or any other substructure
that can be efficiently solved. As such, our approach provides
new insights into the performance of state of the art iterative
SLAM methods based on re-parameterized stochastic gradient
descent. The efficiency of our new algorithm is illustrated on
large datasets, both simulated and real.
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I. INTRODUCTION

The state of the art in simultaneous localization and
mapping (SLAM) can be categorized into filtering-based
solutions, sub-mapping, sparse direct methods, and iterative
methods. Early solutions to the SLAM problem relied on
the extended Kalman filter (EKF) to estimate the position of
landmarks and robot pose and their associated covariances.
However, due to their quadratic memory and computational
cost, EKF-based solutions are limited to small areas [1].

Filtering itself has been shown to be inconsistent when
applied to the inherently non-linear SLAM problem [2],
i.e., even the average solution taken over a large number
of experiments diverges from the true solution. Since this
is mainly due to the fact that linearization points are far
from the true solution in a filtering framework, there has
recently been considerable interest in applying nonlinear
optimization to the smoothing SLAM problem [3], [4], [5],
which iteratively solves a sequence of linear systems using
the previous estimates as linearization points. Smoothing
approaches also have another important advantage, in that the
linear systems to be solved in each iteration remain sparse
over time [5], which enable SLAM solutions that have better
scaling properties for larger problems.

In non-linear optimization, the key computation is solving
a linear system, done with either a direct or iterative method.
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Fig. 2: Block adjacency matrices for Beijing simulation: (a) the sparsity pattern of the original information matrix
corresponding to Figure 1, with the non-zero blocks for the spanning tree in black and the remaining constraints in red; (b)
the spanning tree T alone, with 25473 constraints; (c) the remaining 3151 loop closing constraints C.

While direct methods exhibit quadratic convergence and
can be quite efficient for sparse problems, they typically re-
quire a lot of storage as well as efficient elimination orderings
to be found. For very large mapping problems, especially
with many loop closures, the computational cost and memory
requirements can still make these methods impractical. A
common approach to reduce the computational cost is to split
the large scale SLAM problems into smaller subproblems. In
hierarchical mapping [6], [7], [8], [9], [10] the map elements
are grouped respect to their spatial distribution by build local
submaps that are integrated into a global map. Local maps
are limited to a bounded number of poses/landmarks and
thus, their construction can be carried out in constant time.
Consequently, hierarchical mapping shifts the complexity to
the map joining phase.

In contrast, iterative methods only require access to
the gradient and have a small memory footprint, but can
suffer from poor convergence. Popular iterative methods
in are Gauss-Seidel relaxation methods on the constraint
graph. These were pioneered by [11] and [12], and later
also adapted in [13], [14] to relax a sparsified information
matrix. Several strategies were proposed to cope with slow
convergence rates, by adapting several methods from the
iterative optimization literature. [15] introduced the use of
preconditioned conjugate gradient (PCG) descent, using in-
complete Cholesky factors as preconditioners. In [16], Frese
et. al. present a Multi-Level Relaxation (MLR) algorithm,
inspired by multigrid methods in [17]. However, the current
state of the art in pose-graph relaxation stems from the work
by [3] whose main contribution is a parameterization of the
global poses in terms of increments along the trajectory.
Grisetti [4], [18] adopted this incremental parameterization
as well, but instead defines it on a spanning tree. Both lines of
work use stochastic gradient descent (SGD) to minimize the
resulting objective functions in terms of incremental poses.

Subgraph Preconditioned Conjugate Gradients

The main idea is to combine the advantages of direct
and iterative methods, by identifying a sub-problem that
can be easily solved using direct methods, and solving for
the remaining part using PCG. In particular, we propose a
new method inspired by looking at preconditioned gradient
descent in novel way, in the context of graphical models.

Our new method, subgraph preconditioned conjugate
gradients (SPCG) is obtained by re-interpreting conjugate
gradients in terms of the graphical model representation of
SLAM. The idea is to break the problem down in two parts:
a part that easy to be solved like for example an “odometry
prior”, and a second part which distributes the loop closing
constraint. The main idea is that the latter is more efficiently
solved using a preconditioned method. When considering
graphSLAM, the preconditioner can be a spanning tree, or
more generally we can allow loops and find a planar or “fat”
subgraph, or any other substructure that can be efficiently
solved. As such, our approach provides new insights into
the performance of state of the art iterative SLAM method
based on re-parameterized stochastic gradient descent.

The idea is illustrated with an example shown in 1. We
simulated a pose-constraint graph for the city of Beijing,
using publicly available data, to generate a graph with
25, 474 nodes and 28, 624 edges. Below we discuss how we
split up a large problem with measurement matrix A into two
systems, A1 and A2. In the Beijing case we chose A1 = T ,
a spanning tree shown in the figure in black, whereas the
remaining “loop closing constraints” A2 are shown in red.
The corresponding 25, 474× 25, 474 adjacency matrices are
show in Figure 2. They are shown with columns ordered by
depth in the spanning tree, with the root at the far right. This
is the optimal ordering for solving the 25, 473 constraints
in T in O(n), whereas only 3, 151 of the original 28, 624
constraints (11%) will be iterated over using PCG.
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II. BACKGROUND

We follow the statement of the SLAM problem in [5],
obtaining the nonlinear least-squares objective function

f(θ) =
1
2

∑
i

|hi(θ)− zi|2

We linearize around a linearization point θ0 to get a new,
linear least-squares problem in x with objective function

f(x) =
1
2
|Ax− b|2 (1)

where A ∈ Rm×n is the measurement Jacobian and x an
n-dimensional vector in the tangent space T (θ0) around θ0.
After solving, the original unknowns θ can be obtained from
the solution x̂ using the exponential map:

θ = ex̂θ0 (2)

In the case where the unknowns θ live in a vector space
Rn, the exponential map reverts to simple vector addition
θ = θ0 + x̂. However, this is typically not the case in SLAM,
as rotations live in non-linear manifolds SO(2) or SO(3).

In a direct method, we use either QR or Cholesky
factorization to solve for the least squares solution x̂. In
particular, using QR factorization we can factor the Jacobian
A, augmented with b as an extra column, to obtain[

A b
]

= Q

[
R c
0 e

]
(3)

with R an n×n upper triangular matrix, Q an m×m rotation
matrix, and c and e vectors. We can then rewrite the error

1
2
|Ax− b|2 =

1
2
|Rx− c|2 +

1
2
eT e

where 1
2e
T e is the least-squares residual error, and the solu-

tion x̂ = R−1c is found efficiently using back-substitution.
Another strategy is to form the system of normal equations

Λx = η (4)

where Λ ∆= ATA is the information matrix and η ∆= AT b is
the information vector. We then apply Cholesky decomposi-
tion, a specialized version of Gaussian elimination for sym-
metric positive definite matrices, to factor the information
matrix as Λ = RTR. The square root information matrix
R is the same upper-triangular matrix as in (3). We then
solve for c = R−T η, after which we obtain x̂ as before by
back-substitution. Cholesky decomposition is more efficient
if m ≫ n, but is numerically less well-conditioned.

In both cases the posterior probability density P (x|z)
on x given the measurements z can be approximated by a
Gaussian around x̂ with covariance matrix Σ = Λ−1, as

P (x|z) ≈ k exp
{
−1

2
|Rx− c|2

}
= k exp

{
−1

2
(x− x̂)T Λ (x− x̂)

}
which in turn induces a probability density P (θ|z) via (2).

Algorithm 1 Method of Conjugate Gradients (CG)
Start with x0 = 0, g0 = −AT b, d0 = −g0, and iterate:

αk = −dTk gk/ ‖Adk‖
2

xk+1 = xk + αkdk

gk+1 = gk + αkA
T (Adk)

βk+1 = ‖gk+1‖2 / ‖gk‖2

dk+1 = −gk+1 + βk+1dk

An alternative to direct methods is to employ an iterative
method to solve the system of normal equations (4). An
iterative method starts from an estimate x0 and finds the
best estimate along a search direction d,

x = x0 + αd

where α is a scalar step-size. Substituting into (1) we obtain

fα(α) =
1
2
|A(x0 + αd)− b|2

Setting the directional gradient of fα with respect to α to
zero, we obtain an expression for the optimal step-size α:

α = −dT g(x0)/ ‖Ad‖2

where the gradient g(x) of f(x) is defined as

g(x) ∆= f ′(x) = AT (Ax− b) = Λx− η

When we iterate this and, at each iteration k, move in the
direction of the negative gradient, i.e., dk = −gk, we obtain
the steepest descent algorithm. However, this is sub-optimal,
as the steepest descent directions have contributions that
repeat earlier search directions, leading to slow convergence.
The solution is to make each search direction Λ-conjugate
with respect to the previous one [19], or

dTk Λdk+1 = 0

This can be done by taking the gradient direction and
subtracting out some of the previous search direction dk:

dk+1 = − (gk+1 − βk+1dk) with βk+1 = ‖gk+1‖2 / ‖gk‖2

As we start with x0 = 0 we have g0 = −η = −AT b, and
it is easy to show that gk+1 = gk + αkΛdk. Note that for
efficiency we first compute Adk and then Λdk = AT (Adk).
The resulting conjugate gradient (CG) method is listed as
Algorithm 1 and is equivalent to the least-squares CG variant
(CGLS) described by Björck in [20, page 288].

III. APPROACH

A. Preconditioned CG as Reparameterizing

Preconditioning is a technique where instead of solving
Λx = η we solve M−1

1 ΛM−1
2 M2x = M−1

1 η, with M1 and
M2 respectively the n × n left and right preconditioning
matrices. With the right choice of preconditioning matrices
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the new system M−1
1 ΛM−1

2 can exhibit dramatically faster
convergence properties.

In this paper we consider the original least-squares formu-
lation (1), and in this context the preconditioned conjugate
gradient (PCG) method can be explained as reparameterizing
the unknowns x in terms of new unknowns y [20]. If we set
y = Px in (1) we obtain a new objective function in y,

f̄(y) =
1
2

∣∣AP−1y − b
∣∣2

with corresponding normal equations P−TΛP−1y = P−T η,
a preconditioned system with M1 = PT and M2 = P .

We will consider a less customary “non-central” re-para-
meterization y = Px− q, or x = P−1(q + y), leading to

f̄(y) =
1
2

∣∣AP−1y −
(
b−AP−1q

)∣∣2
We use the same PCG method expect we now iterate on y,
use a different starting gradient ḡ0, and Λ is replaced by
P−TΛP−1. This can be most easily implemented by calling
Algorithm 1 with Ā = AP−1 and b̄ = b−AP−1q. We then
recover the original solution as x̂ = P−1 (q + ŷ).

B. Subgraph Conditioning

The main idea in the paper is to combine the advantages
of direct and iterative methods in SLAM, by identifying a
sub-problem that can be easily solved using direct methods,
and solving for the remaining part using PCG. For the sub-
problem we consider a subset of the measurement constraints
in A that form a spanning tree, planar subgraph, or any
subgraph that allows an efficient elimination order.

In particular, suppose that by cutting measurements rows
from A the new problem A1 becomes easy to solve using a
direct method. We can then rewrite the criterion (1) as

f(x) =
1
2
|A1x− b1|2 +

1
2
|A2x− b2|2 (5)

where A1 corresponds to the easy part and A2 to the mea-
surements that are cut. Let us then consider the solution x̄ ∆=
R−1

1 c1 to A1, with corresponding Gaussian log likelihood
1
2 |R1x− c1|2. Hence, we can rewrite the criterion (5) as

f(x) =
1
2
|R1x− c1|2 +

1
2
|A2x− b2|2 (6)

where the first term acts as a prior on x derived from A1,
and the second term represents the error from the A2 part.
Now let us re-parameterize (precondition!) x in terms of the
whitened deviation y from the prior:

y = R1x− c1 = R1 (x− x̄)

By substituting x = x̄+R−1
1 y in (6), we obtain

f̄(y) =
1
2
|y|2 +

1
2

∣∣A2R
−1
1 y − b̄2

∣∣2
with b̄2

∆= b2 − A2x̄. The interpretation is intuitive: the first
term penalizes deviation y from the subgraph solution x̂ and
implicitly encodes the measurement error in A1, whereas
the second term represents the measurement error in A2.

Fig. 3: Manhattan world optimized graph with10000 vertices
and 64312 edges.

If y = 0, that error is simply b̄2, the prediction error for
measurements in A2 using the approximate solution x̄.

The implementation of the idea is quite easy: we simply
call the original LSCG conjugate gradients (Algorithm 1) on
the following system (which requires solving R1):

Ā =
[

I
A2R

−1
1

]
and b̄ =

[
0
b̄2

]
After convergence, we recover the solution by

x̂ = x̄+R−1
1 ŷ

IV. EXPERIMENTS AND RESULTS

A. Simulation Experiments

Subgraph preconditioned conjugate gradient (SPCG) com-
bines the advantage of both direct and iterative methods. The
subgraph used as preconditioner plays an important role in
the convergence of the system. Here we analyze different
types of subgraphs by applying the proposed subgraph pre-
conditioning method to simulated and read data. The results
are obtained with a Matlab implementation running under
Mac OS X on an Intel Core 2 at 2.4 GHz.

We applied our method to a simulated dataset, courtesy
of Grisetti [4]. This dataset simulates a robot navigating in
a Manhattan-like environment, looping around square blocks
several times and establishing many links (see Figure 3). The
entire dataset contains 10000 vertices connected by 64312
edges. Figure 4 (left) shows the time comparison between
solving the system using direct methods (red), using the
implementation of the Conjugate Gradient method from the
Algorithm 1 (green) and our SPCG method (red+green). The
latter is a combination of a direct part (solving for x̄, shown
in red) and the iterative LSCG (iterating on y, shown in
green). For each of the four SPCG variants, we also show the
ratio f ∆= |A1|

|A2| of the size of the “easy” problem (matrixA1,
solved with the direct method) and the size of the “hard”
problem (matrix A2, solved with CG). If this ratio is infinite,
f = Inf , the size of the A2 = 0 , so A1 consists of the
entire graph and is solved using direct methods. If this ratio
is zero f = 0, the whole system is solved using CG. For this
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Fig. 4: Manhattan world results. (left) Time comparison averaged over 10 runs for solving the graph using direct methods
(red), CG (green) and our new SPCG method (red+green). Different subgraph sizes are compared: f = 1.4, f = 0.8 and
f = 0.2, where f is the ratio between the of the “easy” and “hard” part. (right) Comparison of the convergence rate
corresponding to the CG and SPCG’s iterative part.

Fig. 5: Time comparison between SAM and SPCG. The X-
axis shows the number of landmarks visible from 1000 poses,
and the Y axis shows timing results for both SAM and SPCG.

dataset, when we used the spanning tree subgraph as A1, this
ratio was equal to f = 0.2. The other values for the ratio f
correspond to adding supplementary edges to the spanning
tree to decrease the size of the “hard” part.

For this comparison we used a direct method solver as im-
plemented in the SuiteSparse toolbox. Notice that the SuiteS-
parse, currently the most efficient implementation for direct
solvers for sparse problems, is multi-threaded and takes full
advantage of the dual core architecture. Nevertheless, our
single-threaded and non-optimized Matlab implementation of
the SPCG solver proved to be 10% faster for large graphs
such as the ones in Figure 3.

To assess the performance of the SPCG when applied to a
very challenging scenario we simulated a robot taking 1000
steps in the 2D plane. The pose was modeled using the usual
SE(2) parametrization, and the robot executed a random
walk on a regular lattice, moving forward 1 m, turning 90
degrees left, or turning 90 degrees right. For each step a
simulated odometry measurement was created. In addition
to these N = 1000 odometry constraints we also generated

M landmarks, also in SE(2), visible from anywhere in the
world. From any position, one landmark is chosen at random
and a measurement constraint is generated, hence the total
graph contains (M +N − 1) edges and (M +N) vertices.

We compared SPCG with Smoothing and Mapping (SAM)
[5]. The simulation described above is a particularly bad
scenario for direct methods such as SAM, as the graph will
be densely connected and large cliques will be generated
for any ordering. In [21] it was explained that certain
graphs, such as planar graphs, can be optimized in O(n1.5),
but if landmarks are seen from anywhere (a situation we
call the Eiffel-tower scenario) this can completely destroy
the sparsity of the graph. However, it is hypothesized that
because the number of constraints is the same, an iterative
method should exhibit constant timing.

Figure 5 shows time comparison between SAM and SPCG.
The x-axis shows the number M of landmarks visible from
N =1000 poses, and the Y axis shows timing results for
both SAM and SPCG. As one can see, SAM performs quite
well until N = 100, when the generated cliques will cause
the inversion of 300 × 300 matrices. This becomes worse,
although it depends on the specific graph that was generated
(which explains the dip for M = 350). In contrast, the timing
results for SPCG stay flat over the entire range.

B. Experiments with Real Data

We also evaluated and tested the proposed technique on
real data, using the data set collected at the Intel Research
Lab (Seattle), available at Radish dataset repository. This
dataset includes odometry and laser scans readings. The laser
scans are used to generate sensor-based odometry and to
assert loop closures, by aligning them using an ICP scan
matching algorithm. The resulting graph of constraints has
729 vertices and 3071 edges.

In real SLAM applications, the most natural way to form a
subgraph is to consider the odometry chain which can easily
be constructed while the robot navigates and builds the map
of the environment. Figure 6 shows in red the odometry tree
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Fig. 7: Intel data set results. (left) Comparison with the CG in number of iterations. (right) Comparison of the convergence
rate corresponding for the CG and SPCG’s iterative part.

Fig. 6: The (unoptimized!) Intel data set, showing the sub-
graph corresponding to the odometry backbone.

over the entire graph plotted in gray. In Figure 7 (left and
right) we compared the number of iterations and the error
drop during the iterative solving of the preconditioned system
using odometry chain and the CG.

V. CONCLUSIONS

We propose an efficient preconditioned conjugate gradi-
ents (PCG) approach to solving large-scale SLAM problems.
Our new method, subgraph preconditioning, is obtained by
re-interpreting the method of conjugate gradients in terms of
the graphical model representation of the SLAM problem,
and combines the advantages of direct and iterative methods.
In future work, we hope to demonstrate that more advanced
subgraphs such as thin junction trees or planar graphs can
improve performance even more.
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