
Network-Guided Multi-Robot Path Planning in Discrete Representations

Ryan Luna and Kostas E. Bekris

Abstract—This work deals with problems where multiple
robots move on a roadmap guided by wireless nodes that form
a communication network. The nodes compute paths for the
robots within their communication range given information
about robots only in their vicinity and communicating only with
neighbors. The objective is to compute paths that are collision-
free, minimize the occurrence of deadlocks, as well as the
time it takes to reach the robots’ goals. This paper formulates
this challenge as a distributed constraint optimization problem.
This formulation lends itself to a message-passing solution that
guarantees collision-avoidance despite only local knowledge of
the world by the network nodes. Simulations on benchmarks
that cannot be solved with coupled or simple decoupled schemes
are used to evaluate parameters and study the scalability, path
quality and computational overhead of the approach.

I. INTRODUCTION

This paper discusses an interesting variant of path co-
ordination problems, where a static wireless network is
responsible for the high-level path planning of multiple
robots (see Figure 4). In this setup, the robots can divert
their computation to tasks such as local obstacle avoidance
and localization. This is beneficial in cases where robots are
resource constrained and have a limited time to compute
a path, such as planetary exploration [1] or warehouse
management [2]. Moreover, the network may compute better
quality paths for the robots because it has access to more
information, as in the scenario of Figure 2(a). Similarly, static
nodes can often take advantage of wired communication for
coordination, which is more reliable compared to wireless
communication. This could be the case in future cyber-
physical systems for transportation, which can employ a
networked infrastructure to guide automobiles in an urban
environment to control traffic.

A. Background

Multi-robot path planning can be solved either with a
coupled approach, where the robots are viewed as a single
high degrees-of-freedom (DOF) system, or through a decou-
pled approach, where paths are computed individually for
robots and then conflicts are resolved. The coupled approach
is complete if combined with a complete planner but has
exponential dependency on the number of robots. This has
led to methodologies that reduce the size of the search space
while offering completeness [3], [4], [5]. Prioritized schemes

This work is supported by NSF CNS 0932423 and a graduate fellowship
to Mr. Ryan Luna by the Nevada NASA Space Grant Consortium. The
computational experiments were executed on equipment obtained with
internal funds of the University of Nevada, Reno.
The authors are with the Computer Science and Engineering Department

at the University of Nevada, Reno, NV, USA (rluna@cse.unr.edu,
bekris@cse.unr.edu).

Fig. 1. Network-guided multi-robot path planning on a graph. Agents
are squares. Network node nj can directly observe agents within its local
subgraph G(nj). Through communication with neighbors, nj can also
access information regarding its Local Neighborhood Graph LNG(nj).

are a form of decoupled planning relevant in discrete rep-
resentations. They compute paths sequentially for different
robots in order of priority [6]. While prioritized schemes
can solve problems faster than coupled alternatives, they are
inherently incomplete [7]. Thus, there have been techniques
which aim to increase the reliability of decoupled planners
[8], [9], [10], [11].
Network-guided navigation has been used to guide robots

without the need for a map or localization [12]. The focus is
often on the distributed computation of paths over a network
by encoding dangerous regions as obstacles and employing
potential functions [13]. Flooding the network with messages
is problematic and techniques try to minimize this effect by
computing approximate shortest paths over a skeleton graph
of the network [14].

B. Challenges in Distributing Multi-Robot Path Planners

Distributing the operation of coupled planners over a
sensor network is not realistic, because they require the
collection of global information from all the network nodes.
Moreover, Table I shows the time it takes for a coupled,
A*-based planner to solve the grid-based problem of Figure
2(b). The time becomes quickly prohibitive even for just
6 agents, (more than 4 hours). While existing work has
shown how to optimally decouple multi-robot problems into
sequential plans of smaller composite robots [5], the problem
in Figure 2(b) cannot be decoupled to smaller problems. In
the scenarios studied in this work, it is very often the case
that within the vicinity of a sensor node there are more than 6
agents whose paths cannot be decoupled. Alternative coupled
planners work only on certain types of graphs [4]. Thus,
this paper focuses on decoupled solutions. Nevertheless,
simple prioritized schemes are not a solution either. Figure
2(c) gives a simple case where a prioritized solution will

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 4596

Fig. 2. (a) The paths of αi and αj towards gi and gj intersect. Nodes ni

and nj can detect this earlier than the agents. (b) The environment where the
coupled planner was tested. The proposed technique can solve this problem
many orders of magnitude faster. (c) A prioritized technique considering
only optimal paths for agents would fail in this case.

Number of Agents 2 3 4 5 6
Time (s) 0.09 0.21 307.557 1010.94 15085.6

TABLE I

COMPUTATION TIME FOR A COUPLED SOLUTION

fail. Thus, it is necessary to consider more sophisticated
decoupled planners, where coordination arises naturally from
the constraints imposed on the robots, provides collision
avoidance and minimizes the occurrence of deadlocks.

C. Proposed Approach and Contribution

The proposed approach is an online, distributed solution
for network-guided, multi-robot path planning where no pri-
orities are used and the sensors have only local information.
The sensors first compute alternative local paths for robots
in their vicinity and then coordinate to find an assignment
of paths to robots. This is achieved through a Distributed
Constraint Optimization (DCO) formulation. Coordination
Graphs [15], [16], [10], [11] have been used to describe
the interaction of agents in DCO, which lead to message-
passing solutions with asynchronous belief propagation [16],
[17]. This paper follows this formulation but there are also
alternative schemes for DCO, such as ADOPT [18], [19]
and action-based solutions [20]. The technique also provides
collision avoidance guarantees. Experimental results confirm
that the proposed approach achieves collision-free multi-
robot path planning for instances where the coupled solution
is infeasible and the prioritized schemes quickly result in
deadlocks.
To the best of the author’s knowledge, the paper’s problem

has not been studied in the past. Network-based navigation
[12], [13], [14] focuses on a single agent and does not con-
sider future interactions of multiple agents. Similarly, multi-
robot path planning does not consider the network-related
constraints [3], [4], [5], [7], [8], [9]. In contrast to prioritized
scheme, the DCO formulation allows the assignment of paths
to robots that are locally suboptimal but which allow the
global existence of a solution to other robots. The algorithm
also lends itself to a message-passing protocol, which is
appropriate for a network-based problem.
This work studies an abstract version of the problem on

a discrete representation, without parameters such as robot
dynamics, bandwidth limitations and localization errors. This
abstraction allows this paper to focus on path planning, to
compare against optimal single-agent paths and formulate the
requirements for collision avoidance.

II. PROBLEM DEFINITION

Consider a graph G(V,E) embedded in the obstacle-free
part of a workspace R. In this paper R ⊂ R

2, but the
treatment extends to higher-dimensional problems. G has
vertices that are collision-free positions in R and edges that
correspond to collision-free paths between vertices. There
are also agents A = {α1, . . . , α|A|}, which occupy vertices
of the roadmap and move along the roadmap’s edges. The
vertex occupied by agent αi at time t will be denoted as
vi(t). The time it takes to traverse edges is the same along
the graph. Two agents cannot occupy the same vertex or the
same edge simultaneously. Each agent has a goal gi ∈ V .
R contains static wireless nodes N = {n1, . . . , n|N |}.

The nodes can communicate among themselves and with the
agents as long as they are within a predefined radius. The
nodes are placed in such a way so that they form a connected
network. Moreover, an agent can communicate with at least
one node from every vertex of G. Nodes are aware of the
graph’s structure but can detect only the location of agents
within their communication radius. Agents are also referred
here as robots, while nodes are also called sensors.
An agent does not compute its own path but receives

commands from the nodes in order to reach its goal. A path
πi for agent αi is a sequence of vertices: πi(0 : tm) =
(vi(t0), . . . , vi(tm)). Given a path, the edge ei(tj) is the
edge that has to be traversed in order to go from vi(tj) to
vi(tj+1). Two paths for two agents αi and αj are compatible:
πi(0 : tm) � πj(0 : tm), as long as:

∀ 0 ≤ t ≤ tm : vi(t) �= vj(t) ∧
∀ 0 ≤ t ≤ tm − 1 : ei(t) �= ej(t)

If one path is shorter than the other, then it can be expanded
by repeating its last vertex. A solution path πi(0 : tm) for
αi is one where vi(tm) = gi.
Problem: Given the above described nodes N and agents

A, an initial placement of agents {v1(0), . . . , v|A|} and
goals {g1, . . . , g|A|} on the graph G(V,E), compute over
the network paths {π1(0 : tm), . . . , π|A|(0 : tm)} so that:
• Each path is a solution path for the corresponding agent.
• Each pair of paths is compatible:

πi(0 : tm) � πj(0 : tm), ∀ i, j ∈ [0, |A|], i �= j.
• And tm is minimized.

III. HIGH-LEVEL DESCRIPTION OF THE APPROACH

The approach first partitions the graph into subgraphs
G(nj) for each node nj during an offline phase. A point
along G is assigned to subgraph G(nj) as long as nj

is its closest sensor according to Euclidean distance. This
roadmap partition is available to the sensors before the online
operation of the algorithm. It is similarly possible to partition
the agents at each time step into subsets A(nj)(t) based on
the vertex they occupy: αi ∈ A(nj)(t) iff vi(t) ∈ G(nj).
During the online operation and as multiple agents enter

and exit a node’s subgraph G(nj), previously computed
paths become invalid and they have to be recomputed. This
suggests a replanning, partial solution, where nodes compute

4597

Fig. 3. The communication between sensor nj , agents inA(nj) and neigh-
boring sensors N (nj). The sensors first exchange information regarding
the agents in their local neighborhood graphs. Then they compute paths for
these agents and exchange them. For every two paths of different agents, the
sensors compute the pairwise payoff expressing whether the two paths will
lead to collisions or not. Once payoffs have been computed, the sensors enter
an asynchronous and distributed optimization protocol to make assignments
of paths to agents that minimize conflicts. There is a final check in the
algorithm that guarantees the avoidance of collisions.

paths for agents at periodical intervals, within the time it
takes agents to traverse an edge. One such interval will be
referred to here as a cycle. During cycle (t − 1 : t), nodes
compute paths that the agents are going to execute during
cycle (t : t + 1). Figure 3 explains the protocol for agent-
sensor communication during a cycle:
• Nodes ping agents within their communication range.
• Agents respond with their ids, coordinates and goals.
• Nodes coordinate to assign paths.
• Each nj transmits to A(nj) the action for the next cycle.
For the coordination step the sensors are limited to exchange
messages only with their neighboring nodes. Each sensor
nj generates a set of candidate paths for all the agents
A(nj) in its subgraph and exchanges such information with
its neighbors. The proposed approach views these candidate
paths as discrete action sets in a Distributed Constraint
Optimization (DCO) problem, so as to optimize a global
objective function. The global objective function is defined
in such a way so that when optimized, the agents do not
collide and follow short paths towards their goal. Given the
available amount of time, the sensors select the action that is
returned as the best by the optimization protocol. The sensors
implement a final check to guarantee that no collisions arise
from the current path assignment and then they communicate
the resulting action to the agents.

IV. IMPLEMENTATION SPECIFICS

This section details how the sensors compute the candidate
paths for the robots, the formulation of the DCO protocol and
how to guarantee collision avoidance.

A. DCO Coordination Graph Formulation

Given the agents A = {α1, . . . , α|A|} at states
{v1, . . . , v|A|}, the objective is to select an optimal joint
assignment of paths {π1, . . . , π|A|} that maximizes a global
utility function Q decomposed into local utility functions:

Q(A) =
∑

i

Qi(V (A),Π(A))

Qi expresses the individual utility of αi and depends upon
αi’s interactions with other agents. Often, however, an agent

depends only on a small subset of A. An approach that
exploits such dependencies involves a coordination graph
CG(V C , EC). In CG a vertex represents an agent and an
edge (i, j) represents the fact that αi and αj are interacting.
Then the global utility function can be decomposed as
follows:

Q(A) =
∑

∀i∈[0,|A|]
fi(πi) +

∑

(i,j)∈EC

fij(πi, πj) (1)

where fi is a unary payoff vector based for the paths αi has
available and fij is a pairwise payoff matrix that expresses
the interactions between the paths of αi and αj .
To define the coordination graph at each cycle, this

approach takes into account the communication and infor-
mation constraints imposed by the network. While nj has
information regarding only its communication radius, there
are also interactions between agents in different subgraphs.
But agents that are far away one from the other have limited
interaction. Moreover, each sensor should communicate only
with neighboring sensors, denoted as N (nj). Thus, two
agents share an edge in CG only if they are both located
in neighboring subgraphs. This gives rise to the definition of
the Local Neighborhood Graph LNG(nj) of a sensor node:

LNG(nj) = G(nj) ∪ (
⋃

∀n∈N (nj)

G(n))

which corresponds to the union of G(nj) and neighboring
subgraphs, and is the subset of the original graph that each
sensor node has access to. This means that neighboring
sensors must exchange information regarding the agents
within their subgraphs. Given the above definitions, a sensor
nj implements the following procedure:
1. Exchange “ids, current locations, and goals” with N(nh)
for all agents in LNG(nj).
2. Generate the set of candidate paths πi,∀ αi ∈ A(nj).
3. Exchange the paths (πi’s) with N(nh) for all agents in
LNG(nj).
4. Participate in the distributed optimization of Q
5. Exchange with N(nh) the paths p∗i assigned by the
optimization to agents within the LNG(nj).
6. Check if paths p∗i lead to collision. If they do, enforce
collision avoidance in the final paths transmitted to A(nj).

B. Generating Candidate Paths for the Robots

In order to construct a complete set of paths πi for
each agent, it would be necessary during each cycle to
compute all the paths from its current location to its goal by
applying the Dual Dijkstra algorithm [21]. Unfortunately, this
is prohibitively expensive even for relatively small graphs.
Thus, the proposed approach selects a set of plans that
locally provide a variety of choices for each agent. These
plans are computed by running the A* algorithm and they
correspond to the shortest path to the goal via all the leaves
of the subgraph LNG(nj). If the goal gi is contained in
LNG(nj), then the shortest path to gi is also added to this
set. Otherwise the shortest path to gi goes through one of the
leaves of the subgraph LNG(nj) and is already in πi. The

4598

“zero” path, which corresponds to the agent remaining in the
same position indefinitely, is also added to the set. While
undesirable, this path should be included so as to provide
alternatives to other agents.

C. Message-Passing Protocol for Optimization

The unary payoff function fi(πi) stores the utilities of
paths for agent αi. The shorter the path to the goal, the
higher its utility. For example, the utility can be computed as
follows: C−dt, where C is an estimate of the maximum path
length inR and dt is the path’s length. The “zero” path, as an
undesirable solution, gets a payoff of 0. As is typically done
in implementations of belief propagation, a small noise value
is added to all payoffs to avoid the creation of multiple local
maxima in Q. Furthermore, to avoid paths that are forcing
the agent to backtrack along its current path, the payoffs of
all such paths are further penalized. Experiments show that
this penalization is beneficial to the algorithm’s performance.
The pairwise payoff function fij(πi, πj) expresses the

pair-wise interactions between the paths of different agents.
For a pair of paths πi(dti) and πj(dtj) there are two cases:
• If the paths are compatible πi(dti) � πj(dtj) (i.e., not
colliding), the utility is the sum of the unary payoffs.

• If the paths collide during the next cycle, the utility is
the maximum negative number.

Given the above payoff functions, every path assignment to
robots that contains even one imminent collision corresponds
to global objective function Q getting the maximum nega-
tive value. The assignment where all agents do not move
corresponds to Q = 0. If at least one agent moves towards
the goal, then the objective function will be positive. The
optimization of Q will promote the selection of short paths.
The optimization of the global objective function can

be achieved by a protocol that is analogous to the belief
propagation algorithm in Bayesian networks, and which
operates by iteratively sending messages μij(πj), between
neighboring agents i and j in CG. Each sensor nj produces
the following messages: For all agents αi ∈ A(nj) and for
all neighboring agents αj of αi in the LNG(nj), it has to
compute the message μij(πj):

maxπi
{fi(πi) + fij(πi, πj) +

∑

αk∈LNG(nj)/ j

μki(π(αi))}

The message μij(πj) is an anytime estimate of the maximum
payoff that αi can achieve for path πj of agent αj . It is
computed by maximizing (over all paths of αi) the sum of
fi and fij and all messages for αi except that from αj . If
αi and αj are both in A(nj), then the sensor can internally
update this message without communication.
The sensors exchange messages until they converge. If

the coordination graph CG happens to be a tree, then
convergence to a fixed point is guaranteed in a finite number
of steps. In graphs with cycles, there are no guarantees that
the algorithm converges. In practice, however, it has been
shown that the algorithm operates effectively even in graphs
with cycles [16]. Here, it is sufficient if every sensor has
an internal clock that marks the exhaustion of the available

Fig. 4. (left) The coordination graph CG that corresponds to the problem
of Figure 1. Agents a0, a8 and a1 belong to the subgraph of node nj but
they may also interact with other agents in the Local Neighborhood Graph
of nj . (a4, a6, a2) (right) Consider this roadmap where ai, ak, am, an, ap

are agents. If both agents αi and αn decide to move to node vj , there will
be a collision. The node guiding αi can decide to keep the agent in its
current location. But then this will effect the current choices of αm, αk

and αp.

time for optimization at which point the sensor selects the
best path: π∗

i = argmax(gi(πi)), where gi(πi) = fi(αi) +∑
αk∈LNG(nj)

μik(πi). The function gi(πi) can be computed
internally without communication.

D. Guaranteeing Collision Avoidance

The final path assignment {π∗
1 , . . . , π∗

|A|} may still contain
incompatible paths, since the message-passing protocol is not
guaranteed convergence. To detect such an issue, neighboring
nodes must exchange the selected paths π∗

i . To resolve
incompatibilities, it might appear that forcing one, or all, of
the agents involved in the event to stop is sufficient but this
is not true. If an agent αi stops, then another agent αk, one
not involved in the incompatibility, may have been assigned
an action that takes it through vi. Therefore, if αi has to stop,
then αk must also stop and this can have a chain reaction
over all the agents and throughout the network. This means
that a sensor which detects an incompatibility has to inform
its neighbors which can lead to a flooding of the network.
Thus, collision avoidance has to be guaranteed through

local decisions and without any need for communication.
This can be achieved, as long as forcing an agent to stop
is guaranteed to raise no conflicts. This means that other
agents should not plan through the current position of an
agent. In particular, if agent αi occupies vertex vi and agent
αk occupies neighboring vertex vk, then no path in the set
πk is allowed to have as its first vertex vi. Now, each agent
αi can safely be stopped without its guiding sensor having
to inform any neighbor. If the best path of αk goes through
vi, then a stop action should be added in the beginning of
this plan.
This solution, however, will often cause agents to stop.

To reduce this undesirable effect the following steps can be
executed. Node nj identifies agents αk where their first step
is to stop and the second step is to move to a vertex where
another agent αi is currently located. Such paths can arise
from the introduction of the safety rule described above. If
agent αi actually departs vertex vj , then αk does not have to
stop and can accelerate the execution of its path by moving
directly to vi. However, multiple agents might be in the
same situation as αk, waiting for αi to move out of vi. In
this case a priority has to be used to decide which agent
gets vi. This improvement can also have a chaining effect if

4599

multiple agents are in consecutive vertices. The associated
implementation in this paper ignores this chaining effect, as
this is introduced only for efficiency and is not needed for
collision avoidance.

V. EXPERIMENTS

To show the feasibility of network-guided multi-robot path
planning, a series of experiments is conducted to evaluate
different parameters for the approach, solution quality, com-
putational efficiency, and scalability.

A. Setup

• Hardware: Parallel computing cluster made of Sun Fire
X4100 M2 Nodes. Each node has two quad-core 2.6 GHz
CPUs and 8GB of RAM.

• Software: The simulation is implemented using C++
for the sensor network and robot processes. All inter-
process communication utilizes the Message Passing In-
terface standard (MPI), which guarantees lossless and in-
order delivery of messages. Results are simulated using a
Java based visualization to ensure the proper behavior of
sensors and robots in the environment.

• Each node in the sensor network is simulated with its
own process space and dedicated processing core in the
parallel cluster. Because of the relatively low computa-
tional overhead for robots, all robots are simulated using
a single process and core in the cluster.

B. Implementation Specifics

To evaluate the approach, a series of experiments was
performed using three different environments, shown in
Figures 1 and 5.
i) Sparse, Urban Roadmap (Figure 5(a))
• 111 vertices and 113 directed edges

ii) Dense grid roadmap (Figure 1(a))
• 329 vertices and 1026 undirected edges

iii) Sparse, random roadmap (Figure 5(b))
• 217 vertices and 442 undirected edges
All simulations utilize an equally spaced static sensor

network that results in uniform coverage of the space. The
subgraph G(nj) of each sensor node nj is computed as the
set of vertices that are closest in terms of Euclidean distance
to the node. For each of the three roadmaps, a set of entry
and exit vertices is defined for all agents. In order to make
the problem more challenging, constraints are placed on the
selection of these points so that robot interactions are likely
to occur during the simulation. In the sparse urban roadmap
and the dense grid roadmap, start vertices are chosen along
the boundary of the roadmap. The exit vertex for each robot
is chosen so that it lies along a different bounding edge of
the roadmap than the start vertex. For the sparse random
roadmap, there are 12 predefined vertices for robot entry
and exit; 6 on the west side and 6 on the east side. Each
robot is assigned one start vertex, with its corresponding
goal vertex lying on the opposite side of the environment.
With these conflicting start and goal assignments, robots have
to coordinate their paths, otherwise deadlocks will occur.

Fig. 5. (a) The sparse, urban roadmap with a graphical representation of
the coverage of a 16 sensor configuration. (b) The sparse random roadmap
with a graphical representation of the coverage of a 36 sensor configuration.

When a robot enters the environment, it must ensure that
its start vertex is unoccupied at entry time. If the start vertex
for a robot is occupied when a robot is to enter, a queue
is formed for that vertex. As more robots attempt to enter
the environment at the same point, they will enter the same
queue. Robots are released from this queue as soon as the
entry point becomes free.

C. Evaluation of Parameters and Important Metrics

1. Path quality: This metric evaluates the quality of paths
computed through the following parameters:
• the steps each agent takes to reach its destination
• the stops in an agent’s path
• the number of times an agent backtracks
• the number of times the optimization procedure results
in a collision and collision avoidance has to be enforced

• the number of times the set of robots reached a
deadlock (all robots stop moving)

During each experiment the simulation reports the average
value for the above parameters, as well as its standard
deviation. One comparison point for the number of steps
each robot takes to its goal is the ratio of the length of
the path taken versus the length of the shortest path if
interactions with other robots are ignored. The duration
of the single-robot shortest path is a highly optimistic
estimate, with ratios near 1.0 yielding a very optimal
solution.
2. Computational Efficiency: The duration of a planning
cycle can impact the quality of the results and is an
important parameter of the evaluation procedure.
3. Scalability: The number of sensors and robots in
an experiment effect the algorithm’s performance.
The objective is to be able to scale these numbers
while minimizing the degradation in path quality or
computational efficiency.

Penalizing backtracking paths: One possible way to
improve path quality is to penalize paths that move the
robots along the previously traveled edge. By penalizing
these backtracking paths, robots will be discouraged from
reversing direction which can significantly improve the
quality of the solution. On the other hand, selecting such
paths may be necessary in order to avoid collisions or

4600

Penalty No Penalty
Random Roadmap Solution Steps 211.02 228.3
36 Sensors Path Ratio 2.52 3.16
100 Robots Deadlocks 2 30
Dense Grid Solution Steps 78.79 83.6
25 Sensors Path Ratio 1.24 1.32
75 Robots Deadlocks 2 10

TABLE II

THE EXPERIMENTAL VALUES SHOWING THE IMPROVEMENTS WHEN

PENALIZING BACKTRACKING PATHS. ALL VALUES ARE AVERAGED OVER

50 SIMULATIONS.

deadlocks. Therefore, the question arises whether the benefit
from such a penalty is higher than any potential drawback.
Experiments are conducted in the two roadmaps that allow
backtracking. If a candidate path is computed that reverses
the direction of the robot, the unary payoff corresponding
to that path is divided by 2. The experimental results,
shown in Table II, show that penalizing backtracking paths
significantly improves the overall quality of the solution.
The total number of steps for the solution, the ratio of
the path’s length to the optimal value, and the number of
deadlocks is significantly reduced.

Computational Efficiency: Because this technique is to be
used in an online fashion, it is important that each planning
step take a relatively small amount of time. This, however,
can limit the quality of the coordinated paths between robots
because the message passing protocol may not converge.
The coordination portion of the approach is capped at 100
iterations of the message passing protocol, or 500ms in the
sparse roadmaps and 1500ms in the dense environment,
whichever comes first. More time is allotted for the dense
roadmap because a much larger number of candidate paths
are generated for each robot during each time step. These
deadlines prove very effective in the three roadmaps. The
sparse urban roadmap has an average cycle duration of 0.68
seconds in the 25 sensor, 250 robot case. The dense grid
environment has an average planning time of 2.07 seconds
in the 25 sensor, 100 robot case. Lastly, the sparse random
roadmap has an average planning time of 0.75 seconds in
the 36 sensor, 100 robot case. These three configurations can
be seen in the video submitted in conjunction with this work.

Scalability: Fig. 6 shows the performance of the technique
in terms of total time steps for the random sparse roadmap.
The best solutions appear from a 36 sensor configuration.
For network configurations of 25, 36, 49, and 64 sensors,
the technique is able to solve scenarios involving up to 75
robots with no reported deadlocks. It isn’t until the 100 robot
scenarios when deadlocks appear for this roadmap. Similar
results appear in the dense grid roadmap. For a network
configuration of 25 sensors, the 25 and 50 robot simulations
do very well, with deadlocks beginning to appear in the 75
and 100 robot cases. The sparse urban roadmap proved to be
the easiest of the three scenarios. The environment allows no
backtracking because the edges are all directed. Because of
this, a robot never encounters a scenario where another robot

Fig. 6. The average solution length for varying numbers of robots and
sensors in the random, sparse roadmap.

Fig. 7. Path quality in the dense grid roadmap with 25 sensors. The average
path length and total simulation time steps are shown for varying numbers
of robots.

is moving towards it from the opposite direction, easing the
constraints between any two robots. Experiments with up to
250 robots moving through this roadmap were consistently
successful without any deadlocks.
From Figures 6, 7, and 8, it can be seen that as the number

of robots increases, the total solution length for each roadmap
scales linearly. Experiments in each of the three roadmaps
stress the total number of robots that the environment can
support at any one time. These limits appear implicitly with
the robot queues at the predefined entry points of each
roadmap. In the sparse urban roadmap, the number of robots
present inside of the roadmap peaks at 65. This equates
to nearly 60% of the vertices of the roadmap occupied.
For the dense roadmap, the number of robots peaks at 62
in the graph of 329 vertices. Although this roadmap has
nearly three times the number of vertices as the sparse urban
roadmap, the robots reach their goal positions much quicker
in the dense grid because of the large number of candidate
paths available to each robot. The sparse random roadmap
is the most constrained roadmap of the three tested, and is
also the largest in terms of area. In this roadmap, solutions
are consistently computed with up to 100 robots present in
the roadmap, which equates to about 50% occupancy of the
underlying graph.
The number of sensors in each environment plays an

important role in the solution quality for each roadmap. The
number and length of the candidate paths generated by each
robot is dependent on the size of each sensor node’s coverage

4601

Fig. 8. The average solution length for varying numbers of robots and
sensors in the random roadmap.

area. If there are very few sensors in an environment, the area
covered by each node will be large, resulting in many long
candidate paths for each robot. This introduces coordination
between robots that may otherwise be unaffected by the
action of the other because of their large distance from
each other. The opposite situation can also be detrimental.
In an environment that is over saturated with sensors, the
coverage area for each node becomes small, resulting in a
small number of short candidate paths for each robot. The
small number of paths, coupled with the fact that robots will
not coordinate until they are in very close proximity to each
other can lead to sub optimal choices in path coordination.
Figure 6 shows that network configurations with small or
large numbers of sensors result in worse solutions for the
same roadmap.

VI. DISCUSSION

This paper introduces the problem of multi-robot path
planning through a set of network nodes that guide agents
moving on a graph. This work proposes a distributed, online
algorithm for this problem, where each node of the network
has information about robots only in a local neighborhood
and exchanges information only with 1-hop neighboring
nodes. The algorithm casts the challenge as a Distributed
Constraint Optimization problem, models the interactions of
agents through a coordination graph, and applies a message
passing protocol for its solution. The method guarantees
collision avoidance without causing the network to flood with
messages. Simulated experiments showed that deadlocks
occur rarely on benchmarks where prioritized schemes failed
very quickly and the coupled approach is infeasible.
There are many exciting extensions for this line of work:

(1) Integrating the proposed algorithm with coupled planners
so as to guarantee deadlocks avoidance, while keeping the
computational cost as low as possible. (2) Extending this
work to continuous space planning and considering dynamic
motion constraints. Similarly communication constraints,
such as bandwidth and throughput, or location uncertainty
can also be introduced. (3) Load balancing schemes where

heavy-loaded nodes outsource computation to less loaded
neighbors can be helpful. Nodes could also direct robots to
different regions of the workspace so as to avoid congestion.
(4) It is interesting to investigate the case where certain ve-
hicles do not cooperate, but can be detected by the network,
as well as the case of malicious agents. (5) What happens
when there are gaps in the coverage of the workspace or how
should the network adapt when a node fails.

REFERENCES

[1] C. R. Weisbin, P. S. Schenker, R. Easter, and G. Rodrigue, “Robotic
space colonies,” in 6th Inter. Symp. on Artificial Intelligence, Robotics
and Automation in Space (ISAIRAS-01), Montreal, Canada, 2001.

[2] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of
cooperative autonomous vehicles in warehouses,” AI Magazine, 2008.

[3] C. Clark, S. Rock, and J.-C. Latombe, “Motion planning for multiple
robot systems using dynamic networks,” in Proc. IEEE Int. Conf. on
Rob. and Autom. (ICRA), 2003, pp. 4222–4227.

[4] M. Peasgood, C. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE
Transactions on Robotics, vol. 24, no. 2, pp. 282–292, 2008.

[5] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized
path planning for multiple robots: Optimal decoupling into sequential
plans,” in Robotics: Science and Systems V, 2009.

[6] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,” in
IEEE ICRA, 1986, pp. 1419–1424.

[7] G. Sanchez and J.-C. Latombe, “Using a prm planner to compare
centralized and decoupled planning for multi-robot systems,” in IEEE
Int. Conf. Robotics and Automation (ICRA), 2002, pp. 2112–2119.

[8] M. Bennewitz, W. Burgard, and S. Thrun, “Finding and optimizing
solvable priority schemes for decoupled path planning for teams of
mobile robots,” Robotics and Autonomous Systems, vol. 41, no. 2, pp.
89–99, 2002.

[9] M. Saha and P. Isto, “Multi-robot motion planning by incremental
coordination,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2006, pp. 5960–5963.

[10] Y. Li, K. Gupta, and S. Payandeh, “Motion planning of multiple agents
in virtual environments using coordination graphs,” in IEEE Int. Conf.
Robotics and Automation (ICRA), 2005, pp. 378–383.

[11] K. E. Bekris, K. I. Tsianos, and L. E. Kavraki, “A decentralized planner
that guarantees the safety of communicating vehicles with complex
dynamics that replan online,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2007, pp. 3784–3790.

[12] M. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot navigation
using a sensor network,” in IEEE International Conference on Robotics
and Automation (ICRA), 2004, pp. 636–642.

[13] P. Corke, R. Peterson, and D. Rus, “Localization and navigation
assisted by cooperating networked sensors and robots,” Intern. Journal
of Robotics Research (IJRR), vol. 24, no. 9, pp. 771–786, 2005.

[14] C. Buragohain, D. Agrawal, and S. Suri, “Distributed navigation
algorithms for sensor networks,” in IEEE Int. Conf. on Computer
Communications (INFOCOM), April 2006, pp. 1–10.

[15] C. E. Guestrin, D. Koller, and R. Parr, “Multiagent planning with
factored mdps,” in Proc. 14th Neural Information Processing Systems
(NIPS-14), 2001, pp. 1523–1530.

[16] N. Vlassis, R. Elhorst, and J. Kok, “Anytime algorithms for multiagent
decision making using coordination graphs,” in IEEE Transactions on
systems, Man and Cybernetics, The Hague, Netherlands, 2004.

[17] J. Kok and N. Vlassis, “Collaborative multiagent reinforcement learn-
ing by payoff propagation.” Journal of Machine Learning Research,
vol. 7, pp. 1789–1828, 2006.

[18] P. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt: Asynchronous
distributed costraint optimization with quality guarantees,” Artificial
Intelligence, vol. 161, no. 1-2, pp. 149–180, 2005.

[19] W. Yeoh, F. A., and S. Koenig, “BnB-ADOPT: an asynchronous
branch-and-bound DCOP algorithm.” in AAMAS, 2008, pp. 591–598.

[20] M. Lagoudakis, V. Markakis, D. Kempe, P. Keskinocak, S. Koenig,
A. Kleywegt, C. Tovey, M. A., and S. Jain, “Auction-based multi-robot
routing,” in Robotics: Science and Systems I, 2005, pp. 343–350.

[21] Y. Fujita, Y. Nakamura, and Z. Shiller, “Dual dijkstra search for
paths with different topologies,” in IEEE Int. Conf. on Robotics and
Automation, (ICRA), vol. 3, 2003, pp. 3359–3364.

4602

