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Abstract— This paper investigates the problem of coopera-
tive navigation of autonomous marine vehicles using range-
only acoustic measurements. We consider the use of a single
maneuvering autonomous surface vehicle (ASV) to aid the
navigation of one or more submerged autonomous underwater
vehicles (AUVs), using acoustic range measurements combined
with position measurements for the ASV when data packets
are transmitted. The AUV combines the data from the surface
vehicle with its proprioceptive sensor measurements to compute
its trajectory. In previous work, we presented an experimental
demonstration of this approach, using an extended Kalman fil-
ter (EKF) for state estimation. In the present paper, we analyze
the observability properties of the cooperative ASV/AUV local-
ization problem and present experimental results comparing
several different state estimators. Using the weak observability
theorem for nonlinear systems, we demonstrate that this cooper-
ative localization problem is best attacked using nonlinear least
squares (NLS) optimization. We present experimental results
for this new approach and compare it to alternative state
estimators, demonstrating superior performance.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are important
in several marine applications, such as ocean mapping and
exploration, ship inspection and environmental research.
Accurate AUV localization is an important enabler for
AUV navigation and autonomy. There are many different
approaches to AUV navigation, including the use of iner-
tial/Doppler velocity log systems [23], acoustic transpon-
ders [12], [13], and simultaneous localization and mapping
(SLAM) [17], [8]. A key requirement for many AUV tasks
is bounded error without the reliance on surfacing for GPS
measurements.

This paper addresses cooperative localization of multiple
AUVs which has been previously investigated by Vaganay et
al. [20] and Bahr et al. [2]. In this concept, multiple AUVs
equipped with acoustic modems help one another to navigate
by sharing position information and acoustic range measure-
ments. The original concept, named Moving Long Baseline
(MLBL), envisioned two types of AUVs: a Search-Classify-
Map (SCM) vehicles, whose task was oceanographic map-
ping [20] and a Comm-Nav-Aid (CNA) vehicles, whose
task was to aid the SCM vehicle’s navigation. The system
design called for the CNA vehicles to be equipped with high-
performance inertial/Doppler systems, and also for the CNA
vehicles to surface frequently for GPS fixes, whereas the
SCM vehicles would have low-cost proprioceptive sensors.
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Fig. 1. Our experiments used MIT’s Scout kayaks (a). The proposed
approach is targeted for future implementation on an OceanServer Iver2
AUV.

So as to simplify the problem at this stage, the CNA role
has been taken by an autonomous surface vehicle (ASV) with
continuous access to GPS. Using an acoustic modem for the
ranging, the surface vehicle sends its GPS location estimate
with each transmission. If the AUV receives such a message
it combines the information with its own dead-reckoning
(DR) within an estimation framework to improve its position
estimate. The approach can either make use of round-trip
acoustic ranging, or if the vehicles have synchronized clocks,
using one-way acoustic travel time measurements.

Our earlier work relied on the use of two or more
CNA vehicles, spaced sufficiently far apart to establish a
wide baseline [20], hence the name MLBL. In more recent
work, we have pursued the same goal using only a single
surface vehicle [9] and exploiting its motion to achieve
similar performance as when two ore more CNAs are used.
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In the current paper, we analyze the observability of this
configuration for marine cooperative localization and show
that a single surface vehicle can localize the AUV, if its
motion is chosen appropriately.

Our work is closely related to the work of Eustice et al.,
who have investigated the localization of a submerged AUV
using one-way acoustic travel time measurements between
the AUV and a manned surface vessel [7], [22], [21]. In both
approaches, GPS data and acoustic range measurements from
a surface vehicle are fused onboard an AUV to compute the
AUV’s trajectory. Eustice and Webster’s work has primarily
targeted the use of higher cost AUVs for which a Doppler
Velocity Log is available.

There are a number of estimation algorithms which can be
used to solve this problem, including the Extended Kalman
Filter (EKF), Particle Filtering (PF), and nonlinear Least
Squares (NLS) optimization methods [7]. Also modern non-
linear theories such contraction theory [16] have motivated
some researchers to investigate AUV navigation and control
using nonlinear observers that take into account vehicle
dynamics [15]. This approach has not yet been applied to
this problem.

Cooperative AUV localization is a special category of a
more general field of cooperative autonomy. The cooperative
localization for ground vehicles has been extensively studied
by Roumeliotis and colleagues [18], assuming reliable com-
munications. In the AUV setting, we are encumbered by low
bandwidth communications with high latency.

Moving forward from the use of two surface vehicles to aid
one AUV [3], in this paper we analyze the observability of
cooperative localization using a single ASV and demonstrate
that accurate localization can be achieved if the ASV moves
appropriately (Section II). Additionally, we expand on our
previous work by implementing a nonlinear least squares
(NLS) optimization algorithm which estimates the optimal
AUV trajectory that minimizes the least square error relative
to the measurements gathered (Section III). Finally in Section
IV results are presented which illustrate that this approach
outperforms other possible estimators.

II. AUV COOPERATIVE LOCALIZATION WITH A SINGLE
SURFACE VEHICLE

A. Problem Definition

Within the field of cooperative marine robotics the coop-
erative localization problem has been developed as follows:
acoustic modems are installed on one or more surface
vehicles and one or more AUVs. The surface vehicle moves
in formation with the AUV and continuously broadcasts
messages that contain its GPS location and associated times-
tamp. If the AUV receives one of these messages, and
assuming clock synchronization on every vehicle, the range
between the two vehicles can be computed [6]. The AUV
then combines this information with its own dead-reckoning
filter, in a Bayesian framework, to estimate its position.

The AUV is equipped with sensors that can measure its
forward and transverse velocities, v̂m ŵm, and compass that
measures its absolute heading, θ̂m, with respect to the x

and y axes as shown in Figure reffig:MLBL, at each time
increment, m. A pressure sensor measures the vehicle depth
precisely, which allows the 3-D problem to be simplified to
2-D

x1,[m+1] = x1,[m] +4m(v̂m cos θ̂m − ŵm sin θ̂m)

y1,[m+1] = y1,[m] +4m(v̂m sin θ̂m + ŵm cos θ̂m)

θ1,[m+1] = θ̂1,[m+1] (1)

The velocity measurements are considered to be observations
of a combination of deterministic value and stochastic part
with zero mean Gaussian noise (nv̂ , nŵ and nθ). This
propagation will operate with a frequency of 5Hz, thus
4m = 0.2 sec.

As the vehicle dead-reckoning is propagated, the localiza-
tion error and uncertainty grow. As mentioned above, a range
measurement from the surface vehicle will occasionally be
received (with frequency of at most 0.1Hz, thus 4i = 10
sec) and will be used to bound this uncertainty. The surface
vehicle trajectory at each such time i is denoted by X2,[i] =
[x2,[i], y2,[i]]T , and the associated range measurement by
h3D,[i]. Utilizing the accurate depth information this range
measurement is converted into a 2-D horizontal range, h[i].
Again assuming zero mean Gaussian noise, the measurement
function is given by:

h[i] =
√

(x1,[i] − x2,[i])2 + (y1,[i] − y2,[i])2 + nr (2)

Figure 2 illustrates this framework. Note that the heading
is not considered in the observability analysis in the next
section as it is directly observable. While further details of
marine cooperative localization can be found in [3], [9], in
this paper we will focus on the observability of the problem.
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Fig. 2. An AUV navigates using measurements of its heading, θ, and
velocities, v and w, however its uncertainty grows overtime (blue circle).
Occasionally a surface vehicle provides the AUV with a range measurement
(black circle), information that the AUV uses to reduce its uncertainty (red).
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B. Observability Analysis

If the system described in Equations 1 and 2 is observable,
the vehicle’s position can be estimated by combining the
dead-reckoning measurements with the range measurements.
Observability depends on relative motion between the two
vehicles. If the system is not observable, then there is no
way the vehicle’s position can be computed regardless of
the estimation algorithm used.

Some previous work has considered observability of the
cooperative localization framework. Gadre [11] performed
an observability analysis for a similar system with a sta-
tionary ranging beacon. The approach taken linearized the
system leading to important information being lost in the
process. Gadre demonstrated that an AUV receiving range
measurements from known locations can recover its states
if the direction from which these measurements are taken
varies over time. More recently, Antonelli et al. [1] exam-
ined locally weak observability of the marine cooperative
localization framework, presenting results for an EKF used
for cooperative localization, with simulations and using data
from two surface vehicles.

Systems are linearized in both of the papers described
above, and hence are treated as linear time-variant. The initial
nonlinear system becomes a linear system that is observable
— should the range measurements be received from a variety
of directions during operation.

Consider Figure 3(upper), the AUV depicted receives one
range measurement from the ASV. Subsequently, both the ve-
hicles move to new positions, and the ASV provides the AUV
with another measurement (Although for visual simplicity
the figure illustrates AUV to be stationary). Linearization
reduces the nonlinear range measurements to straight lines
tangent to the linearization points. If the range measurements
come from different directions, as is shown in Figure 3
(upper), then, the vehicle position can be recovered by
solving for the intersection of two lines, and therefore the
system is observable, in agreement with Gadre’s results [11].

In Figure 3 (lower), the AUV depicted receives one range
measurement from the ASV. Then, the ASV moves to a new
colinear location and provides the AUV with another range
and position measurement pair. According to Gadre’s results
[11], this system is unobservable. However, if the system is
not linearized, the system should still be observable, as the
position can be computed by solving for the intersection of
two circles that intersect tangentially.

In this paper, we will use nonlinear observability theory
to prove that the system has local weak observability. First
we assume that the vehicle heading is directly observable.
This leaves a second order system in x and y. Using Lie
derivatives and the weak observability theorem for nonlinear
systems [19], the observability matrix is given by

Obs =
(

(x1−x2)
h

(y1−y2)
h

β1 β2

)
(3)

Fig. 3. The effects of linearization. In the upper figure, both the linearized
and the nonlinear system are observable, however in the figure in the lower
figure only the nonlinear system is observable.

where

β1 =
(y1 − y2)2f1 − (x1 − x2)(y1 − y2)f2

h3

β2 =
−(x1 − x2)(y1 − y2)f1 + (x1 − x2)2f2

h3

f1 = v̂m cos θm − ŵm sin θm (4)
f2 = v̂m sin θm + ŵm cos θm (5)
h =

√
(x1 − x2)2 + (y1 − y2)2 (6)

The system equations are presented in the continuous domain
and the range measurement index i has therefore been
dropped. Note that will the actual system is a discrete system,
well-known observability theory for continuous systems can
be used to make conclusions on the actual discrete system
if the sample time is small enough.

This system is observable if the observability matrix is full
rank. Thus, if

det(Obs) =
−f1(y1 − y2) + f2(x1 − y2)

h2
6= 0 (7)

Looking at the observability matrix, we can see that it is full
rank (except some trivial cases) and therefore the system is
observable, as long as the inter-vehicle range changes or the
direction that the range measurements come from varies.

Thus nonlinear observability theory implies that it is
possible to recover the states if a nonlinear observer such as a
Particle Filter or nonlinear Least Squares (NLS) optimization
is used. Conversely for some vehicle configurations a lin-
earized observer (such the EKF) will fail. In addition to this,
observability (as measured by the eigenvalues of Equation
3) can be improved with intelligent motion planning of the
surface vehicle.
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III. LEAST SQUARES FORMULATION

The classic solution to this problem can be obtained by
using well-known techniques such as the EKF and Particle
Filter. In the linear Gaussian case, the Kalman Filter gives
the trajectory that minimizes the expected vehicle position
error given the measurements obtained up to the current time.
Particle Filtering can also give a solution close to the optimal
one if the number of particles used is sufficiently large. In
practice it is difficult to compute the number of particles that
will result in convergence.

An alternative way to solve the problem is through an
incremental batch optimization which computes the trajec-
tory which minimizes the least square error of an entire
state trajectory relative to the measurements. In the Gaussian
(linear or nonlinear) case, this is equivalent to the Maximum
Likelihood Estimator (MLE).

To consider the MLE estimator, all the vehicle position
measurements should be included in the optimization. Given
that velocity measurements are taken approximately 50 times
more frequently than the range measurements; it is common
to group all the velocity measurements between two sequen-
tial range measurements (h[i−1], h[i]) into one cumulative
dead-reckoning measurement (zo,[i] = [∆X[i],∆Y[i]]T ). This
allows us to reduce the number of states in the optimization
to a reasonable number.

Figure 4 shows a series of poses of the AUV and the
surface vehicle. At time t = 0, both the surface vehicle and
the AUV have a certain initial location estimate with a known
uncertainty. Some time later, t = 1, the AUV has moved to
another location and receives a range measurement from the
surface vehicle, h[1]. Between these times the AUV computes
an accumulative dead-reckoning vector using forward and
starboard velocity measurements as well as compass heading
estimates. This vector will be denoted zo,[1].

After n such periods, our aim is to compute the trajec-
tory, X1,[1:n], that minimizes the least squares error of all
cumulative dead-reckoning measurements, zo,[1:n], the range
measurements, h[1:n] and surface vehicle GPS locations,
X2,[1:n], up to the current time.
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Fig. 4. Least Squares framework for a series of poses.

The trajectory corresponding to the least squares error can
be found by minimizing

(X1,[1:n])∗ = argmin
X1,[1:n]

(C(X1,[1:n])) (8)

with the following cost function

C =
1

2

nX
i=1

(||(X1,[i] −X2,[i])|| − h[i])
T

Σ
−1
r,[i](||(X1,[i] −X2[i])|| − h[i]) +

1

2

nX
i=1

(X1,[i] −X1,[i−1] − zo,[i])
T

Σ
−1
o,[i](X1,[i] −X1,[i−1] − zo,[i])

where Σo,[i] represents the covariance of the dead-
reckoning measurements.

We perform this optimization iteratively, as follows:
1) Form an optimization problem that minimizes the least

squares error for all the measurements taken up to the
current time.

2) Use as the initial condition to the optimization, the
previous optimal solution plus the extra pose from the
current dead-reckoning measurement

3) Minimize the cost function using a conjugate gradient
method.

4) When a new range measurement is received, compute
the cumulative dead-reckoning vector, increase the
number of poses, and repeat.

Admittedly the number of states included in NLS opti-
mization increases continuously, and as a result the required
computation increases accordingly. For this reason windowed
versions of this approach have been considered [7] until
this point. Future work will consider efficient incremental
implementations of the NLS such as [14].

IV. EXPERIMENTS

A set of experiments were carried out in Boston’s Charles
River to demonstrate this framework. In the experiments we
used two MIT SCOUT autonomous surface vehicles [4]. We
used one vehicle as a surrogate for an AUV performing
a mapping mission, while the other acted as the CNA.
Both kayaks were equipped with GPS, a WHOI acoustic
modem [10], and a compass. More detail on the basic setup
for the experiment can be found in Fallon et al. [9].

First we performed an experiment to characterize the
modem range measurements. We determined the measure-
ments to be approximately characterized by a Gaussian with
σr = 5m. The vehicle heading uncertainty was taken to be
σθ = 3o. As the vehicles did not have velocity sensors, dif-
ferential GPS measurements were used to simulate actuation
measurements. We envisage our solution to be used with
a low cost AUV (such as the OceanServer Iver2 shown in
Figure 1) with imprecise actuation sensors. For this reason
the forward and starboard velocity measurement variances
will be chosen to be σv̂ = σŵ = 0.5m/s.

In this particular data set, we present both vehicles navigat-
ing autonomously. Figure 5 shows how the simulated AUV
moved in a box pattern, while the surface vehicle followed
a zig-zag pattern behind it (its path is not shown here). The
supporting vehicles path was chosen so as to maximize the
observability of the system.

In Figure 5 and Table I we can see a comparison between
our proposed NLS algorithm and the commonly used EKF
and particle filter. Two mean error values are presented for
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Fig. 5. Comparison of different localization methods. The top figure shows the estimated trajectory for the vehicle serving as the surrogate AUV, using
the EKF, NLS, and CPNLS, compared against GPS which serves as ground truth. The CNA vehicle trajectory is not shown, but followed a zig zag pattern
alternating back and forth across the other vehicle’s path.

the NLS. One is the mean error for the entire optimization
over the full trajectory (NLS) which would not have been
available to the AUV for mission planning as it requires the
full set of measurements — including future measurements
to be calculated. The second is the mean error of each NLS
estimate at the time it was first calculated, using data from
the start of the mission up until that time step. We designate
this the current point nonlinear least squares (CPNLS).

Our results show that the NLS and CPNLS estimators
outperform the EKF. Post processing the data we gathered,
we verified that the NLS localization algorithm runs in
real-time for missions of approximately one hour duration.
As mentioned above, future work will consider efficient
incremental implementations of the NLS.

TABLE I
COMPARISON OF DIFFERENT LOCALIZATION METHODS

Method Mean Error
extended Kalman filter 18.84m

particle filter 13.65m
nonlinear least squares 8.94m

current point nonlinear least squares 13.12m

In Figure 6, we present the localization error for this
experiment (top) and the eigenvalues of the observability
matrix (middle and lower).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the observability of the
cooperative AUV localization problem. Using the weak ob-
servability theorem for nonlinear systems, we have shown
that cooperative localization using a single surface vehicle
aiding a submerged AUV is best performed using a nonlinear
estimator. Because the observability cannot be guaranteed
with a linearized observer, such as an EKF, a nonlinear
estimator is the preferred approach for this situation.

Our algorithm recursively optimizes the AUV’s path for
each new dead-reckoning and range pair, using the NLS
solution from the previous iteration, subject to a conver-
gence criterion that depends on the relationship between
the accuracy of the proprioceptive on-board sensors and
the exteroceptive ranging sensor. We have demonstrated the
performance of the approach with real data for an experiment
with one AUV and one autonomous surface craft.

One potential alternative for future work is to reparameter-
ize the cooperative localization framework in an alternative
linear coordinate space, thus simplifying the required state
estimation [5]. In the absence of such a reformulation,
nonlinear methods present the state of the art for this
problem. Since it is infeasible to operate a typical NLS
optimization indefinitely as the number of states continually
increases, future work will consider methods for on-line
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Fig. 6. Top: Error for Nonlinear Least Squares (NLS) and Continuous Point Nonlinear Least Squares (CPNLS) as a function of time; Middle, Lower:
eigenvalues of the observation matrix as a function of time.

incremental optimization [14], followed by a full offline
batch optimization after the mission.
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