
SIFT-Cloud-Model for Object Detection and Pose Estimation
with GPGPU Acceleration

Takahiro Nakada1,2, Satoshi Kagami1,2,3, Hiroshi Mizoguchi2,1

Abstract— A function to find objects and to estimate their
poses is crucial for a home service robot that works in human
living environment.

In this paper, we propose a “SIFT-Cloud-Model (SCM)”,
that is designed to represent objects in daily scene. The model
consists of SIFT feature descriptors, and their 3D positions,
and eye vectors. The model is automatically obtained by
using Structure from Motion techniques. Then it is matched
against single camera images by finding the corresponding SIFT
features, and using them to estimate the object pose.

The system is optimized using GPGPU methods. Finally ex-
perimental results for accuracy and calculation time are shown.
The method achieves 5.5 fps with 8% error in translation and
25[deg] error in rotation.

I. INTRODUCTION

A vision for robots is that they will assist or help humans
in daily life by acting as a substitute human to do physical
tasks. One ot the difficulties in achieving this task is per-
ception. Robots needs to have a perception function to find
out target objects in a complex daily scene, and to estimate
relative pose for manipulation. If such a perception function
can be achieved, there will be many possible applications.

So far, many model based methods for finding target
object, and for estimating relative pose, were proposed in
computer vision field.

These methods can be categorized into three groups, the
first is 2-D image based (ex. [1][2][3]), the second is 3-
D shape model based (ex. [4][5]), and the third is texture
mapped 3-D shape model based (ex.[6]). 2-D image based
object finding has difficulty in estimating arbitrary rotations
of the target object. 3-D shape models have difficulty match-
ing against partial views obtained from robot sensors. Texture
mapped 3-D shape models have a problems with accuracy
and computational cost.

The proposed method is a modification of the third
method. Instead of having a texture mapped 3-D shape
model, it has SIFT descriptors with 3-D position and camera
view vectors. This model named “SIFT-Cloud-Model(SCM)”
and it is designed to be accurately and efficiently matched
with an input image. This model is easily implemented
by using General-Purpose Computation on Graphics Hard-
ware(GPGPU) techniques[7].

1: Digital Human Research Center, National Institute of Advanced
Industrial Science and Technology, 2-3-26, Aomi, Koto-ku, Tokyo, 135-
0064, Japan.

2: Dept. of Mechanical Engineering, Tokyo University of Science
3: Japan Science and Technology Agency (JST)

Fig. 1. SIFT-Cloud-Model

II. SIFT-CLOUD-MODEL (SCM)

A. Model Description

The SCM formulated in this paper is composed of the
following three types of information:

1. 3-D feature position X ′
i

2. SIFT descriptor[8] descr′i
3. View vector M′

i [R
′
i∣T ′

i]
Here, scalar or vector with single quote ′ means that is in

SCM model throughout this paper (ex. X ′
i).

Fig. 1 center shows dots that represent 1) and 2). Bars that
start from those dots and cones show the estimated camera
positions that correspond to 3).

SIFT is now widely used to represent features in a scene
and it is rotation, scale and lighting invariant in thory. In
practice, there is a limit for changes in scale and lighting. A
SIFT descriptors is a 128 dimensional vector converted from
intensity gradient around the feature.

The SIFT descriptor itself is a 2-D feature of an image,
captured from a certain location from which the target object
appears in given position and orientation. According to the
viewpoint, the appearance of every point in 3D surface may
change. Therefore one SIFT descriptor is not enough to
represent one surface point of target object in 3-D space.
We add 3-D positions of the sift features X ′

i and the camera
view vectors frmo where the feature was observed M′

i [R
′
i∣T ′

i],
in order to describe 3-D target objects.

B. Model Generation

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1748

Fig. 2. Structure from Motion of Two Consequtive Images

Fig. 3. SIFT descriptors from multiple Observation Camera Locations

1) 3D Feature: In order to obtain 3-D feature positions,
Structure from Motion technique[9] is adopted. At first,
corresponding features are obtained from two consecutive
images by matching SIFT vectors. Then fundamental matrix
of these corresponding points is calculated using SFM. This
fundamental matrix is decomposed into intrinsic and external
camera parameters. Finally, 3-D reconstruction of those cor-
responding points are calculated using these parameters by
triangulation. Fig. 2 shows reconstructed 3-D feature points
from these two images.

2) Selection of Representative View Vectors: SFM recon-
structs not only 3-D feature points but also camera locations
at the same time. Each feature point in 3-D can be seen from
many views with slightly different SIFT descriptors. Fig. 3
shows this relationship. In order to reduce computational
cost, we would like to reduce this information into one
representative SIFT descriptor with one view vector at each
3-D feature point.

In Fig. 3, there are SIFT descriptors (descr1, descr2, ⋅ ⋅ ⋅ ,
descr j, ⋅ ⋅ ⋅ ,descra) that correspond to each view vector that
is looking at the same 3-D point. Each SIFT descriptor is
obtained from a different camera location. Equation (1) is
used to calculate the distance between corresponding features

Fig. 4. Overview of Object Detection and Pose Estimation using SIFT-
Cloud-Model

observed from different views. The SIFT descriptor that
is in the center of the group of corresponding features is
determined to be the representative SIFT feature descr′i, and
its view vector is determined to be the representative view
vector M′

i [R
′
i∣T ′

i].

128

∑
r=1

(descrk,r −descr j,r)
2 < threshold (1)

III. DETECTION OF TARGET OBJECT USING SCM

Building SCM is a offline process. Next, detection and
pose estimation using the SCM needs to be done online. Fig.
4 summarizes our proposed detection and pose estimation
method. At first, 2-D SIFT features are calculated from cam-
era input image. Then this 2-D SIFT features are matched
against SCM features together with camera location of SCM
model. Next, it rejects outliers among those corresponding
points by extending Hess’s method[10]. The original method
is for outlier rejection in 2D-2D corresponding points using
a perspective transform matrix. Therefore in 2D-3D corre-
spondence problem here, we introduce View Vector in SCM
in order to reject outliers. Finally, the target object is detected
in camera image using 2D-3D corresponding points matched
above. Position and orientation of the target object related
to the camera is obtained from 2D-3D correspondence of
feature points by using the POSIT(Pose from Orthography
and Scaling with ITerations) method[11].

SIFT feature calculation and its correspondence matching
will be calculated in GPGPU technique. As for SIFT feature
calculation, Wu’s implementation is adopted.

A. Correspondence Matching

SIFT feature is designed to be rotation, scale, and intensity
invariant, but it is not designed to be affine invariant. So a
SIFT feature that was detected from one point on a surface,
cannot, in practice, be autocorrelated with changes in view
direction of more than 30[deg]. Therefore, we added the
view vectors to the SCM, in order to help matching against

1749

(a) Feature Matching using SIFT De-
scriptor Only

(b) Select Inlier using Camera
View Vector

Fig. 5. Feature Matching using SIFT Descriptor and View Vector

camera input image. If correspondence is made by only using
SIFT features in between camera image and in SCM, it may
contain mismatches from matches against the wrong side of
the target object. Fig. 5(a) shows this example.

Instead, by using view vectors M′
i [R

′
i∣T ′

i] in the SCM
model, correspondence of 2-D image with 3-D SCM model
can be made by omitting mismatches, and simultaneously
the correspondence of the view vectors Mopt [Ropt ∣Topt] are
found. Fig. 5(b) shows an example of this.

B. Outlier Rejection

The method shown in previous section rejects mismatch
by using geometric constraints. However there are also
mismatches caused by SIFT descriptor correspondence.

Hess et al. proposed outlier rejection method in 2D-
2D correspondence[10]. Their method randomly selects four
corresponding points x j(x j,y j,1),x′j(x′j,y′j,1)(j = 1 ∼ 4),
and generates a matrix H that satisfies Equation (2). Here
(x j,y j) means a feature in camera image, and (x′j,y′j) means
corresponding feature on SCM that was projected in 2-D.
By iteratively omitting those points that satisfy (3) using this
matrix H, the method finds out a matrix H and outlier that
gives the minimum number of rejections.

sx j = Hx′j
T (2)

d(xi,Hx′i)> threshold (3)

However, Hess’s method can’t directly apply to the case
of 3D-2D correspondance. In our case, using the view
vector obtained in Section III-A, SCM 3D feature points are
projected onto 2D features. This is done by projecting 3-
D feature point Xi by using the best matched observation
camera location Mopt [Ropt ∣Topt] with Equation (4). Matrix K
in Equation (4) are the intrinsic parameters of the camera.

This procedure converts the 3D-2D correspondence problem
into A 2D-2D correspondence problem, and hence we can
apply Hess’s method. Fig. 6 shows this process.

sx′i = KMoptX′
i (4)

IV. POSE ESTIMATION OF TARGET OBJECT

After the previous section, the feature points in 2-D and
the corresponding points in 3-D SCM model are obtained.
Then the POSIT algorithm proposed by DeMenthon[11] is
adopted to robustly estimate a target pose.

Fig. 7 shows a pin-hole camera model with an optical cen-
ter O, focal length f and image plane G. Let the coordinates
of this camera be (i, j,k). In this image space, 3-D feature
points X′

i and object coordinates (u,v,w) with X0 as origin
exist. POSIT calculates the target pose M [R∣T] by Equation
(5).

T = X′
0 =

⎛⎝ X ′
0

Y ′
0

Z′
0

⎞⎠ R =

⎡⎣ iu iv iw
ju jv jw
ku kv kw

⎤⎦ (5)

A. Determination of The Estimation Outcome

POSIT iteratively calculates the statistical pose of a target
from the 2-D projection of the 3-D model. When the number
of iterations increase, the result becomes more accurate.
However, the method can’t guarantee a quality of its result.
Therefore, we need to confirm obtained result in some way.

In this paper, we applied two methods. One is by compar-
ing the current camera view vector with the model’s SIFT
descriptor view vector Mopt [Ropt ∣Topt], which is mentioned
in Section III-A.

The other is by using the reprojection error of obtained
POSIT result. The POSIT result is used to reproject the 3-
D target object into 2-D features by Equation (6). Here x′′i

1750

(a) Correspondence Contains Outlier (b) Perspective Projection Transform of
Four Points

(c) Outlier Rejection

Fig. 6. Outlier Rejection using Perspective Projection Matrix

Fig. 7. Perspective projection and scaled orthographic projection for an
object point and a reference point

means the reprojected feature position in 2-D image. Then
the 2-D distance of those corresponding features gives an
error value of pose estimation result. There is a threshold to
cut off the error.

sx′′i = KMX′
i (6)

n

∑d(xi,x′′i)< threshold (7)

V. EXPERIMENTS

Detection ratio and pose estimation accuracy is measured
using proposed SCM. Computational speed up using GPGPU
is also measured.

As for experiments, a firewire (1394b) camera Point Grey
Research FL2-08S2C(Table I), megapixel lens Spacecom

TABLE I
CAMERA FL2-08S2C (POINT GREY RESEARCH)

Image Sensor Model Sony ICX204 1/3”
Resolution 1024x768
Pixel Size 4.65 x 4.65 µ m
Image Data Formats YUV422
Frame Rate 30 fps

TABLE II
LENS HHF4MK-3C (SPACECOM)

Focal Length 4 mm
Maximum Relative Aperture 1:1.8
Iris F1.8 - 16
Angular Field of View 83.4x64.5 deg.
Minimum Focus Distance 0.1 m

HHF4MK-3C(Table II), PC(Table III) and graphics hardware
NVIDIA Geforce GTX280(Table IV) for GPGPU are used.

A. Object Detection Performance

In order to evaluate detection performance of the proposed
model, an experiment was conducted by occluding target
objects. Fig. 8 shows the experimental setup. Detection rate
of the target object was measured by changing occluded rate
and number of SIFT feature points. Occlusion is done by
placing other object in front of target object.

Fig. 9 shows the detection rate with 2,700 SIFT features
in an input image. In this experiment, even if 60% of the
target object was covered, detection rate was higher than
90%. In 100% occluded case (that means any part of the
target doesn’t be seen), there is no false detection.

TABLE III
PC SPECIFICATIONS

OS Ubuntu9.10 Kernel 2.6.31-17
CPU Intel Core2Duo E8400 3.00 GHz
Memory DDR3 2.0 GB
Compiler GCC 4.1
GPGPU NVIDIA Cg Toolkit 2.1

CUDA 2.3 & CUDA SDK 2.3

1751

TABLE IV
GEFORCE GTX280 SPECIFICATIONS

Stream Processors 240
Graphics Clock 602 MHz
Processor Clock 1296 MHz
Texture Fill Rate 48.2 billion/sec
Memory Clock 1107 MHz
Standard Memory Config 1024 MB

Fig. 8. Experimental Setup of Target Object Detection with Occlusion

Fig. 10 shows the detection ratio result by changing the
amount of occlusion and the number of features detected.
With more than 1,000 features and less than 80% occlusion,
the target object is robustly detected.

Fig. 9. Object Detection Ratio of Camera Image with 2700 SIFT Features
in Input Image

B. Pose Estimation Accuracy

We put the target object in the same scene but with no
occlusion by the other objects, and measured translational
and rotational accuracy.

Fig. 11 shows translational error related to the distance
from the camera. Translational accuracy was about 7%
related to the distance. Rotational accuracy in roll angle
related to the true value is shown in Fig. 12. Rotational
accuracy in roll angle was about 24[deg] throughout 360[deg]
rotation.

C. Computation Time

In order to confirm speed up of computation time by using
GPGPU, comparison in between CPU (CPU based) and

Fig. 10. Relationship in between Number of Input Features, Occlusion
and Detection ratio

Fig. 11. Pose estimated error of translation

CPU combined with GPGPU (GPU based) were conducted.
GPGPU acceleration is mainly used for the correspondence
calculation of SIFT features that has length of 128 vector.
For SIFT detection by CPU, Lowe’s implemention[12] was
used, and for GPU, Wu’s implementation[13] was used.

As for the correspondence calculation, several meth-
ods were proposed, and we adopted Nearest Neighbor
Search(NNS)[14] for GPGPU purpose. NNS is trying to
compare all possible combinations with a threshold based
cut off. This method basically guarantees to find out the best
match. However NNS is computationally very expensive for

Fig. 12. Pose estimated error of rotation

1752

Fig. 13. Execution time: image features 2800, model features 3100

CPU, so the Best Bin First Search (BBF) method[15] was
adopted for CPU. The method preprocesses given data (in
this case SCM) and in matching phase it quickly finds out
an approximate candidate.

Fig. 13 shows computational time for CPU based and
GPU based implementation with 2,800 SIFT features in input
camera image, and 3,100 SIFT features in SCM. According
to this figure, about 98% of execution time was spent
for SIFT feature detection and correspondence matching.
Using GPU, SIFT feature detection becomes 78 times faster,
correspondence matching becomes 7 times faster, and in total
it becomes about 30 times faster than CPU. Cycle rate in this
condition was about 5.5 fps, thus the method can be used
while robot is in motion.

Fig. 14(a) shows the relationship between the number
of features and calculation time in CPU, and Fig. 14(b)
shows the same for GPU. From this result, GPU based
implementation is not sensitive to the number of input
features nor the number of SCM features.

VI. CONCLUSION

This paper proposed a 3-D object description method
“SIFT-Cloud Model” that consists of SIFT feature vectors,
their 3-D positions and view vectors. The model is designed
to be computationally efficient and to detect and estimate
relative pose from an input camera image. Detection and
pose estimation methods can be implemented using thee
GPGPU approach, and from the experimental results, current
hardware reached 5.5 fps with 1024x768 input image size.

Experimental results shows that the proposed method
detects a given object from the input camera image even if
occlusion occurs. The method is robust to background image
features, and it can detect target objects that are occluded up
to 60% with more than a 90% detection ratio. The method
can be used to detect objects found in daily scenes in real-
time. With this system, a treasure hunting application for a
mobile robot becomes possible.

REFERENCES

[1] J.P. Lewis, “Fast Template Matching”, Vision Interface, vol. 120, 1995,
pp 123

[2] J.A. Richards and X. Jia, “Histogram Matching”, Remote Sensing
Digital Image Analysis, Springer Berlin, chapter 4, 1993, pp 97-100

(a) CPU Based

(b) GPU Based

Fig. 14. Execution time

[3] R. Lienhart and J. Maydt, “An Extended Set of Haar-Like Features
for Rapid Object Detection”, IEEE International Conference on Image
Processing, vol. 1, 2002, pp 900-903

[4] K. Kanatani and K. Yamada K. Kanatani and K. Yamada, “Model-
Based Determination of Object Position and Orientation without
Matching”, Journal of Information Processing, vol. 12, No. 1, 1989,
pp 1-8

[5] P.J. Besl and H.D. McKay, “A Method for Registration of 3-D Shapes”,
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
14, No. 2, 1992, pp 239-256

[6] H. Yaguchi and K. Okada and M. Inaba, “Model matching and 3D
Pose Estimation Method using High-speeded Texture Image Search”,
The 27Th Annual Conference of the Robotics Society of Japan, 2009

[7] D. Luebke and M. Harris and N. Govindaraju and A. Lefohn and M.
Houston and J. Owens and M. Segal and M. Papakipos and I. Buck,
“GPGPU: General-Purpose Computation on Graphics Hardware”, The
2006 IEEE Association for Computing Machinery, 2006

[8] D.G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points”, International Journal of Computer Vision, vol 60, No. 2, 2004,
pp 91-110

[9] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer
Vision”, Cambridge University Press, chapter. Structure from Motion,
2003

[10] R. Hess, “Sift Feature Detector”, http://web.engr.oregonstate.edu/hess/,
2009

[11] D.F. DeMenthon and L.S. Davis, “Model-based Object Pose in 25
Lines of Code”, International Journal of Computer Vision, vol 15,
No. 15, 1995, pp 123-141

[12] D. Lowe, “Demo Software: SIFT Keypoint Detector”,
http://www.cs.ubc.ca/ lowe/keypoints/

[13] C. Wu, “SiftGPU: A GPU Implementation of Scale Invariant Feature
Transform (SIFT)”, http://cs.unc.edu/ ccwu/siftgpu/, 2006-2009

[14] K. Beyer and J. Goldstein and R. Ramakrishnan and U. Shaft,
“When is“ nearest neighbor“ meaningful?”, Lecture Notes in Computer
Science, 1999, pp 217-235

[15] J. Beis and D. Lowe, “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces”, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 1997, pp
1000-1006

1753

