
Improved Updating of Euclidean Distance Maps and Voronoi Diagrams

Boris Lau Christoph Sprunk Wolfram Burgard

Abstract— This paper presents novel, highly efficient ap-
proaches for updating Euclidean distance maps and Voronoi
diagrams represented on grid maps. Our methods employ a
dynamic variant of the brushfire algorithm to update only those
cells that are actually affected by changes in the environment. In
experiments in different environments we show that our update
strategies for distance maps and Voronoi diagrams require
substantially fewer cell visits and significantly less computa-
tion time compared to previous approaches. Furthermore, the
dynamic Voronoi diagram also improves on previous work by
correctly dealing with non-convex obstacles such as building
walls. We also present a dynamic variant of a skeletonization-
based approach to Voronoi diagrams that is especially robust to
noise. All of our algorithms consider actual Euclidean distances
rather than grid steps. An open source implementation is
available online [1].

I. INTRODUCTION

The Generalized Voronoi Diagram (GVD) is a data struc-
ture that has been widely used in various fields [2]. In the
context of robotics it is a popular cell decomposition method
for solving navigation tasks. The GVD is defined as the set of
points in free space to which the two closest obstacles have
the same distance [3], which motivates its application as a
roadmap technique for path planning: GVDs are “sparse”
in the sense that different paths on the GVD correspond to
topologically different routes with respect to obstacles. This
significantly reduces the search problem and can be used
to generate the n-best paths for offering route alternatives
to a user or for optimization-based motion planning [4].
Also, moving along the edges of a GVD ensures the greatest
possible clearance when passing between obstacles. This
relates the GVD to distance maps (DMs) which store in each
cell the distance to its closest obstacle. Since a cell lookup
requires only constant time, DMs provide efficient means for
collision checks, computing traversal costs for path planning
or for robot localization with likelihood fields [5].

Several algorithms for computing DMs and GVDs of given
static environments have been proposed in the past [2], [6].
However, applications in dynamic environments require effi-
cient updates of DMs and GVDs, especially when using large
maps or more than two dimensions, or when computational
resources are limited. Existing approaches to dynamic up-
dates of GVDs on grid maps approximate obstacle distances
with grid step distances, suffer from discretization artifacts,
and fail inside non-convex obstacle compounds like building
walls as shown in Fig. 1 (top-left).

All authors are with the Department of Computer Science at the
University of Freiburg, Germany, {lau,sprunkc,burgard}@informatik.uni-
freiburg.de. This work has partly been supported by the European Com-
mission under grant agreement number FP7-248258-First-MM.

Kalra et al. EVG-Thin (static)

Ours: condition-based Ours: skeletonization-based

Fig. 1. Dynamic Voronoi diagrams on grid maps. Our condition-based
approach improves on previous work by Kalra et al. [7] which generates
overly thick Voronoi lines and fails inside enclosed areas (dotted ellipses).
We combine this with ideas from the static Voronoi approximation method
“EVG-Thin” [8] and propose a dynamic skeletonization-based approach that
is especially robust to noise.

This paper presents algorithms for efficient updating of
DMs (Sect. III) and GVDs (Sect. IV) that overcome the
aforementioned problems, use actual Euclidean distances,
and are computationally more efficient than previous ap-
proaches. Sect. V evaluates and discusses our methods com-
pared to the state of the art.

II. RELATED WORK

Existing approaches for static two-dimensional DMs com-
prise analytical methods, linear image traversal, and distance
propagation with the brushfire method (see the recent survey
by Fabbri et al. [6] for a comparison). Whenever a cell in a
grid map is newly occupied or freed, the corresponding DM
has to be updated to reflect that change. A trivial method is
to recompute distances for patches within 2dmax around all
changed cells, where dmax is an upper bound on the minimum
obstacle distance in the environment. However, this method

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 281

Algorithm 1 Pseudo-Code for Updating Euclidean Distance Maps
SetObstacle(s)

1: obsts ← s
2: dists ← 0
3: insert(open, s, 0)

RemoveObstacle(s)
4: clearCell(s)
5: toRaises ← true
6: insert(open, s, 0)

UpdateDistanceMap()
7: while open 6= ∅ do
8: s← pop(open)
9: if toRaises then

10: raise(s)
11: else if isOcc(obsts) then
12: voros ← false
13: lower(s)
14: return dist

raise(s)
15: for all n ∈ Adj8(s) do
16: if (obstn 6=cleared

∧¬toRaisen) then
17: if ¬isOcc(obstn) then
18: clearCell(n)
19: toRaisen ← true
20: insert(open, n, distn)
21: toRaises ← false

lower(s)
22: for all n ∈ Adj8(s) do
23: if ¬toRaisen then
24: d← ‖obsts−n‖
25: if d<distn then
26: distn ← d
27: obstn ← obsts
28: insert(open, n, d)
29: else chkVoro(s, n)

usually updates substantially more cells than necessary, e.g.,
if dmax is high due to large open spaces or if changed cells
cover a wide area. Kalra et al. recently proposed to update
DMs and GVDs with a dynamic brushfire algorithm [7]
based on D∗, which starts propagating wavefronts at newly
occupied or deleted obstacle cells. These wavefronts accumu-
late 8-connected grid steps to approximate obstacle distances.
However, this overestimates the true Euclidean distances by
up to 8.0% [9], which for a robot implies either a collision
risk or overly conservative movements.

Scherer et al. adopted and corrected Kalra’s algorithm for
DM updates [10]. They propagate obstacle locations rather
than grid step counts to determine Euclidean distances, which
reduces the absolute overestimation error below an upper
bound of 0.09 pixel units [9]. According to Cuisenaire and
Macq [11], the shortest distance at which this propagation
error can occur is 13 pixels, which yields a maximum relative
error of 0.69%. Our approach follows the same principle
and applies it to GVD generation as well. It improves on
the work by Scherer et al. by requiring significantly lower
computational time for the same task due to a substantially
reduced number of cell visits. Similar to their algorithm, our
approach can also be trivially extended to 3D and incorporate
a limit on the propagated distance.

Traditional Voronoi algorithms compute parametric lines
or curves that separate singular obstacle points or line seg-
ments represented in continuous space. There are approaches
to update such Voronoi graphs, e.g., for moving input
points [12] or points that have been inserted or deleted [13].
However, analytic approaches are not practical for use with
grid maps, since they would attach Voronoi lines between all
pairs of occupied cells, even for larger obstacles and walls.

The approach for updating GVDs proposed by Kalra et
al. [7] addresses this issue by introducing obstacle identifiers
that are uniquely assigned to a compound of connected
obstacle cells. If two adjacent cells have different closest
obstacles according to their identifier, both cells are added
to the GVD. This condition however generates two-cell-
wide lines that violate the sparseness property mentioned
in Sect. I. Additionally, it does not generate Voronoi lines
in the interior of concave obstacle compounds like rooms
or corridors as shown in Fig. 1 (top-left), which destroys
the connectivity of the GVD and is disadvantageous for path
planning. Furthermore, since Kalra et al. use 8-connected

step distances for the distance maps, the Voronoi lines also
follow this metric and thereby only approximate the GVD. In
this paper we consider actual Euclidean distances and present
a condition-based approach that a) does not rely on obstacle
identifiers and b) generates thin Voronoi lines, as shown in
Fig. 1 (bottom-left).

Zhang and Suen [14] proposed an approach for GVDs on
static grid maps that erodes the free space starting with the
free cells next to obstacles. For each cell under inspection,
a set of so-called “thinning patterns” determines if a cell
can be removed or not. At the end of this iterative process
the remaining skeleton approximates the GVD. Beeson’s
C++ implementation “EVG-Thin” [8] follows this approach.
An example output is shown in Fig. 1 (top-right). This
GVD approximation is robust to noise and fairly thin, i.e.,
the Voronoi lines are only one-pixel wide. However, a few
double-cell lines still occur and the skeleton uses many
straight and diagonal lines where the actual Voronoi lines
would be curved. Furthermore, it cannot be updated dynam-
ically. In addition to the condition-based approach described
above, this paper presents a GVD generation algorithm that
combines the former with an erosion process that uses true
Euclidean distances. The resulting method is robust to noise
and allows for efficient updates in dynamic scenarios. An
example output is shown in Fig. 1 (bottom-right).

III. UPDATING EUCLIDEAN DISTANCE MAPS

Similar to the method by Kalra et al. [7], our approach
for updating Euclidean DMs uses a dynamic variant of the
brushfire method to iteratively compute distances. Following
the notation of Kalra et al., the pseudo-code of our algorithm
is given in Alg. 1. Movement, insertion, or deletion of objects
causes individual cells in an occupancy grid map to flip their
state from free to occupied or vice versa. A change of a
cell s is registered by calling the function SetObstacle(s)
or RemoveObstacle(s), which updates s and inserts it into
a priority queue. When calling the function UpdateDis-
tanceMap() the collected cell changes are propagated to all
affected cells which completes the update.

Newly occupied cells initiate “lower” wavefronts that up-
date the closest obstacle distance of affected cells. Similarly,
“raise” wavefronts start at newly freed cells and clear the
distance entries of all cells whose closest obstacle was the
deleted one, as shown in Fig. 2. The processing of raise and
lower wavefronts is interwoven and controlled by a single

282

A

raise lower

B

lower
lower

C D

Fig. 2. Distance map update between two configurations (A) and (D). Black represents occupied cells, brightness increases with distance. The inserted
obstacle (blue) initiates a “lower” wavefront shown in the intermediate steps (B) and (C) that updates the distances in the cells up to the point where a
different obstacle is closer. The removed obstacle (red outline) starts a “raise” wavefront (B) that clears the cells that lost their closest obstacle. When it
comes to a halt it initiates a “lower” wavefront (C) that recomputes the distances for the cleared cells (white) on the basis of the remaining obstacles.

priority queue that sorts the enqueued cells by distance.
Both the raise wavefronts (Alg. 1, line 20) and the lower
wavefronts (line 28) enqueue the neighbors of a processed
cell to propagate the wavefront.

A. Data fields and initialization

The output of an update step is a distance map dist , which
stores in each cell s its Euclidean distance to the closest
occupied cell in the corresponding grid map. The obstacle
reference map obst stores for all cells the coordinates of their
closest occupied cell. If s is occupied, it has a distance of
dists=0 and refers to itself as closest obstacle location, i.e.,
obsts = s. The function isOcc(s) returns whether the latter
condition is true for a given cell s. Upon initialization, all
values are undetermined, i.e., dists=∞ and obsts=cleared.
The function clearCell(s) used in the algorithm also resets
s to these values.

All cells that need processing by either a lower or raise
wavefront are inserted into a priority queue open that is
sorted by a distance value. The function pop(open) returns
the cell s with the lowest enqueued distance and removes
it from the queue. The method insert(open, s, d) inserts s
into the queue with distance d or updates the priority if
s is already enqueued. An additional flag toRaise is used
to ensure proper processing of cells in the wavefronts, in
particular where raise and lower wavefronts overlap.

B. Raise and lower: propagating wavefronts

While the priority queue is not empty, the function
UpdateDistanceMap() repeatedly retrieves the next unpro-
cessed cell s (lines 7–8). If s has been cleared but has not yet
propagated a raise wavefront, the function raise(s) is called
(lines 9–10). If s however has a valid closest obstacle, the
function lower(s) is called to propagate the lower wavefront
(lines 11–13).

The function raise(s) processes each cell n in the 8-
connected neighborhood Adj8(s) of s that is not yet part
of a raise wavefront and refers to a closest obstacle obstn
(lines 15–16). If obstn is not occupied, n is cleared, marked
to propagate the raise wavefront, and inserted into the priority
queue (lines 17–20). Otherwise, the raise wavefront comes
to a halt at n, leaves n unchanged but still enqueues it to
initiate a lower wavefront (line 20), as shown in Fig. 2 (C).

The function lower(s) considers each cell n in the 8-
connected neighborhood Adj8(s) of s that is not marked to
be part of a raise wavefront (lines 22–23). The Euclidean
distance from n to the closest obstacle of s is compared to

the current closest obstacle distance of n (lines 24–25). If it
is smaller, the values for distance and closest obstacle of n
are updated to reflect that obsts is now the closest obstacle
of n as well. Also, n is inserted into the priority queue to
propagate the lower wavefront (lines 26–28).

To avoid superfluous raise wavefronts where they would
overlap with lower wavefronts, the condition in line 25 can
be extended to also overwrite cells with equal distance that
refer to a deleted obstacle. The line then reads “if d<distn∨
(d=distn ∧ ¬isOcc(obstn)) then”.

The lines 12 and 29 update the GVD on the fly during the
update of the distance map as described in Sect. IV. If only
distance maps are required, the lines can be omitted.

C. Implementation Details

The distance map algorithm described above computes
and compares real-valued Euclidean distances stored in dist .
As previously done by Scherer et al. [10] and others, we
resort to integer squared distances which saves computational
expenses for the square-root.

A central data structure in our algorithm is the sorted
priority queue used for the queues open and voroQ . We
implement these queues using the bucketing technique pre-
sented by Cuisenaire and Macq [11]. It pools cells with the
same distance in unsorted lists and keeps track of the next
non-empty container. Thereby it reduces the insertion costs
from O(log n) to constant time.

To implement priority queues with unique entries and in-
creasable priorities we actually insert the elements whenever
they are updated, and carry a Boolean flag toProcess for
each cell s. It is set to true by insert(open, s, d) and reverted
to false by pop(open). The function pop(open) iteratively
dequeues elements until it reached an s with toProcesss =
true, and thus discards duplicated entries.

IV. RECONSTRUCTION OF VORONOI DIAGRAMS

Voronoi graphs in continuous spaces consist of infinitely
thin lines and curves. When GVDs are represented on
discretized grids, artifacts in the form of erroneous con-
nections can occur. Firstly, a pair of nearby Voronoi lines
that pass through adjacent cells becomes connected and
thus creates erroneous circles and interconnections in the
graph. Secondly, a single Voronoi line that lies between two
discrete cell locations in continuous space causes double
lines in the GVD. In both cases, the Voronoi graph looses its
sparseness property, i.e., not all paths in the GVD correspond
to topologically different routes with respect to obstacles.

283

A B C D

Fig. 3. Skeletonization-based Voronoi update between two configurations (A) and (D). The erosion (B) starts at cells adjacent to newly inserted obstacles
(blue boundary), and where raise or lower wavefronts came to a hold during the distance map update (red boundary). In an iterative process, the cells are
eroded depending on a set of conditions while ensuring the connectivity of the GVD (C). The remaining skeleton is the updated (unpruned) GVD (D).

Algorithm 2 Condition-based Voronoi

chkVoro(s, n)
30: if (dists>1 ∨ distn>1) ∧ obstn 6=cleared

∧ obstn 6=obsts ∧ obsts 6∈ Adj8(obstn) then
31: if ‖s−obstn‖ ≤ ‖n−obsts‖ then voros ← true
32: if ‖n−obsts‖ ≤ ‖s−obstn‖ then voron ← true

Algorithm 3 Skeletonization-based Voronoi

rebuildVoronoi(voroQ)
33: while voroQ 6= ∅ do
34: s← pop(voroQ)
35: if ¬patternMatch(s)∧@n∈Adj8(s) : conditions(s, n)

∧ comp(obsts) 6=comp(obstn) then
36: voros ← false
37: for all n ∈ Adj8(s) do
38: if voron 6= false then insert(voroQ , n, distn)

When using an 8-connected grid model, the GVD appears
to be thinner by visual inspection. However, due to the addi-
tional connections, such GVDs often violate the sparseness
condition, which is not the case for 4-connected ones.

The remainder of this section presents two approaches
to update GVDs on grid maps that mitigate the above-
mentioned problems. Both methods can generate 4- and
8-connected GVDs. An additional pruning step deals with
artifacts due to discretization, i.e., double lines and erroneous
connections, and thus ensures sparseness of the GVD.

A. Condition-based GVD

Our condition-based approach to updateable GVDs im-
proves on the algorithm by Kalra et al. [7] by performing
less cell visits and operating without extra knowledge about
obstacle identifiers. We represent the GVD by a map voro,
which specifies for each cell s if it is part of the GVD
(voros= true) or not (voros= false). The update of the GVD
directly integrates with the update of DMs: lower wavefronts
remove elements from the GVD (line 12), and potentially add
them after checking a number of conditions (line 29).

In continuous space, a point is part of the GVD if the
distance to its two closest obstacles is identical. This condi-
tion cannot directly be applied to discretized cell coordinates.
Instead, we have to select the cells for the GVD that contain
Voronoi lines in their associated area. If the lower wavefront
propagated by a cell s finds an adjacent cell n whose distance
cannot be lowered by adopting obsts as closest obstacle,
it calls chkVoro(s, n). This function tests if at least one

c∈{s, n} is not adjacent to its closest obstacle (see Alg. 2,
line 30), which increases the robustness to noise. If n has
a valid closest obstacle that is different and not adjacent to
the closest obstacle of s, both cells are GVD candidates.
The function then adds the cell c ∈ {s, n} that violates the
continuous Voronoi condition to the lesser degree, i.e., the
one with the smaller distance increase when switching from
its own referenced obstacle to the one of the competing
neighbor. If the increase is the same both ways, both cells
are inserted (lines 31–32). For 8-connected GVDs, the “≤”
are replaced by “<” for diagonal neighbors s and n, since
no cells need to be inserted in the case of equal increase.

B. Updating Skeletonization-based GVDs

Algorithms like EVG-Thin [8] skeletonize the free space
to generate GVD approximations, starting with the cells
adjacent to obstacles. By iteratively applying thinning pat-
terns that preserve the connectivity, an evenly progressing
erosion of the free space is ensured. The remaining skeleton
approximates the GVD, as shown in Fig. 1 (top-right). These
approaches are robust to noise and thus generate clean GVD
approximations. This section presents an approach to gen-
erate and update skeletonization-based GVDs that consider
actual Euclidean distances.

To ensure correct updates after topological changes, we
assign a unique identifier to each connected group of oc-
cupied cells. These identifiers are stored by comp(s) for
each occupied cell s, and can be updated efficiently in
O(log n(log log n)3) time [15].

The erosion of our dynamic method starts next to newly
inserted obstacles and where raise wavefronts turned into
lower wavefronts while updating the DM as shown in Fig. 3.
These cells are enqueued in voroQ , sorted by their distances
for even erosion.

The function rebuildVoronoi(voroQ) iteratively retrieves
the cell s with the lowest distance from the queue, see Alg. 3,
lines 33–34. Cells were unconditionally added to the GVD
by the raise wavefronts (not shown in pseudo code), and are
now removed again (line 36) if all of the following conditions
hold: (a) the cell is not required for the GVD as determined
by connectivity patterns (b) no cell n adjacent to s fulfills the
conditions in Sect. IV-A and has an obstacle with a different
identifier comp(obstn) than the obstacle of s (line 35).

The patterns shown in Fig. 4 match whenever the center
cell s provides connectivity for one or more of its adjacent
cells. Here, a “1” matches voro = true, while “0” stands for
voro = false, and empty fields are ignored. The patterns are
applied in every rotation where indicated by arrows. If not

284

0 1
1 s

P 4
1

0
1 s 1

0
P 4
2

1 0
0 s

P 8
1

0
1 s 1

0
P 8
2

1
1 s 1

1
P 8
3

4-connected 8-connected

Fig. 4. Patterns used by the function patternMatch(s), which returns true
if any of the patterns match. Arrows indicate application of rotated copies.

prevented by any of these conditions, the cell is removed and
all its neighbors that still are on the GVD are inserted into
voroQ for inspection (lines 37–38).

C. Pruning

As discussed in Sect. I, different paths on the Voronoi
graph correspond to topologically different routes in the
environment. To preserve this property for GVDs on grid
maps, thin Voronoi lines, i.e., being one pixel wide, are
desired. Previous work on dynamic GVDs by Kalra et al.
however regularly generates Voronoi lines that are two or
three pixels wide. In contrast, both our approaches generate
thin GVDs wherever this can be done unambiguously. Our
optional pruning step erodes 2-pixel-wide Voronoi lines
that occur where a theoretical Voronoi line passes exactly
between two cells. Therefore, all new Voronoi cells are
inserted into a priority queue and processed as follows.

In a first phase the pruning algorithm merges Voronoi
lines that are erroneously connected due to the finite map
resolution. This is done by adding unoccupied cells that are
enclosed by 4-connected Voronoi lines to the GVD. They are
detected by matching pattern P 8

3 .
The second phase implements the actual pruning step. In

increasing order of distance, the enqueued cells are iteratively
popped from the priority queue. If such a cell has more
than one neighbor on the GVD, and none of the connectivity
patterns match at the cell’s location, it can be removed from
the GVD without affecting its topology.

V. EXPERIMENTS

We tested our algorithms on laser range data of walking
people in different environments (see Fig. 5), recorded by a
moving robot. The sequence “FR079” consists of 369 frames
recorded in an office building, and “FR101” contains 400
frames recorded in a large foyer space. The update radius
around the robot was only limited by the maximum range of
the laser scanner (80 m), and the maximum closest obstacle
distance dmax in these two maps is 29 cells (1.45 m) and
97 cells (4.85 m), respectively.

The 400 frames of “Factory” were simulated by randomly
inserting 200 obstacles per frame into a grid map of a large
factory floor with dmax=44 cells (2.2 m). Similar to Kalra et
al. [7], the random obstacles were placed within 5 m radius
around a moving center, which simulates a moving observer
with limited perception. The tests were done using our C++
implementation of the algorithms, running on an Intel R©

CoreTM i7 2670 MHz. The source code and the employed
data sets are available online [1].

FR079

10 m

Factory

FR101

Fig. 5. Maps of the environments where our experiments were carried out.

TABLE I
UPDATE PERFORMANCE OF DISTANCE MAPS AND VORONOI DIAGRAMS

Time per frame [s] Cell visits per frame
Map & Approach mean min max mean min max

D
is

ta
nc

e
M

ap
s

FR
07

9

Maurer 0.013 0.013 0.013 1,393,286 1,392,450 1,394,272
Cuisenaire 0.011 0.010 0.011 302,513 301,022 304,138
*Scherer 0.010 0.006 0.019 250,403 77,277 657,903
*Ours 0.003 0.001 0.005 99,761 29,340 190,998

FR
10

1

Maurer 0.032 0.032 0.033 3,299,105 3,296,201 3,302,497
Cuisenaire 0.021 0.021 0.021 572,345 562,474 581,158
*Scherer 0.082 0.026 0.148 3,338,297 792,054 6,190,219
*Ours 0.033 0.011 0.051 1,264,488 427,176 1,929,690

Fa
ct

or
y Maurer 0.060 0.060 0.060 5,954,325 5,954,259 5,954,447

Cuisenaire 0.050 0.050 0.052 959,484 957,735 961,709
*Scherer 0.023 0.003 0.032 976,292 80,262 1,307,630
*Ours 0.008 0.002 0.011 319,871 80,262 423,315

Vo
ro

no
i

D
ia

gr
am

s FR
07

9
EVG-Thin 0.121 0.120 0.122 10,030,438 10,001,973 10,059,575
*Kalra 0.013 0.006 0.030 483,242 281,126 933,410
*Ours Skel 0.008 0.004 0.011 181,716 39,676 408,248
*Ours Cond 0.005 0.003 0.008 113,803 31,824 215,131

FR
10

1

EVG-Thin 0.296 0.282 0.310 19,892,173 19,798,905 20,005,447
*Kalra 0.157 0.046 0.284 4,363,678 1,537,112 7,558,395
*Ours Skel 0.060 0.027 0.091 2,480,006 880,617 3,715,450
*Ours Cond 0.044 0.018 0.066 1,372,060 475,163 2,087,083

Fa
ct

or
y EVG-Thin 0.619 0.592 0.632 35,540,331 35,525,379 35,551,489

*Kalra 0.050 0.005 0.068 1,462,930 167,553 1,970,182
*Ours Skel 0.021 0.011 0.026 689,189 252,674 906,647
*Ours Cond 0.017 0.009 0.021 391,555 113,889 515,343

* dynamic method that updates only the affected parts of the map in each frame

A. Computational performance of dynamic updates

To demonstrate the computational benefit of dynamically
updateable DMs, we compared our algorithm with state-
of-the-art static methods implemented by Fabbri et al. [6],
namely the algorithms by Cuisenaire and Macq [11] and
Maurer et al. [16]. These approaches are highly efficient,
but recompute the whole distance map in every frame. We
further compared our method to the recent approach by
Scherer et al. [10]. Since no source code was available, we
implemented this algorithm in C++ with the assistance of
Scherer. Our condition-based GVD “Ours Cond” and the
skeletonization-based approach “Ours Skel” are compared to
the static EVG-Thin method [8] and the dynamic approach
by Kalra et al. [7]. The performance results are shown in
Tab. I, and summarizing plots are presented in Fig. 6. For
each sequence the computation time and cell visits per frame
are given by their mean, minimum, and maximum values of
all frames. When repeating the measurements 10 times for
each sequence, the standard deviations between the runs were
well below 1% of the reported means.

In general, the dynamic methods are considerably faster
than the static approaches by Cuisenaire and Maurer et al.,

285

0

0.04

0.08

FR079 FR101 Factory

M
au

re
r

C
ui

se
na

ir
e

Sc
he

re
r

O
ur

s

Time per frame [s]

0

0.15

0.3

FR079 FR101 Factory

E
V

G
-T

hi
n

K
al

ra
O

ur
s

Sk
el

O
ur

s
C

on
d

Time per frame [s]
0.619

Fig. 6. Performance of our algorithms for updating distance maps and
Voronoi diagrams compared to related work. The plots show the average
computation time per frame.

except for the distance maps in the open space of FR101,
where most updates affect a large fraction of the map. In
all environments, our dynamic distance map algorithm visits
60−70% fewer cells and requires 60−70% less computation
time than the dynamic approach by Scherer et al. [10].
This can be mainly attributed to the raise function of their
algorithm which expands the adjacent cells of the neighbors
of a cell s, whereas our algorithm tests only the direct
neighbors (line 22). Note that the cell visits performed by
the static methods are not directly comparable to the dynamic
ones due to the different amount of computation per visit.

The comparison of GVD update algorithms shows similar
results: the dynamic methods clearly outperform the static
method EVG-Thin. In addition, both of our approaches can
reduce the runtime considerably compared to the previous
dynamic approach by Kalra et al. [7], since this method uses
the same update strategy as Scherer’s approach for DMs and
thus visits more cells. Our proposed skeletonization-based
approach has slightly higher computational costs than our
condition-based one due to the erosion process. However,
it still requires substantially less cell visits and computation
time compared to Kalra’s approach.

In all tested environments, the average frame rate achieved
by our approaches was well above 20 fps which allows for
online application of both distance maps and GVDs.

B. Generated distance maps and Voronoi diagrams

The distance maps generated by our method are equal
to the ones generated by the compared methods, up to
the inherent overestimation errors of 0.09 pixel units, as
discussed in Sect. II.

The GVDs are of equal or better quality, exemplary
outputs of the static erosion-based approach by Beeson [8],
the dynamic algorithm by Kalra et al. [7] and our two 4-
connected approaches are given in Fig. 1: while Kalra’s
GVD misses Voronoi lines inside rooms and corridors, our
condition-based approach captures the connectivity of the
floor plan completely. The output of the static EVG-Thin
approach is robust to noise. However, it only approximates
the real GVD and prefers straight and diagonal lines. Our
skeletonization-based approach shows the same robustness to
noise as EVG-Thin, but generates actual Euclidean GVDs.
Furthermore, it only updates the affected cells, which can be
seen in the results in Tab. I and Fig. 6.

VI. CONCLUSION

In this paper we presented techniques for updating Eu-
clidean distance maps and Voronoi diagrams. Compared
to previous approaches, our methods require about 60-
70% less cell updates and computation time, and at the
same time provide equal or more accurate results without
any drawbacks. Our condition-based Voronoi approach is
easy to implement and, unlike previous approaches, handles
non-convex obstacle compounds correctly. The proposed
skeletonization-based approach is robust to noise and allows
for efficient updating of Voronoi diagrams. Our algorithms
have been implemented and tested on real-world data sets.
Experiments demonstrate that our approaches allow to update
distance maps with minimum frame rates of 20 fps and
Voronoi diagrams with minimum frame rates of 15 fps even
on very large maps. This property is especially useful for
robot navigation in dynamic environments. The source code
of our implementation is available online [1].

REFERENCES

[1] B. Lau, C. Sprunk, and W. Burgard, “Open source implementation
of dynamically updateable distance maps and voronoi diagrams,”
http://www.informatik.uni-freiburg.de/˜lau/updatingGVD.

[2] F. Aurenhammer, “Voronoi diagrams – a survey of a fundamental
geometric data structure,” ACM Computing Surveys (CSUR), vol. 23,
no. 3, 1991.

[3] H. Choset, “Sensor based motion planning: The hierarchical gen-
eralized voronoi graph,” Ph.D. dissertation, California Institute of
Technology, Pasadena, CA, USA, 1996.

[4] B. Lau, C. Sprunk, and W. Burgard, “Kinodynamic motion planning
for mobile robots using splines,” in IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS), 2009.

[5] S. Thrun, “A probabilistic on-line mapping algorithm for teams of
mobile robots,” International Journal of Robotics Research (IJRR),
vol. 20, no. 5, 2001.

[6] R. Fabbri, L. da Fontoura Costa, J. C. Torelli, and O. M. Bruno, “2D
Euclidean distance transform algorithms: A comparative survey,” ACM
Computing Surveys, vol. 40, no. 1, 2008.

[7] N. Kalra, D. Ferguson, and A. Stentz, “Incremental reconstruction of
generalized voronoi diagrams on grids,” Robotics and Autonomous
Systems, vol. 57, pp. 123–128, 2009.

[8] P. Beeson, “EVG-Thin: A thinning approximation to the extended
voronoi graph,” 2006. [Online]. Available: http://www.cs.utexas.edu/
users/qr/software/evg-thin.html

[9] P.-E. Danielsson, “Euclidean distance mapping,” Computer Graphics
and Image Processing, vol. 14, pp. 227–248, 1980.

[10] S. Scherer, D. Ferguson, and S. Singh, “Efficient C-Space and cost
function updates in 3d for unmanned aerial vehicles,” in Intl. Conf. on
Robotics and Automation (ICRA), Kobe, Japan, 2009.

[11] O. Cuisenaire and B. Macq, “Fast euclidean distance transformation
by propagation using multiple neighborhoods,” Computer Vision and
Image Understanding, vol. 76, pp. 163–172, 1999.

[12] C. M. Gold, P. R. Remmele, and T. Roos, “Voronoi methods in
GIS,” in Algorithmic Foundations of Geographic Information Systems.
Springer Berlin / Heidelberg, 1997, vol. 1340.

[13] I. Lee and M. Gahegan, “Interactive analysis using voronoi diagrams:
Algorithms to support dynamic update from a generic triangle-based
data structure,” Transactions in GIS, vol. 6, no. 2, pp. 89–114, 2002.

[14] T. Zhang and C. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, 1984.

[15] M. Thorup, “Near-optimal fully-dynamic graph connectivity,” in STOC
’00: Proceedings of the thirty-second annual ACM symposium on
Theory of computing, New York, NY, USA, 2000, pp. 343–350.

[16] C. R. Maurer, Jr., R. Qi, and V. Raghavan, “A linear time algorithm
for computing exact euclidean distance transforms of binary images
in arbitrary dimensions,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 25, no. 2, pp. 265–270, 2003.

286

