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Abstract— This paper describes a 3-D biped walking over
rough terrain. The robot is modeled as the special 3-D inverted
pendulum that can change the length. The dynamics of the
3-D inverted pendulum is modeled as 2-D autonomous system
by applying the Passive Dynamic Autonomous Control (PDAC)
that is based on the assumption of point-contact of the robot
foot and the virtual holonomic constraint as to robot joints. We
analyze the stability of the 2-D autonomous system by use of
Poincaré map, and derive the stable range over rough terrain.
By applying the virtual compliance control to an actual robot
“Gorilla Robot III”, the angle of the pendulum is modified.
Finally, the 3-D biped walking over rough terrain is realized
by use of the Gorilla Robot III.

I. INTRODUCTION

A number of humanoid robots have been explored as a

recent progress of robot technologies [1], [2]. These robots

can walk on two legs stably by means of the control based

on Zero-Moment Point (ZMP) [3]. Some humanoid robots

realized three-dimensional biped walking by use of the ZMP-

based control scheme even if a terrain is not flat [4], [5].

However, the ZMP-based does not use an inherent dynamics

of the robot to realize a natural and efficient walking.

In contrast, so as to realize a natural and efficient walking,

some researchers proposed methods to utilize the robot

dynamics directly, assuming a point-contact between the

robot foot and the ground. Some of these point-contact meth-

ods realized smooth dynamic walking with two-dimensional

experimental robots [6], [7]. Also, it is reported that the

planar experimental robot realized dynamic walking over

rough terrain [8]. In this work, the provably-stable controller

was developed over uneven terrain based on the general

method of exponentially stabilizing arbitrary motions of

underactuated systems.

Some interesting three-dimensional bipedal walking con-

trol law based on point-contact method have been proposed

[9], [10]; however, few works have conducted the experi-

ments with an actual robot. Miura and Shimoyama presented

a stilt-like biped and the control method to stabilize the gaits

by changing the robot posture at foot-contact and realized

three-dimensional walking with the experimental robot [11].

Its step length has to be quite small since the robot has no
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trunk and the controller is based on linearization. Doi et

al. proposed Passive Dynamic Autonomous Control (PDAC)

[12] which is one of the point-contact methods and realized

three-dimensional dynamic walking with the experimental

robot based on the assumption that the sagittal and lateral

motion can be separated [13]. This control method has

problems in dividing three-dimensional dynamics when the

dynamics of each plane are closely coupled. In order to solve

this problem, we extended the PDAC approach further to

three-dimensional dynamics without dividing and proposed

the stabilizing method and walking direction control of a

three-dimensional biped walking [14]. In this work, the

efficiency of the proposed control algorithm was verified by

using an actual robot “Gorilla Robot III [15]” on a flat terrain.

Though the realization of bipedal walking in the work [14]

indicates a certain amount of walking ability, the analysis of

walking adaptability has not been conducted.

The motivation of this study is to analyze environmental

adaptability of point-contact method and realize experimen-

tally three-dimensional biped walking on a non-flat ground.

The robot is modeled as the special three-dimensional in-

verted pendulum that can change the length. The dynamics of

the three-dimensional inverted pendulum is modeled as two-

dimensional autonomous system by applying PDAC concept.

We analyze the stability of the two-dimensional autonomous

system by use of Poincaré map, and derive the stable

range over rough terrain. By applying the virtual compliance

control to an actual robot Gorilla Robot III, the angle of the

pendulum is modified. Finally, the three-dimensional biped

walking over rough terrain is realized by use of the Gorilla

Robot III.

II. WALKING MODEL

A. 3-D inverted pendulum model

In this paper, a robot is modeled as a three-dimensional

inverted pendulum as shown in Fig. 1(a) that is same as our

previous work [14]. We apply an assumption of the point-

contact to this pendulum in accordance with the PDAC [12],

hence it is possible to choose the axes of pendulum angle

around the contact point to express its motion. We utilize the

polar coordinate system. The state variables and parameters

are shown in Fig. 2(b). Angles φ and θ are the variables

of the pendulum inclination around the contact point. Joint

angles q1, q2, and q3 decide the upper body posture. l is the

variable of the pendulum length. L is the virtual value for

convenience of description and equals zero. By use of the

six variables φ, θ, q1 to q3, and l, it is possible to express

any states of the robot.
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Fig. 1. (a) 3-D inverted pendulum model. (b) Definition of coordinate
system Note that this figure shows just a coordinate system definition and
doesn’t mean that foot placement is in alignment.
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Fig. 2. (a) Passive joints (point-contact) and active pendulum length
actuation. (b) Parameters and variables of the 3-D inverted pendulum model.

The left-handed system is used in the left-leg supporting

phase and vice versa as shown in Fig. 1(b), so that it is

possible to describe the robot dynamics in both supporting

phases as a single dynamics.

B. Converged dynamics with PDAC

In this paper, the trunk inclination is kept in the gravita-

tional direction and the upper body does not rotate around

yaw-axis, that is,

q1 = −θ, (1)

q2 = −φ, (2)

q3 = 0. (3)

In addition, we assume that the robot is symmetrical. By ap-

plying PDAC, dynamic equations of 3-D inverted pendulum

are expressed as follows:

d

dt

(

ml2 sin2 θφ̇
)

= 0, (4)

d

dt

(

ml2θ̇
)

= ml2φ̇2 sin θ cos θ +mgl sin θ. (5)

The detailed calculation process of (4) and (5) is given in

[16]. By multiplying both sides of (4) by ml2 sin2 θφ̇, and

integrating with respect to time, the following converged

dynamics is obtained,

φ̇ =

√
2C1

ml2 sin2 θ
(6)

:= Z1(θ), (7)
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Fig. 3. Parameters and variables of dynamic walking based on 3D inverted
pendulum model.

where C1 is the integral constant which is determined by

initial state immediately after foot-contact. Substituting (6)

into (5) results in

θ̇ =
1

ml2

√

2

∫ (

2C1 cos θ

sin3 θ
+m2gl3 sin θ

)

dθ (8)

:=
1

M(θ)

√

2
(

D(θ) + C2

)

(9)

:= Z2(θ). (10)

Next, in accordance with PDAC, the pendulum length is

described as the function of θ,

l := λ(θ). (11)

In this paper, λ is defined as the following function of θ,

λ(θ) =: 3

√

p1θ3 + p2θ2 + p3θ + p4 (12)

=: 3

√

f(θ), (13)

where p1-p4 are the coefficients decided by the extended

length of the pendulum and the condition of continuity.

By substituting this equation into (8), the converged dy-

namics is derived,

M(θ)=mf(θ)2/3 (14)

D(θ)=−
C1

sin2 θ
−m2g

(

(

f(θ)− f ′′(θ)
)

cos θ

−
(

f ′(θ)− f ′′′(θ)
)

sin θ
)

. (15)

Fig. 3 shows the parameters and variables of the pendulum

motion. S0 and S2 denote moments just before and after a

foot-contact, and S1 is a moment at θ̇ = 0. θi, φi, and li
denote the roll angle, yaw angle, and pendulum length at Si

(i = 0, 1, 2) respectively. During a cycle of walking motion,

φ is monotonically increasing. Meanwhile, θ decreases at

first, and then increases, after posing for a moment at θ1.
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C. Foot-contact model

In this paper, it is assumed that there is an uneven step

with the ∆h height at kth step. Fig. 4 shows the geometric

condition at a foot-contact. Yaw angle of a swing-leg is

shifted by α from the symmetrical position with a stance-leg

at a foot-contact, i.e. it is φ0[k + 1] = −φ2[k] + α, where

φ0[k + 1] and φ2[k] denote φ0 and φ2 at k + 1th and kth

step respectively. At a foot-contact, l0, l2, and θ2 are set to

constant value, that is, COG height of just before a foot-

contact, h = l2 cos θ2 is constant. Also, it is assumed that θ0
is valuable decided by the uneven height ∆h. Then, we can

get the following equation:
{

h = l0 cos (θ0[k]) + ∆h (16)

h = l0 cos (θ0[k + 1])−∆h. (17)

In this paper, perfectly inelastic collision is assumed

between the ground and a foot occurs for a moment, same as

our previous work [14]. Since angular momentum around a

new contact point is conserved, the yaw and roll angular

velocity of the pendulum just after k + 1th foot-contact,

φ̇0[k + 1] and θ̇0[k + 1] are derived as follows from (7),

(10) and the assumption of the perfectly inelastic collision:

θ̇0[k + 1] =
l2

l0

(

θ̇2[k]
(

sin θ2 sin(θ0[k + 1])− cos(θ0[k + 1])

cos θ2 cosα
)

+ φ̇2[k] cos(θ0[k + 1]) sin θ2 sinα
)

,

(18)

φ̇0[k + 1] =

l2

l0 sin(θ0[k + 1])

(

θ̇2[k] cos θ2 sinα+ φ̇2[k] sin θ2 cosα
)

,

(19)

where φ0[k + 1] and θ0[k + 1] are the yaw and roll angle

just after k + 1th foot-contact, φ̇2[k] and θ̇2[k] are the yaw

and roll angler velocity just before k + 1th foot-contact, φ2

and θ2 are the yaw and roll angle just before a foot-contact

(see Fig. 3 and Fig. 4).

III. STABILITY ANALISIS

A. Poincaré map of the walking cycle

In this paper, the walking cycle is expressed as a nonlinear

discrete system with a foot-contact; then the stability analysis

around the fixed point is conducted by use of Poincaré

map. φ̇ and θ̇ just after kth foot-contact that compose the

autonomous system (7) and (10) are selected as discrete state:

vk =

[

φ̇0[k]

θ̇0[k]

]

. (20)

From (6) and (9) the angular velocities of k+1th step just

before a foot-contact φ̇2[k], θ̇2[k] are derived as follows:

φ̇2[k] =

√
2C1

ml22 sin θ2
, (21)

θ̇2[k] =
1

M(θ2)

√

2
(

D(θ2) + C2

)

, (22)

where C1 and C2 are conservative quantities that conserve

during a single support phase. C1 and C2 are derived from

(6), (8) using the discrete state of kth step as follows:

C1 =
1

2

(

φ̇0[k]ml20 sin(θ0[k])
)2

:= ξ1(φ̇0[k]), (23)

C2 = 2(ml20 θ̇0[k])
2 +

C1

sin2(θ0[k])
+m2gl0 cos(θ0[k])

:= ξ2(φ̇0[k], θ̇0[k]). (24)

By substituting (23) and (24) into (21) and (22), φ̇2[k] and

θ̇2[k] are expressed as follows:

φ̇2[k] =

√
2ξ1

ml22 sin
2 θ2

, (25)

θ̇2[k] =
1

ml22

√

2

(

−ξ1

sin2 θ2
−m2gl2 cos θ2 + ξ2

)

. (26)

From (16) and (17), θ0[k] and θ0[k+1] are expressed by use

of ∆h:














θ0[k] = arccos

(

h−∆h

l0

)

(27)

θ0[k + 1] = arccos

(

h+∆h

l0

)

. (28)

From (18), (19), (25), (26), (27), and (28), the discrete state

of k + 1th step is described as the function of the discrete

state of kth step and ∆h,

φ̇0[k + 1] =
l2

√

l20 − (h+∆h)2
[

h sinα

ml20l2

√

W1

(

φ̇0[k], θ̇0[k],∆h
)

+W2

(

φ̇0[k],∆h
)

cosα

]

(29)
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θ̇0[k + 1] =
l2

l0





1

ml22





√

√

√

√

{

1−
(h+∆h)2

l20

}

{

1−

(

h

l0

)2
}

−
h(h+∆h)

l0
cosα

)
√

W1

(

φ̇0[k], θ̇0[k],∆h
)

+W2

(

φ̇0[k],∆h
) h+∆h

l0
sinα

]

, (30)

where

W1

(

φ̇0[k], θ̇0[k],∆h
)

=

2

{

C1[k]

(

l20
l20 − (h−∆h)2

−
l22

l22 − h2

)}

+m2g∆h+ 2
(

ml20θ̇0[k]
)2

, (31)

W2

(

φ̇0[k],∆h
)

= φ̇0[k]
(h+∆h)2

l2

√

1

l22 − h2
. (32)

By defining the vector function P from (29) and (30),

Poincaré map is described as follows:

vk+1 = P (vk) . (33)

Especially, if the state of the walking cycle converge to

fixed point v∗, the following equation is derived,

v
∗ = P (v∗) . (34)

Considering Taylor developing around the fixed point,

v
∗ + δvk+1 = P (v∗ + δvk)

≈ P (v∗) + J (v∗) δvk, (35)

where J (v∗) is Jacobian matrix at the fixed point, δv is the

small displacement vector. Thus, if all of the eigenvalues of

the Jacobian matrix J (v∗) are inside the unit circle on the

complex plane, the walking cycle is asymptotically stable.

B. Stability analysis

First of all, we analyze the stability of the walking model

explained in the section II on a flat terrain, that is, ∆h = 0.

By numerical simulation, the fixed point v∗ of this walking

model when the parameters are set as h = 0.541, l0 = 0.56,

l2 = 0.561, α = 0.035 is calculated as follows:

v
∗ =

[

0.9504
−1.140

]

. (36)

By numerical calculation, Jacobian matrix J (v∗) is also

calculated as follows:

J (v∗) =

[

0.8230 −0.1298
−0.0044 0.8155

]

. (37)

The eigenvalues λ1, λ2 of the Jacobian matrix J (v∗) are

obtained numerically as λ1 = 0.8435, λ2 = 0.7949. Since

all of the eigenvalues are less than 1, the designed walking

cycle is asymptotically stable on a flat terrain. Fig. 6 shows

the simulation result of this condition. From this figure, it is

confirmed that θ̇ and φ̇ converge to a certain fixed point.

Next, same stability analysis is conducted on rough ter-

rains. In this analysis, the eigenvalues are calculated when
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Fig. 5. Eigenvalues of the Jacobian.
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the ∆h is changed every 1 [mm]. In Fig. 5, some of

the eigenvalues are plotted on the complex plane. From

the stability analysis, the designed walking model on the

condition of these parameters is asymptotically stable when

the ∆h is -50 [mm] to 8[mm]; in the range, the state of

the walking cycle converge to fixed point of the flat terrain

v
∗. More stability analysis confirmed that the asymptotically

stable range depends on the setting parameters. The result

introduced in this section is one example that can be applied

to the Gorilla Robot III [15] explained in the section IV-B.

Optimization of the parameters to maximize the stable range

is one of the future works.

IV. EXPERIMENT

A. Control architecture using the virtual compliance control

In the experiment, the position and posture of the 3-D

inverted pendulum modeled in the section II-A are derived

every control step from converged dynamics (7), (10), and the

constraint (1)-(3). By use of inverse kinematics, all the joint

angles of the experimental robot are calculated and controlled

every control step. In this paper, it is assumed point-contact

of the robot foot; however most of humanoid type robots

include the Gorilla Robot III [15] (It is introduced in the

next subsection.) have feet. In this research, the ankle joints
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are decided by dynamics (7), (10), and the constraint (1)-

(3) base on the assumption that the terrain is flat (∆h =
0). Therefore, by applying the virtual compliance control to

ankle actuators, the pendulum angles of the foot-contact are

changed in accordance with the ground irregularity ∆h. In

this research, the virtual compliance control is applied same

as the work [17]. The condition that foot realizes the virtual

compliance is expressed as follows:

F = K∆x+Cẋ, (38)

where F is the force and moment vectors acting to foot

coordinate, ∆x is the displacement of foot coordinate, and

ẋ is the velocity of the foot coordinate (see Fig. 7). K ∈ R
6

and C ∈ R
6 are stiffness and damping matrixes. In this

work, the purpose of the virtual compliance control is to

modify the pendulum angles; thus only roll and pitch angle

of the robot foot are considered. From discrete (38), the

compliance position of the foot is derived as follows:

∆x (t+∆t) =

[

K +
C

∆t

]

−1 {

F +C
∆x(t)

∆t

}

. (39)

where ∆t is control cycle, ∆x (t+∆t) is the present error

of foot coordinate from ideal position, ∆x(t) is the error

of foot coordinate from ideal position before one control

cycle. The compliance position are add to desired trajectory

of the Center of Gravity (COG) derived from converged

dynamics (7) and (10), by use of inverse kinematics the

desired trajectories of all actuator are modified. This control

architecture is shown in Fig. 8.

B. Experimental setup

Fig. 9 depicts the overview of our robot Gorilla Robot

III(Multi-Locomotion Robot) [15] and its link structure. The

robot is approximately 1.0[m] tall, weighs approximately

24.0[kg], and consists of 25 links and 24 motors includ-

ing two grippers. The real-time operating system VxWorks

(Wind River Systems) runs on a Pentium III PC for processing

sensory data and generating its behaviors. Each joint is driven

by AC servo motor through the harmonic drive gear, partially
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Fig. 9. Gorilla Robot III(Multi-Locomotion Robot) [15]. This robot is
multi-locomotive; it can perfome biped locomotion, quadruped locomotion
and brachiation.
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through a timing belt. Maximum output power of the motor

is 30[W]. The power supply and the computer are installed

outside of the robot for weight saving. The control system

of the Gorilla Robot III is shown as Fig. 10.

C. Experimental result

We validated the proposed algorithm with the Gorilla

Robot III. The experiment was carried out on the basis of

the condition that the parameters are equal to those used

in the stability analysis. The terrain has 3[mm] irregularity
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Fig. 11. Snapshots of the Bipedal Walking Experiment. Each figure shows the snapshots at (a)8th (b)10th (c)12th (d)14th (e)16th step.
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Fig. 12. Joint angle of the bipedal walking experiment.
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Fig. 13. Compliance displacement of the bipedal walking experiment.

on the level ground. As a result of the experiment, three-

dimensional dynamic walking was realized. Although the

ground has 3[mm] irregularity in the experimental environ-

ment and the information of the ground shape was not given

to the robot, the robot achieved the stable walking without

information of the ground. Fig. 11 shows snapshots of the

experiment. Also, Fig. 12 and Fig. 13 show the joint angles

and compliance displacement of the experiment respectively.

V. CONCLUSIONS

This paper proposed the three-dimensional walking al-

gorithm over the rough terrain. The robot dynamics was

modeled as a two-dimensional autonomous system of a three-

dimensional inverted pendulum by applying the PDAC con-

cept; then the stability of the two-dimensional autonomous

system with foot-contact was analyzed. As the result, the

system has an asymptotically stable range due to the pa-

rameters. Finally, within the stable range, we experimentally

realized a three-dimensional biped dynamic walking on the

irregular ground. Optimization of the walking parameters to

maximize the stable range is one of the future works.

REFERENCES

[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The Development
of Honda Humanoid Robot,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 1998, pp. 1321–1326.
[2] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi,

“Humanoid Robot HRP-3,” in Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, 2008, pp. 2471–
2478.

[3] M. Vukobratovic and B. Borovac, “ZERO-MOMENT POINT -
THIRTY FIVE YEARS OF ITS LIFE,” International Journal of

Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[4] H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro,

M. Morisawa, and S. Nakaoka, “A Pattern Generator of Humanoid
Robots Walking on a Rough Terrain,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 2007, pp.
2181–2187.

[5] T. Takubo, Y. Imada, K. Ohara, Y. Mae, and T. Arai, “Rough
Terrain Walking for Bipedal Robot by Using ZMP Criteria Map,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 2009, pp. 788–793.
[6] E. R. Westervelt, G. Buche, and J. Grizzle, “Experimental Validation of

a Framework for the Design of Controllers that Induce Stable Walking
in Planar Bipeds,” The International Journal of Robotics Research,
vol. 23, no. 6, pp. 559–582, 2004.

[7] S. Kajita, T. Yamaura, and A. Kobayashi, “Dynamic walking control
of a biped robot along a potential energy conserving orbit,” IEEE

Transactions on Robotics and Automation, vol. 8, no. 4, pp. 431–438,
1992.

[8] I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable Dynam-
icWalking over Rough Terrain Theory and Experiment,” in Proceed-

ings of the International Symposium on Robotics Research, 2009, pp.
1–16.

[9] G. Song and M. Zefran, “Underactuated Dynamic Three-Dimensional
Bipedal Walking,” in Proceedings of the IEEE International Confer-

ence on Robotics and Automation, 2006, pp. 854–859.
[10] C. Chevallereau, J. W. Grizzle, and C.-L. Shih, “Asymptotically Stable

Walking of a Five-Link Underactuated 3-D Bipedal Robot,” IEEE

Transactions on Robotics, vol. 25, no. 1, pp. 37–50, 2009.
[11] H. Miura and I. Shimoyama, “Dynamic Walking of a biped,” The

International Journal of Robotics Research, vol. 3, no. 2, pp. 60–74,
1984.

[12] M. Doi, Y. Hasegawa, and T. Fukuda, “Passive Dynamic Autonomous
Control of Bipedal Walking,” in Proceedings of the IEEE/RAS Inter-

national Conference on Humanoid Robots, 2004, pp. 811– 829.
[13] T. Fukuda, M. Doi, Y. Hasegawa, and H. Kajima, Fast Motions in

Biomechanics And Robotics: Optimization And Feedback Control.
Springer-Verlag, 2006, ch. Multi-Locomotion Control of Biped Lo-
comotion and Brachiation Robot, pp. 121–145.

[14] T. Aoyama, Y. Hasegawa, K. Sekiyama, and T. Fukuda, “Stabilizing
and Direction Control of Efficient 3-D Biped Walking Based on
PDAC,” IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6,
pp. 712–718, 2009.

[15] T. Fukuda, T. Aoyama, Y. Hasegawa, and K. Sekiyama, Artificial Life

Models in Hardware. Springer-Verlag, 2009, ch. Multilocomotion
Robot: Novel Concept, Mechanism, and Control of Bio-inspired
Robot, pp. 65–86.

[16] M. Doi, Y. Hasegawa, and T. Fukuda, “3D Dynamic Walking based on
the inverted pendulum model with two degree of underactuation,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2005, pp. 2788–2793.
[17] K. Hashimoto, A. Hayashi, T. Sawato, Y. Yoshimura, T. Asano, K. Hat-

tori, Y. Sugahara, H. ok Lim, and A. Takanishi, “Terrain-Adaptive
Control with Small Landing Impact Force for Biped Vehicle,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2009, pp. 2922–2927.

3168




