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Abstract— We address the problem of multi-robot dis-
tributed SLAM with an extended Smoothing and Mapping
(SAM) approach to implement Decentralized Data Fusion
(DDF). We present DDF-SAM, a novel method for efficiently
and robustly distributing map information across a team of
robots, to achieve scalability in computational cost and in
communication bandwidth and robustness to node failure and
to changes in network topology. DDF-SAM consists of three
modules: (1) a local optimization module to execute single-
robot SAM and condense the local graph; (2) a communication
module to collect and propagate condensed local graphs
to other robots, and (3) a neighborhood graph optimizer
module to combine local graphs into maps describing the
neighborhood of a robot. We demonstrate scalability and
robustness through a simulated example, in which inference
is consistently faster than a comparable naive approach.

I. INTRODUCTION

Robot mapping applications, particularly those in harsh
environments, benefit from the use of teams of robots due
to the increased reliability and coverage of a redundant
system. In difficult exploration scenarios, such as search
and rescue or surveillance and reconnaissance, the primary
goal is to provide an accurate map of the environment the
robots operate in. These and other scenarios motivate the
use of distributed Simultaneous Localization and Mapping
(SLAM). While coordinating a robot team poses additional
control challenges, from a mapping perspective, there are
distinct advantages. Multi-robot systems have inherently
parallel sensory and computational facilities, which allow
for faster exploration than a single robot in the same
scenario.

The primary requirements for such a Decentralized Data
Fusion (DDF) system, are as follows [1]:

1) Scalable in computational cost
2) Scalable in communication bandwidth as the number

of robots increases
3) Robust to node failure
4) Robust to changes in network topology

Many of the multiple-robot data fusion techniques focus on
the pure localization problem. Bahr, et al. [2] introduced
a technique for the consistent cooperative localization of
multiple AUVs performing mobile trilateration. They in-
stantiate up to 2n filters for each of n vehicles to keep track
of the sources of vehicle information. Nerurkar, et al. [3]
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presented a distributed MAP estimator using a distributed
data-allocation scheme enabling robots to simultaneously
process and update local data when equipped with bidi-
rectional sensing of other robots. Roumeliotis and Bekey
[4] presented “collective localization”, a single distributed
Kalman filter which estimates a pose from all members in
a team using available positioning information.

The idea of using multiple local maps has received a
lot of traction in a single-robot context [5], [6], [7], [8],
as it leads to computationally more efficient algorithms. In
addition, as mentioned by Tardós et al. [6], local maps lend
themselves naturally to multi-robot mapping, as strategies
for map-merging can just as well serve to merge maps built
by different robots.

Several authors have exploited this idea and proposed
true multi-map, multi-robot algorithms that have several ap-
pealing properties [9], [10], [11], [12]. Because minimizing
the communication load between robots is important so as
to avoid the performance bottleneck of data transfer and to
avoid redundant communication, there has been work done
to reduce data transfer [13] by choosing the most informa-
tive features to transmit. One significant challenge faced by
these and other filtering techniques [14] is the bookkeeping
necessary to prevent double counting information.

In this paper, we propose DDF-SAM, a novel approach
that augments a Smoothing and Mapping (SAM) graphical
model approach [15] by introducing the Constrained Factor
Graph (CFG) as an extended graphical model. The resulting
system is an asynchronous distributed system resilient to
robot failure and changing network topology scalable to
large networks of robots.

This paper only covers the back-end inference system in
order to focus on the distributed inference and optimization
necessary for multi-agent systems. While a typical SLAM
system contains a data association front-end, which matches
incoming observations with existing map data, and an
inference back-end, we will focus on the back-end system
by using known data associations. As such, we assume all
landmarks have globally unique identifiers.

II. NAIVE MULTI-ROBOT SAM

In our approach, we formulate the general SAM problem
with a robot trajectory and a set of environmental landmarks
and represent the system mathematically using a factor
graph G, a bipartite undirected graph consisting of variable
nodes and factor nodes that encode probabilistic relation-
ships. This graph defines a nonlinear optimization problem,
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Fig. 1: Representing a multi-robot SLAM scenario with three robots observing common landmarks (left) in the form
using factor graphs, both to represent the map of a single robot (center), and to form the naive multi-robot graph.

detailed in Section III-A, and the solution of a given graph
G is the map M that minimizes the error between the
measurements Z and the generative measurement model.
Figure 1 illustrates a multiple robot scenario converted
into factor graphs. In the local factor graph shown for a
single robot, colored circles represent robot poses xi, white
circles represent landmarks lj , and small filled circles on
edges represent factors f . These factors can represent the
measurement information between the variables, such as
an observation of a landmark, odometry between poses, or
prior information on a pose. Algebraically, we concatenate
the xi and lj variables from a robot into a single state
variable X .

We can consider a naive approach to implementing
SAM across multiple robots that, while able to create a
map across multiple robots, is too expensive for practical
applications. In the naive approach, every robot sends every
sensor measurement to every other robot, thereby allowing
each robot to construct a complete map with full trajectories
for all robots. Figure 1 illustrates this naive approach,
showing the a single graph built directly combining the
local maps from three robots.

However, this naive approach is impractical for several
reasons. There is a large volume of communication traffic
between robots. Each robot must optimize a complete
graph, hence it is computationally expensive and much of
the computation is redundant. While this approach is not
useful in practical situations, it has advantages worth repro-
ducing: (a) it is a true smoothing and mapping approach and
hence the graph remains sparse, (b) it will be accurate as
it incorporates all measurements taken by all robots so that
no information lost or double-counted, and (c) it is robust
to robot failure(s) because every robot has all collected map
data from every other robot.

III. DDF-SAM

To construct a system satisfying the DDF requirements
while keeping the advantages of the naive approach, we
divide our approach into three main components:

1) A local optimization module to execute standard
single-robot SAM to generate a local map and a
condensed form of the local graph.

2) A communication module to cache and propagate
condensed graph with other robots.

3) A neighborhood optimizer module to combine con-
densed graph into a graph describing the neighbor-
hood of a robot.

We formalize the general structure of the problem as
follows: there is a set of r robots in an environment,
with each robot r attempting to build a neighborhood map
MNr(t) and from a neighborhood graph GNr(t), where the
neighborhood Nr(t) is the time-varying set of robots in
communication with a given robot r. In the case where
the neighborhood of a robot is the set of all robots, then
we can consider MNr(t) to be a global map. Each robot r
in the set of robots R has exactly the same machinery: a
local optimizer module to solve for the local map Mr and
to condense its local graph Gr to form a condensed graph
Ĝr, a communication module that populates a set of slots
S to cache the time-stamped condensed graphs from local
robots (including its own), and a neighborhood optimizer
module that optimizes for the neighborhood map MNr(t)r.
We denote the condensed form of a graph or map using
a “hat” decoration. Figure 2 illustrates the data stored by
each robot, with a full local graph Gr, the slots containing
condensed graphs from multiple robots, and a neighborhood
graph GNr(t) constructed from the condensed graphs.

For this paper, we make the following assumptions re-
garding the robots and the intended scenario: Each robot has
a sufficient sensor suite to perform SLAM on its own, each
can detect landmarks in the environment using a sensing
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Fig. 2: The structures managed by each robot, containing its
local graph, a cache of condensed graphs from neighboring
robots, and the neighborhood graph.

modality that is common across all robots or can at least be
correlated to each other. Robots in such a scenario must be
equipped with a communication system to send messages
to other robots in the team. However, we do not require that
all robots are continually connected to all other robots. We
assume we do not have measurements of positions -either
relative or absolute- of other robots in the team, though we
could incorporate such measurements if available.

One of the aspects of our approach is that the neigh-
borhood map is only a map over landmarks, which means
robots only need to send landmark information. We will
show that this choice of shared variables is particularly well
suited for scalability as robots continue to operate over a
long period of time.

A. Local Optimizer Module

The underlying SLAM technique used in this paper is a
direct extension of the SAM approach used in our previous
work; a detailed explanation of the approach can be found
in [15]. Because each robot performs SLAM in its local
environment, we present a brief introduction to SAM as a
single-robot SLAM technique and highlight key concepts
necessary for the multi-robot version of the system. We
approach SAM as a unconstrained nonlinear least-squares
optimization problem in Equation 1 where the error is the
difference between a generative measurement model h(X)
for the current state X and the actual measurement Z,
weighted by the measurement covariance matrix Σ.

X∗ = argminX
1

2
‖h(X)− Z‖2Σ (1)

To perform this optimization, we use a trust-region based
strategy of performing damped searches from an initial
estimate by linearizing the system to create a linear least-
squares subproblem. Each linearized subproblem represents
a purely Gaussian factor graph (Equation 2), expressable

as a canonical linear least square error problem, as in
Equation 3. We can then solve for an optimal descent
direction δ∗ through QR factorization, which we perform
through successive Householder reflections. Because of the
sparseness of the linear problem, we can exploit sparse
matrix solvers to increase performance. A key observation
of this algorithm is that during variable elimination, after
removing a variable from the graph the remaining factors
and those added during elimination constitute the joint
distribution on the variables still in the graph.

δ∗ = argminδ
1

2
‖h(X) +H(X)δ − Z‖2Σ (2)

δ∗ = argminδ
1

2
‖Aδ − b‖2Σ (3)

We exploit variable elimination as a means of condens-
ing a map by allowing for the possibility of partially
eliminating a Gaussian factor graph to include only the
variables that should be shared. This partial elimination
operation, yielding condensed graph Ĝr, corresponds to
marginalizing out variables from a probabilistic model and
is the joint distribution over the shared variables. Generating
the compact representation requires that we eliminate all
poses from the local graph of each robot. To do this, we re-
linearize the graph around the best current estimate for the
state, X∗, and eliminate the poses. Note that this operation
does not remove any information relating the landmarks
while remaining a condensed version of the full graph.

B. Communication Module

In order to create a neighborhood graph GNr(t) from a set
of Ĝr contributed by other robots, each robot must simulta-
neously update and disseminate its cached condensed maps
from its set of slots S. Each robot maintains a local cache
of condensed graphs for each robot in its neighborhood. For
every known robot i in the team, there will be a correspond-
ing si. Communication between robots consists of two-
robot interactions where robots share condensed graphs. As
is standard in distributed systems [16], a robot r maintains
communication with the subset of all robots called its local
neighborhood, denoted Nr(t). The set of local robots is
time-varying due to the possibility of dropping or gaining
connections with robots as they drive in and out of radio
range.

From Nr(t), the robot can choose K other robots to
communicate with. In this case, we can bound the size of
S to K, thereby bounding the complexity of neighborhood
optimization to O(1) in the number of robots. In this
sense, the neighborhood map MN(t)r maintained by robot
r covers an area larger than Mr by using information from
K neighbors. For smaller teams, one could let K = |R|,
such that M is a global map.

When in communication with another robot, we use
a two-step process, consisting of announcing available
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(a) Naive Neighborhood CFG (b) Partial Elimination (c) Constrained Neighborhood Graph

Fig. 3: Progression from naive neighborhood CFG with base frame variables and full local graphs (a), equivalent CFG
highlighting partially eliminated local graphs (b), and the neighborhood CFG with condensed local graphs as maintained
by each robot (c). Landmarks with light coloring are the local copies of a global landmark.

condensed graphs and then transferring the latest available
graphs. First, the communication module sends a message
announcing the contents of S, which includes the robot
identifier and the timestamp. Upon receipt of this message
from the other robot, the communication module prepares
a larger message containing any local maps with a later
timestamp. The receiving robot caches these graphs in slots
for neighborhood graph optimization. This communication
system is robust to changes in network topology by (a)
caching previous graph data from other robots and (b)
indirectly propagating local Mr data through the network.
Even if a robot i and a robot j never directly communicate,
it is still possible to exchange condensed graphs indirectly
through a robot k that at some point in time connects with
robots i and j and stores Ĝi and Ĝj .

This cached propagation of information through the
network affords several advantages in resiliency to network
topology changes: (a) the only requirement on network
connectivity to create a neighborhood map is that the union
of network graphs over time must be connected; (b) in the
event of node failure, the last Ĝr shared is still cached in
the network and can propagate, so previous graph data is
not lost, and (c) robots can update their neighborhood maps
at any point in the process using information contained in S
and will not have to wait for synchronized messages from
multiple robots. Given the set of local map information
contained in S, the neighborhood optimization module can
create a neighborhood map over landmarks at any point.

C. Neighborhood Optimizer Module

The neighborhood optimization module merges the con-
densed graphs Ĝi cached in a robot’s slots into a single
GNr(t). One challenge in the creation of the neighborhood
map is that the condensed Gaussian factor graph Ĝi remains
in the local reference frame of robot i. If one were to
attempt to construct a naive neighborhood graph by simply
transforming each Ĝi ∈ S into a neighborhood reference

frame, the resulting graph would not be valid because con-
densed graphs are linearized in their own reference frame.
We avoid this problem by leaving each Ĝi in its original
frame of reference, and using constrained optimization to
relate the local landmarks to neighborhood landmarks.

To build a neighborhood graph, we introduce the Con-
strained Factor Graph (CFG) so as to represent the trans-
forms between local and neighborhood frames of reference.
Figure 3a illustrates the constrained version of the naive
distributed system from Figure 1. In this case, we keep a
single copy of the landmark in the neighborhood frame, and
associate it with the corresponding landmark in its Mr. We
denote a landmark with unique global identifier j in the
neighborhood frame as lj , and landmarks in the frame of
robot r as lrj . The constraint factors introduce a base frame
of reference variable T r(illustrated with colored squares),
which expresses the neighborhood origin in the coordinate
system of robot r. The frame of reference constraints crj ,
illustrated in Figure 3 with crosses to distinguish them
from probabilistic factors, express the direct assignment of
a neighborhood to a local versions of a landmark j, as
in Equation 4. The problem necessitates using these hard
constraints that express a strict, deterministic relationship
between variables because data association is an assignment
problem rather than a measurement, and there must exist
exactly one transform between a local and neighborhood
frame.

T r ⊕ lj = lrj (4)

With each constraint crj , we can now perform nonlinear
constrained optimization to find a MNr(t). With the frame
of reference constraints managing the coordinate frames
of the robots, as in Figure 3a, it is possible to use only
the condensed graphs. The condensed graph appears in
Figure 3b as a new factor on the local copies of landmarks
(highlighted by color). We can then assemble a neighbor-
hood graph based on these smaller factors as in Figure 3c.
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With this smaller graph, each robot can perform constrained
nonlinear optimization to created a merged neighborhood
map.

D. Constrained Factor Graphs

We present CFGs as a novel extension of a factor
graph as it augments a probabilistic graphical model with
deterministic relationships. The hard constraints, motivated
by frame of reference constraints (Equation 4), allow for
operations such as assignment to be expressed in a graphical
manner, as the constraints maintain the separability require-
ments for graphical models.

The implementation of hard constraints in the underlying
nonlinear least squares optimization problem involves only
the application of existing techniques [17] for incorporat-
ing equality constraints into a least squares optimization
problems. We extend the nonlinear least squares problem
of Equation 1 to incorporate a set of p equality constraints
ci(X) to form a constrained nonlinear least squares problem
(Equation 5). These constraint functions are exactly the
frame of reference constraints of Equation 4. For conve-
nience, we combine the constraint functions into a single
constraint function g(X) = [c1(X), . . . , cp(X)]T .

X∗ = argminX
1

2
‖h(X)− Z‖2Σ (5)

subject to cij(X) = 0 ∀i ∈ [1 . . . p]

This optimization procedure has been shown [17] to be
equivalent to optimizing a quadratic merit function ϕ(X) =
1
2 ‖h(X)− Z‖2Σ + µ 1

2 ‖g(X)‖2 with a sufficiently high
µ parameter. At each linearization stage, we approximate
the system using a first order Taylor expansion as in the
unconstrained case (Equation 3), where C is the Jacobian
of g(X) evaluated at X . We solve the linearized system
with direct elimination of the constrained variables.

δ∗ = argminδ
1

2
‖Aδ − b‖2Σ (6)

subject to Cδ+g(X) = 0

To solve the linear subproblems, we use a hybrid elimi-
nation procedure where we eliminate variables with only
probabilistic factors using the Householder reflections ex-
actly as in the probabilistic case, and use Gram-Schmidt or-
thogonalization to eliminate variables with hard constraints.

IV. SIMULATION RESULTS

We implemented this algorithm using the Georgia Tech
Smoothing And Mapping (GTSAM) toolbox for the un-
derlying factor graph implementation, and extended the
toolbox for CFG optimization. The library and experimental
code is written in C++, and we ran tests on a 2.20
GHz dual core Linux machine. To validate the system,
we created a simulated scenario with a set of robots in
planar field of landmarks driving in a circular trajectory, as
shown in Figure 4. For each robot, we simulate range and

Fig. 4: Simulated five robot scenario with ground truth robot
trajectories (colored arrows), ground truth landmarks (small
black squares), and landmarks optimized using DDF-SAM
(large black squares).

bearing measurements on landmarks, as well as odometry,
using Gaussian noise profiles. We initialized the frames of
reference used with perturbed versions of the ground truth
frames of reference. We compare the naive implementation
of multi-robot SAM with DDF-SAM.

Figure 5 shows the optimizations timing vs. the number
of poses per robot. To illustrate timing for distributed
optimization, we separate the average time necessary for
each robot to perform local SAM and condense its map, and
the time necessary for the neighborhood optimizer module
to merge the condensed maps into a neighborhood map.
Note that the optimization time necessary for merging a
neighborhood map is not only trivial in comparison to the
local map, it also remains the same as the local maps
increase in poses.

We also performed an analysis of the error in landmark
estimates, plotted in Figure 6, comparing the ground truth
with the results of the optimization using average distance
over all landmarks between each optimized landmark and
the corresponding truth value. Note that the error of the
DDF-SAM optimized map stays comparable to the error of
the naive approach.

V. DISCUSSION AND FUTURE WORK

In this paper we presented a novel approach for dis-
tributed SAM satisfying the primary requirements for a
DDF system.

Our future work will focus on the addition of multi-
robot data association in order to create a fully distributed

3029



Fig. 5: Comparison in timing between naive approach
and DDF-SAM. The average local time is the average
optimization time to perform local optimization, while DDF
optimize is the time to merge condensed maps into a
neighborhood map.

Fig. 6: Comparison in landmark estimation error between
naive approach and DDF-SAM.

SLAM system, as well as deploying the system in larger
scenarios with real-world data and in situations with limited
computational capability and varying network topology.
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