
Road structure based scene understanding

for Intelligent Vehicle Systems

Akihiro Tsukada

Toyota Motor Corporation

akihiro@tsukada.tec.toyota.co.jp

Masahiro Ogawa

Toyota Motor Corporation

masahiro@ogawa.tec.toyota.co.jp

Franck Galpin

KnowledgeNet Corporation

f.galpin@knowledgenet.jp

Abstract—We address the topic of intelligent vehicle systems
and especially systems aiming at high level scene understanding.
Our goal is to build an on-line Behavior Map of surrounding
environment. In this case, the road structure becomes important
in order to understand entities behavior. From a general view-
point, this paper demonstrates two important concepts: 1) the
smooth integration of global, absolute but partial information
(the Navi Map) in a local and relative map (the Behavior
Map). This is demonstrated by the building of the Behavior
Map composed of the roads structure and pedestrian/vehicle’s
position and trajectory. 2) the use of both global and local
information to improve the understanding of the environment.
This is demonstrated by the proposed ”Pedestrian Warning
System”. From a technical viewpoint, the main contributions
are: 1) the dual ground plane/image plane approach which
avoid introduction of errors in both the cost function evaluation
and the constraints for minimization, 2) the smooth and efficient
integration of prior data in a realistic road model computation
when they are available.

I. INTRODUCTION

A. Background

Intelligent systems can help drivers to identify dangerous

traffic situation and to reduce the risk of accidents. High

level information such as car navigation systems using GPS

(Global Positioning System) and Global road information

(the Navi Map) have become highly popular among car

owners. On the other hand, low-level system like Driver

Assist Systems (e.g. Lane Keeping or Night Vision Pedes-

trian Warning) are also widespread. However these systems

have to make a decision using only local and low-level

information (using what we denote as a Reactive Map). It

is then difficult to apply such systems to high-level task

(e.g. obstacle avoidance). In 2007 DARPA Urban challenge

[9], most vehicles implemented a novel architecture com-

bining Navi Map, Reactive Map and Behavior Map 1 with

accurate GPS&IMU (Inertial Measurement Unit) systems.

These architectures enable high-level tasks thank to the use

of the Behavior Map (BM). Especially roads structure is

quite important for drivers and pedestrians to understand a

traffic scene. However, having an accurate global map and

position is not always possible [5] and a map needs to be

build online in order to adapt to the dynamic environment.

B. System overview

In this paper, we describe a framework for building high

quality and robust BM. This map is composed of the roads

1maps name vary a lot from one platform to the other!

structure and pedestrian/vehicle’s position and trajectory.

These information are retrieved from ego-sensing data, using,

when available, a-priori information the Navi Map. The

Navi Map is supposed absolute and global but, contrary to

[9], inaccurate in terms of position and partial in terms of

information (no information on dynamic entities etc.).

Fig. 1. System overview. Yellow area: Behavior Map modules details.

The figure 1 presents an overview of a typical Automatic

Driving System (ADS). The BM itself is composed of several

modules (see yellow area in fig. 1) processing data in

parallel: roads structure reconstruction module, object (we

focus on pedestrians in this paper) detector and tracker. The

outputs are then integrated into one common map. In this

paper, we focus on the BM building and especially the roads

structure reconstruction. Instead of presenting the application

of the BM with a Behavior Planner, which is beyond the

scope of this paper, we present a simple application of the

BM allowing detection of potentially hazardous situation

involving pedestrians. This application requires both roads

and pedestrians recognition. An important assumption is

that this layer is embedded between several other layers,

especially the BM modules receive data from the layer above

called Navi Layer. The Navi Layer contains high level data

(approximate roads map, expected path etc.) described in an

global, absolute coordinate system. As the BM is built from

sensors information, the map is local and relative to the car

coordinate system. We will show that the absolute/offline

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 5557

information (such as approximate roads size, roads type, car

position and future path) from the Navi Layer are smoothly

integrated in the local BM, and make the system more robust

and reliable.

This paper is organized as follows. In Sec. II, we explain

the implementation details of the roads structure recon-

struction, in Sec. III we give an overview of the object

detection and multi-object tracking. In Sec. IV, we present

the system integration and the experimental results that we

have obtained using this system. In particular, we show the

results of the ”Pedestrian Warning System”.

II. ROADS STRUCTURE RECONSTRUCTION

The goal of this algorithm is to reconstruct the 2D struc-

ture of the roads (primary road and secondary roads) on the

ground plane. The algorithm mainly uses image data, but

LIDAR data can be used at different stage to robustify the

process (typically for the ground plane estimation). We uses

the following assumptions:

• known mono or multi calibrated 2 camera system,

• roads boundaries are defined by some visible gradient,

• the system can use information from the navigation

system if available (road properties, crossroad position,

expected path etc.),

• the system can use odometry/speed information if avail-

able,

• the road geometry follows some road model (typically

clothoid, arc or line).

The figure 2 shows the main stage of the algorithm. In

the following, we will focus on the core parts of the

algorithm (pre-processing and minimizer part) while other

stages (ground plane and secondary roads estimation and

prediction/filtering) will not be discussed here.

Fig. 2. Roads tracker system overview.

Compared to other systems [1] [2] the proposed approach

has the following advantages:

• directly output a road model in the car coordinate

system (not the image plane),

• scalable accuracy/robustness: the tracker always outputs

a road model within the boundaries set by the available

road data. For example, if accurate road data and

position are available, the tracker will find the best road

model within the margin defined by the map/localization

error. If no road data are available, the tracker will find

2both intrinsic and extrinsic relative to the car frame

the best road model within the constraints defined by a

default road model.

• implicit sensor fusion in the case of multi-camera sys-

tem,

• roads boundaries are not necessarily defined by white

lines, but only by gradient information. Furthermore,

these gradients do not have to follow a particular

continuous model (no segmentation required).

• multi-model for roads: single lane, double lane, sec-

ondary roads etc.

• use of a realistic road model:

– use realistic road profiles: curve, clothoid, variable

width etc.

– use realistic constraints: maximum curvature, pro-

file change etc.

The algorithm uses sequential convex programming method

[4] to minimize iteratively a non linear objective constrained

by non linear inequalities. More precisely, both objective and

constraints will be linearized and a LP (Linear Program) will

be solved at each step using the simplex algorithm [3]. We

now present the model, cost function and constraints used

by the algorithm.

A. Models

1) Camera model: We use the usual pinhole camera
model using rectified images (no distortion, square pixel, no
skew). The intrinsic parameters matrix is then given by:

K =

0

@

f 0 u0

0 f v0
0 0 1

1

A (1)

where f denotes the camera focal, and u0, v0 the image

center.

2) Road plane model: The road plane is supposed flat

locally. It is defined by:

• h: the plane height relative to the camera coordinate,

• p: (pitch) the plane orientation around the x-axis (nor-

mal to heading direction).

Using the above model, the relationship between image
coordinates m̃(u, v) and the plane coordinates m(x, y) are
then given by:

φ : m −→ m̃

(

u = f x
cos(p) y

+ u0

v = v0 − f tan(p) + f h
cos(p) y

(2)

3) Road model: We defined the following parameters for

the road model (see fig. 3), some of which are not used

depending on the road type (single lane, double lane etc.).

Fix parameters are:

• [rx, ry, ra] : position and orientation of the road frame

in the global frame coordinate (fixed for primary road

depending on the camera position relative to the car, or

computed for secondary roads).

• N − 1: the number of band sections.

• {si}i=0..N : the length of the horizontal section i. They

are chosen to have a similar length in image. We denote

L =
∑

i si.

Estimated parameters Z = z0..N+4 are the following:

5558

• z0 = dy : the position of the center of the road normal

to the road direction in the road frame coordinate,

• z1 = aw, z2 = bw, z3 = cw: the quadratic model of

the road width. At a given section, for the curvilinear

abscissa l, i.e. the width is given by aw l
2 + bw l+ cw.

The parameter cw represents the width of the road at

the first section.

• z4 = r: the relative position of the center of the road

(for double lane roads).

• z5+i = {ai}i=0..N−1: the orientation of the section i

relative to the previous section. The orientation of the

last section extremity is set to 0.

y

x

0

s
1s0

xr

band
section

horizontal section

wm

1a

w
2

r

right band section 1

a

1
w

dy

C

Fig. 3. Road model.

From the road model parameters, we defined the control
points position of the road (center, left and right) as:

ψ0
C : Z −→ C0 =



Cx0 = − sin(ra) dy + rx
C
y
0 = cos(ra) dy + ry

(3)

ψ0
L : Z −→ L0 =



Cx0 − r sin(ra + a0)w0

C
y
0 + r cos(ra + a0)w0

(4)

ψ0
R : Z −→ R0 =



Cx0 − (r − 1) sin(ra + a0)w0

C
y
0 + (r − 1) cos(ra + a0)w0

(5)

The following points are then defined recursively:

ψiC : Z −→ Ci =



Cxi−1 + cos(Ai−1) si−1

C
y
i−1 + sin(Ai−1) si−1

ψiL : Z −→ Li =



Cxi − r sin(Ai)wi
C
y
i + r cos(Ai)wi

(6)

ψiR : Z −→ Ri =



Cxi − (r − 1) sin(Ai)wi
C
y
i + (r − 1) cos(Ai)wi

(7)

with Ai = ra +
∑i

i=0
ai and wi = aw l

2
i + bw li + cw. From

projection equations 2 and above equations, we can defined
the projection of the control points in image c̃i = φ(ψi

C):

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

f

0

@rx−sin(ra) dy+
i−1
P

j=0
cos

0

@

k=j
P

k=−1
ak

1

A sj

1

A

cos(p)

0

@ry+cos(ra) dy+
i−1
P

j=0
cos

0

@

k=j
P

k=−1
ak

1

A sj

1

A

+ u0

(cos(p) v0−f sin(p))

0

@ry+cos(ra) dy+
i−1
P

j=0
cos

0

@

k=j
P

k=−1
ak

1

A sj

1

A+f h

cos(p)

0

@ry+cos(ra) dy+
i−1
P

j=−1
cos

k=j
P

k=0
ak

!

sj

1

A

(8)

and similarly for left and right points. Using the above

equation, we then directly express the projection of the road

model in the image, defined with the road parameters only.

B. Cost function

Using the above road model, we define the cost function

which will be minimized in order to best fit the current

road structure. The cost function is based on the gradient

information in images. We do not require white lines or

continuous gradient to define the road boundaries. Instead,

the cost function uses available gradient which are supposed

to be related with the road. We now give some highlights on

the cost function.
1) Adaptive gradient: One issue when extracting the

gradient of pixels lying on the road plane is that its norm
greatly changes with the distance to the camera. Obviously,
pixels corresponding to areas close to the camera have higher
resolution than pixels further from it. In order to compensate
for this effect, we use an adaptive gradient filter depending
on the pixel resolution. The resolution of a pixel at line v in
image, lying on the road plane is given by:

R (v) =
h

f tan (p) + (v − v0)

By using a pyramid of gradient and trilinear mipmapping

interpolation as an approximation for the above equation, we

can compute efficiently the adaptive gradient image using

GPU capabilities. The pyramid is built using a standard

Sobel gradient operator on the multi-resolution version of the

original image. Top images on figure 4 shows the benefit of

such approach. One can notice that small, irrelevant gradients

close to the camera disappear. On the opposite, despite the

smooth transition between road and grass which does not

appear with standard gradient, smooth but relevant edge on

the left border appears when using the adaptive filter.
2) Gradient transformation: A key point of this algorithm

is to define the road model in the road plane coordinate
system but to evaluate the cost function using the image
plane coordinate system. The sampling is performed in
image coordinates so that we do not introduce artifacts
due to projection in the road plane. Using φ−1 the back

projection function, the gradient GR(m) = (g, θ̃) (amplitude
and orientation) in the road plane are defined as:

θ̃ = tan−1

„

cos (p) ((v − v0) du− (u− u0) dv) + dv f sin (p)

−f dv

«

(9)

with (u, v) = φ−1(m) and:

GI : m̃ −→ (du, dv) =



du = g cos (θ)
dv = g sin (θ)

where (g, θ) are the original adaptive gradient (amplitude,

orientation) in the image (note that the amplitude is still

unchanged by the back projection).

3) Gradient filtering: Gradient can be sorted in 3 cate-

gories:

1) relevant gradient: the gradient related to the road edges.

It can be white lines, road borders etc.

2) irrelevant gradient (out of road gradient): these gradi-

ents are not in the road area and are discarded.

3) irrelevant gradient (bad orientation gradient): these

gradients are in the road area but are not oriented

correctly with the road direction. These gradients are

discarded.

In order to select only relevant gradients, we apply these

filters:

5559

• position filter: will select only gradient in the road edges
areas and center (for double lane roads). These areas are
defined as a band B of width b around the road edges
and center line (see the blue band example in figure 3):

m ∈ (B) ⇔

∃i ∈ [0, N − 1],∃P ∈ {C,R, L}, d(m, ψP
i+1ψ

P
i

) < b
(10)

• orientation filter: will select only gradient for which
the orientation is consistent with the road orientation
(relative to some threshold η) for a given section:

|Gθ
R

(m) −Ai| < η (11)

Fig. 4. Gradient computation and filtering on a synthetic image. From top
to bottom: original image. Left: without adaptive filter, right: with adaptive
filter. Left: without position and orientation filtering, right: with filtering.

Results are shown on figure 4: bottom right image shows

that only gradients (figure shows vectors normal to the

gradient) related to the road are used for the cost function

computation, even in low gradient areas.
4) Cost function: We want the edges of the road to be

centered on gradient of maximum values, we thus use the
correlation between a triangular function T of width b, the
band width, centered on the road edges and the gradient
values:

Cpos =
X

m̃∈φ(B)

Gg
R

(φ−1(m̃)).T (φ−1(m̃))

Notice again that the point m̃ are set in the image plane,

while the function values are set in the road plane.
5) Cost function linearization: As we transform the prob-

lem as a LP at each step, we need to linearize the cost
function. Using automatic differentiation, the gradient based
direction is given by:

G = −

»

∂C

∂zi

–

(12)

where zi is a road model parameter as defined in II-A.3.
From one iteration p to the next one p+1, we search the µi
in:

z
p+1
i = z

p
i + µi, with µi = ki − λMi (13)

with Mi the range of the step for parameter i. The maximum
step length λ is used during the line search algorithm of the
iterative search. The value µi is found by solving the LP:

max.
P

i kiGi

s.t.
P

i ki h
j
i ≤ h

j
c

(14)

We now described how we define the linear inequalities hj .

C. Minimizer

Having defined the above cost function, we now need

to minimize the function with respect to some non-linear

constraints. As a use a LP, these constraints will also be

linearize at each step of the minimization. The figure 5

Trust region

Iterative
estimation
constraints

y

x

previous frame
model

constraints

Road model constraints

Projected trust region
constraints

Fig. 5. Simplified overview of the constraints (after linearization). Black
point: current model M(x,y). Yellow area: resulting simplex after intersection
of all the constraints.

summarizes the different constraints with a simplified view

with 2 parameters only (instead of R
N+5).

1) Direct trust region: As the above linearization of
the cost function is only valid around the current point
(typically in the range [−Mi,Mi]), we need to define a set
of constraints called the trust region. Classically, we define
a box around the point with the following linear constraints
on ki (blue lines in 5).

∀i ∈ [0..N + 4] , 0 ≤ ki ≤ 2.λ.Mi

As the gradient descent algorithm is not affine invariant to

the parameters, we usually need to take special care when

defining the box. However, we will see in the next section

that these constraints are superseded by other constraints

coming from motion in the image plane. This set of con-

straints adds N + 5 linear constraints to the linear program

(the lower bound are implicit in the simplex algorithm).
2) Projected trust region: Recalling that the terms of the

cost function are originally computed in the image plane,
we actually want to limit the motion of the control points
in the image plane. We only limit the motion on left and
right points (since the center point will then be intrinsically
constraint). Since the motion of the points in image is not
a linear function of the road model parameters, we perform
a linearization of the control points image coordinates. The
resulting Jacobian expresses the relationship between a small
displacement in parameter space and the displacement in
pixel space for each control points:

Γ =
h

∂ψi
L

∂zj

∂φu

∂m

∂ψi
L

∂zj

∂φv

∂m

∂ψi
R

∂zj

∂φu

∂m

∂ψi
R

∂zj

∂φv

∂m

i

(15)

with i ∈ [0, N], j ∈ [0, N +4]. The resulting 4N × (N +4)
matrix can be expressed only using the fix parameters and

5560

the control points coordinates (the analytical development is

not detailed here).
The projected trust region constraints are then given by

(pink lines in 5):
(

Γi.(K − λM) ≤ dmax

Γi.(K − λM) ≥ −dmax

where Γi the ith line of the Jacobian, dmax the maximum

displacement allowed in pixel, K = [ki] the parameters

vector and M = [Mi] the step vector. This gives 8N
additional linear constraints to the system (N horizontal

sections, left and right points, u and v motion, lower bound

and upper bounds).

3) Road model constraints: Besides the constraints re-

lated to the sequential linear program, we also want to

enforce some property on the road profile. One key point of

this algorithm is the ability to smoothly integrate navigation

data when available. This integration is done through the

road model constraints (red lines in 5):

• when few or no information on the road and position

are available, a set of default constraints is used by the

minimizer,

• when accurate road parameters are available, the algo-

rithm can be used to localized the car on the current

road,

• when accurate position is available and few road infor-

mation, the best road model is search inside the bounds

and robust filtering can be applied,

• when both position and map are accurately known, the

model parameters are tight inside a small area and

robust and reliable results are expected.

The road model is chosen based on the type of road expected

(city street, highway, single lane, double lane etc.).
a) Constraint on dy: This constraint bounds the posi-

tion of the car on the road (default dymax = 1 ∼ 6m):

|k0 + dy| ≤ dymax (16)

b) Constraint on the road width: The parameters
aw, bw, cw described the road width profile. We derived 3
linear constraints by bounding the width of the road for the
first section, the middle section and the last section:

|(aw + k1)X
2 + (bw + k2)X + (cw + k2)| ≤ wmax (17)

(default wmax = 3 ∼ 8m).
c) Constraint on the center line: For double lane road,

the center line position can vary slightly depending on the
road type (default drmax = 0.1).

|k3 + r − 0.5| ≤ drmax (18)

d) Constraint on sections angles: Constraints on angles
usually arise when considering the road maximum curvature.
The maximum angular difference between 2 successive sec-
tions can be approximate by:

∆ai,max = |ai+1 − ai| ≤
si

R
(19)

where R the minimum curvature radius of the current road
3.

3the curvature value can usually be deduced using the maximum allowed
speed of the road and some charts depending of the road type.

All these constraints add 2 (N + 5) linear constraints to

the system.
4) Iterative estimation constraints: As the road model is

refined for each new image, we also want to limit the varia-

tion of the model from frame to frame. This is achieved by

adding 2 (N+5) new constraints on the parameters variation

from frame to frame (green lines in 5). The constraints are

defined in a way similar to the ones in II-C.3 except that

instead of being defined as an absolute constraint of type

|zi + µi| < τi, it is defined relatively to the previous model

parameters |zi + µi − zt−1

i | < ∆i.

D. Implementation

The current implementation is balanced between:

• GPU part: compute the adaptive gradients, filter the gra-

dient, project the model and compute the cost function,

• CPU part: compute the LP system and solve it using

the simplex algorithm.

For example, a model with N = 8 sections (about 35m

lenght) is composed of 13 parameters and 119 constraints.

Combined with other features not presented here (dynamic

road length, model prediction and filtering), it allows to run

the estimator between 5 and 10Hz (3GHz CPU, GPU Nvidia

GTX 200 series).

III. OBJECTS DETECTION AND TRACKING

We briefly present the detection and multi-objects tracking

used in the current system. Although the system aimed at

tracking both pedestrians and vehicles, we focus here on

pedestrians as it will demonstrate the ”Pedestrian Warning

System”.
a) Pedestrian detection: The detection is done using

HoG features and a linear-SVM classifier[7], using a GPU-

based implementation. False positive are rejected using the

following criteria:

• we use the road structure and ground plane as a prior

in order to reject unexpected entities position and scale,

• LIDAR data allows further rejection based on scale and

position of entities,

• tracker output is used to check the temporal consistency

of the detection (distribution of SVM score) for a few

frames.

b) Multi-object tracking: We apply Rao-Blackwellized

Particle Filter[6] to multi-object tracking. We add the ap-

pearance information during data association. The features

are based on a SIFT-like [8] descriptor and the matching is

done using the Normalized Cross-Correlation. We also added

a template update feature in order to deal with the problems

arising during long term tracking.

IV. RESULTS

A. Roads Tracker

The figure 6 shows an example of road tracking on real

data. One can notice that the road is successfully tracked

despite of the non relevant gradient (white arrows). The road

model also handles correctly the clothoid model of the road.

The tracker is also robust to other cars occultation of the

road (right lane).

5561

Fig. 6. Left: bird view of the road. Right: original image and road structure.

B. Integration

The presented modules are integrated using a customized

middleware which allows to run all modules in parallel while

maintaining the synchronization between them. A navigation

module containing the Navi Map and current approximate

GPS position is also run and send data to the Roads Tracker.

The Roads Tracker also allows to track secondary roads

which are initiated using GPS trigger on approximate sec-

ondary roads position (the tracking algorithm is essentially

the same as the one presented before).

C. Pedestrian Warning System

For testing purpose, we use synthetic data from a World

Simulator which simulate cameras, LIDAR and positioning

device in a realistic way. Devices use realistic noise model

(based on real sensors noise). Images are realistic enough to

obtain algorithms performance similar to the one with real

data. The navigation module contains the global path to the

goal and send it to the Warning System. The pedestrians

are consider dangerous when they are, or will be, in the

boundaries of the road used by the car. Pedestrian speed

and tracker confidence also influence the danger level of

the pedestrian. The figure 7 and video shows the results

with a situation detected as dangerous. In this scenario, a

pedestrian is passing another one by walking on the road.

From the trajectory and pedestrian position relatively to the

road, the system is able to produce a warning (red color) for

the walking pedestrian who is intersecting the current vehicle

trajectory.

V. CONCLUSION

We presented several recognition modules in the area of

automotive system. These modules, composed of a roads

reconstruction system and an objects tracking system, are

merged together to build a BM. Beside the obvious appli-

cation of ADS, an application of this map was presented to

demonstrated the power of high level recognition modules

Fig. 7. Top: original image and HOG detected pedestrians. Middle: Navi
map (GPS position in blue), Roads Tracker. Bottom: Final Behavior Map.

combination. A key point was the integration of such mod-

ules inside a global hierarchy where both high level (Navi

Map and planning) and low level systems cooperate in order

to improve robustness and reliability.

Following this direction, we are currently enriching the

BM, integrating a car tracker and a Behavior Path Planner

using the proposed method. The method is also being ex-

tended to take into account multi-camera system in order to

deal with the crossroads.

REFERENCES

[1] M. Aly, Real Time Detection of Lane Markers in Urban Streets,
IEEE Intelligent Vehicles Symposium, June 2008, Eindhoven, The
Netherlands.

[2] S. Sehestedt, S. Kodagoda, A. Alempijevic, and G. Dissanayake,
Efficient lane detection and tracking in urban environments, in Proc.

European Conf. Mobile Robots, 2007, pp 126131.
[3] J. A. Nelder and R. Mead, A simplex method for function minimiza-

tion, Computer Journal, vol.7, 1965, pp 308313.
[4] J. Nocedal and S. Wright, Numerical Optimization, Springer Series in

Operations Research, Springer, 1999.
[5] T. Luettel, M. Himmelsbach, F. v. Hundelshausen, M. Manz, A.

Mueller and H.-J. Wuensche, ”Autonomous Offroad Navigation Un-
der Poor GPS Conditions”, International Conference on Intelligent

Robots Systems, 3rd Workshop:Planning, Perception and Navigation
for Intelligent Vehicles (PPNIV), 2009.

[6] Simo Sarkka, Aki Vehtari and Jouko Lampinen, ”Rao-Blackwellized
Particle Filter for Multiple Target Tracking”, Information Fusion

Journal, Volume 8, Issue 1, 2007, pages 2-15.
[7] Navneet Dalal and Bill Triggs, ”Histograms of Oriented Gradients for

Human Detection”, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), vol. II, June 2005, pages 886-893.
[8] David G. Lowe, ”Distinctive image features from scale-invariant

keypoints”, International Journal of Computer Vision, Volume 60(2),
2004, pages 91-110.

[9] Journal of Field Robotics, Special Issue on 2007 DARPA Urban
Challenge, 2008, Part 1,2,3.

5562

