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Abstract— This paper describes a 3D textured map genera-
tion method for autonomous vehicle in urban outdoor environ-
ment, where GPS signals can not be reached. Constructed map
will be used for short cycle and accurate localization and for
obstacle detection using onbody laser scanner.

In order to build dense 3D polygon map, planar feature
of laser scanner input is extracted. They are associated and
transformation matrices in between each scan point were
iteratively solved. Aligned points were converted into texture
mapped 3D polygons.

400x350[m] area in Univ. of Tokyo were scanned at 59 scan
points, and 3D polygon map consists of 14M polygon were
obtained. Experimental results of localization and autonomous
path following two-wheeled inverted mobile robot PMR are
shown.

I. INTRODUCTION

Recently, research on outdoor autonomous robots has
become increasingly active, and a broad array of fundamental
issues are under investigation. In the outdoor environment,
GPS is mostly used for localization, however it is not so
useful when sky is not widely opened so that satellites are
not directly nor constantly visible, such as in urban city or
under the trees.

In the indoor environment, laser scanner is widely used
for 3DOF localization purpose from two dimensional map,
however, this technique is not directly applicable for outdoor
environment because in 3D environment, 6DOF localization
is needed. For example, with 7 [deg] inclination causes
1.2[m] height difference in 10[m], and if map is two dimen-
sional, this inclination makes localization impossible. Few
degrees of inclination also may happen from vehicle posture
changes, and this causes sensor looks at ground or air.

Therefore, 3D map together with 6DOF localization be-
comes important for outdoor terrain, where GPS is not able
to use. Authors previously showed a online particle filter
based 6DOF localization technique from 3D map [1].

So far, many 3D map building algorithms from multiple
camera views have been proposed in computer vision field,
(i.e. Structure from Motion). Those techniques basically
consist of feature extraction, their association, and recon-
struction. Factorization [2] is a tracking based approach, and
bundle adjustment technique(ex. [3]) is introduced in order
to optimize 3D structure and camera parameters. There are
also sampling based approach by introducing Markov Chain
Monte Carlo model [4, 5], or by Expectation Maximization
method [6, 7]. Recently SIFT feature is widely used as for
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a feature extraction [8]. This framework calculates recon-
structed map together with camera parameters, however the
map is basically sparse since original features are sparse.

On the other hand, 3D map building algorithms from many
scans of laser scanner input have also been proposed, such
as ICP [9,10] and 3D SLAM methods [7,11] by introducing
MCMC. This framework calculates transformation matrices
in between each scans, so that the resulted map becomes
dense. However in natural environment, high frequency re-
gion such as tree leaves or grass exist and it is difficult to
handle such a environment.

Therefore, in this paper, we propose a method to obtain
large scale 3D map, by extracting planar features from
multiple laser scanner input, to solve transformation matrices
of each scans, by omitting high frequency regions in the
scene. As a result, we can obtain dense 3D map, so that the
map can also be used for obstacle detection.

II. 3D MAP GENERATION

A. 2D Laser Scanner
In this paper, we adopted Riegl LMS-Z420i as for a

2D laser scanner(Fig.1). This equipment is class 1 laser
(eye safe) and it can measure 80 [deg] for elevation and
360 [deg] for azimuth at a time with maximum 0.01 [deg]
resolution. Distance measurement is 1[mm] resolution and
standard deviation of absolute measurement is 10[mm]. It
can measure 350[m] with more than 10% reflection object.

One scan with 0.1 [deg] resolution causes 2.5M points
(X, Y, Z, R, G, B and reflection power), and with 0.01 [deg]
causes 250M points respectively.

As like other time of flight bases laser scanning equipment,
this scanner also doesn’t have remarkable distortion nor non-
linear sensitivity from distance to a target. Therefore, in this
paper we only estimate external parameter (i.e. transforma-
tion matrices) of each scan.

B. Marker based Calculation of Transformation Matrices
As for preliminarily experiment, total 80 times scan at

18 points(number 1–18 in Fig.2) were conducted in about
400 × 350[m], and about 100M points were obtained. As
for load part, at least 15[cm] sampling were achieved by
changing angular resolution.

At each scan, we put at least three (usually about five) of
both following markers in the scene, and those markers are
commonly seen from another scan: 1) reflective ball (5[cm]
diameter) and 2) non-reflective white ball(15[cm] diameter).

Reflective markers are measured by 0.004[deg] resolution,
and white markers are measured by 0.01[deg] resolution. As
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Fig. 1. LMS-Z420i Scanner Mounted on a Cart

Fig. 2. 59 Scan Points at Univ. of Tokyo

for white markers, hough transform is used to locate the
center of the ball.

After finding center position of markers at each scan, those
are associated and transformation matrices were solved by
closed-form least square method [12]. There are multiple
closed-loops arise, so in order to obtain global coordinates,
iterative fitting of transformation matrices is adopted to
minimize errors.

TOPCON GPT-9000A is utilized to locate scanner position
by measuring reflective prism attached at top of laser scanner
at each scan point. This equipment is also used to do optical
land survey measurement at about 20 points in target area.
We compared this result with the closest sampling point
in previously obtained global coordinated scan points, and
average error was about 5[cm].

Therefore, both reflective and white ball markers work
well to obtain transformation matrices. However, there is
two difficulties to use markers, the one is placement of
marker balls that can be seen from another scans, and the
other is measurement exactly around given markers in high
resolution.

Fig. 3. Entire Scan Points after Aligning, Each Scan has Different Color

Fig. 4. Virtual View of Yasuda Tower by Omitting Adjacent Science
Department Building No.1

C. Planar Feature based Calculation of Transformation Ma-
trices

As a observation of scanning result, natural objects such
as tree leaf, twig, bush, grass and so on, has higher frequency
shape than laser scan. Therefore, low-pass filter is adopted
for scanner result in order to obtain a low frequency shapes.

Obtaining feature that can be robustly found from the
other view is required to associate then to calculate trans-
formation matrices. In this paper, probabilistic planar feature
extraction method is adopted proposed by Weingarten [13].
This method has three steps; 1) PCA based plane detection,
2) transformation of scan points, 3) uncertainty analysis
using standard regression methods. After obtaining plane
parameters, number of points on the plane, and its center
of gravity are calculated.

Since there is no closed-form solution for planes to
planes fitting, RANSAC is used iteratively pick up planes to
find out transformation matrices by using non-linear least-
square method [14]. In this case, transformation matrices
are obtained globally, so that loop closing process shown
in marker based method is not needed. Average error in
between previously mentioned optical land survey points and
estimated by this method was about 7[cm]. Therefore, this
method can be used to obtain 3D map.

D. Polygon Map Generation

Since marker-less measurement is easy and fast, we
scanned another 40 scan points (number 19–59 in Fig.2).
After obtaining global transformation matrices and all scan
data are shown in Fig.3. In this figure, each scan data has
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Fig. 5. Polygon Reduction Results in Low-Frequency Area

different color. Fig.4 shows a virtual view of Yasuda tower
by omitting adjacent building(Science department building
No.1). After this process, all data were about 1.5B points.

Then we sample among points to have at least 12.5[mm]
distance to the other points, in order to reduce the number
of data. The result was about 200M points. There are about
28% of high frequency data that comes from leafs and so on.
Remaining 72% of low frequency data comes from building,
load, and so on.

As for low frequency part, put polygons that have less
than 12.5[mm] distance from points. Then color that was
associated to each scan were texture mapped onto polygons
with texel size of 12.5[mm]. Resulted number of polygons is
same magnitude of number of points. However, using poly-
gon reduction technique, we found that this low frequency
region can be reduced into few %. Fig.5 shows 100%, 25%
and 6% data of Yasuda tower.

As for high frequency region, polygon can’t be directly
mapped. Therefore, once the data is represented into vol-
umetric kd-tree, and then converted into surface polygon.
However, it is very dense and polygon reduction technique
doesn’t work with this data. Fig.6(above) shows 100%, 50%
and 25% reduction of a large tree in front of Yasuda tower.
Fig.6(below) shows a cut version, and it is seen that inside
is also dense.

Fig. 6. Polygon Reduction Results in High-Frequency Area

Fig. 7. Rendering Result of 3D Polygon Map

Fig. 8. Two-way Path from Eng. Bldg. No.2 to No.11

As for localization point of view, this high frequency
region is not able to deterministically estimate the laser re-
flection. Therefore, in this paper, we use this high frequency
region as uncertain area for localization.

Fig.7 shows a obtained polygon map combined high and
low frequency area. It consists of about 15M polygons. This
map can be rendered by using standard graphical hardware.

III. EXPERIMENT OF PATH FOLLOWING

A. Two-Wheeled Inverted Mobile Robot PMR

PMR(Personal Mobility Robot) [15] is a revised version
of TOYOTA MOBIRO that was designed for single seated
vehicle for urban terrain. Sensors (four Hokuyo UTM-30LX
laser scanners, three omni-directional cameras and so on)
and computer of PMR are improved from original MOBIRO.
There are five DOF (seat slider, left and right swing arm,
both wheels) and desingned to keep seat upright even during
rotating on a slope. Knee down mode is used in order to get
in/out, and automatic transition in between inverted mode
and knee down mode.

As for experiment, vehicle control method is proposed in
[16].

Robot controller keeps PMR upright within about 5 [deg]
even on the slope. Therefore, we cut off the polygon map
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Fig. 10. Localization Result (XY) in PMR Experiment

Fig. 9. Laser Scanner Input and Localization in PMR Experiment

more than 5[m] from the ground as well as high frequency
regions. Remaining map contained about 1M polygons.

B. Localization Experiment

A two-way test course was set from engineering building
No.2 to No.11 through both pedestrian way and load. Fig.8
shows the entire path. In the middle of the path contains one
way load, so that the path differs in each other. Path length
for one way is about 250[m]. This path contains 7[deg]
inclination and 3[m] of height changes. In real environment,
there are static and moving obstacles such as pedestrians,
bicycles, cars and so on.

Initially localization experiment was conducted by manu-
ally driving PMR. Particle filter based 6 DOF Localization

method by using 1D (single line) laser scanner is proposed
in [1].

Localization process is calculated by MacBookPro(G0Z0)
that has Core2Duo-2.8GHz, 3GB memory, NVIDIA Geforce
9400M(256MB) graphics accelerator. With 1M polygons
map, particle filter based localization with 100 particles
works in 80-150[ms] cycles.

Fig.9 shows a laser scanner input together with matched
laser point in red, while unknown objests in blue. At bottom
figure of Fig.9 shows laser scan hits to the ground. Fig.10
shows a XY plot of one way run with about 1[m/s] speed
and Fig.11 shows Z, roll, pitch and yaw at the same run.

After ten two-way run, error at the both-end were about
15[cm] in XY translation and about 12[deg] in yaw angle.

C. Autonomous Path Following

Path following method was proposed in [17]. This method
adopts circle and line as a path component in order to
guarantee time to travel of given path, so that robot can avoid
moving obstacles such as pedestrian and bicycle. However,
since it is not obvious to find out region that can run by PMR
from given 3D map, in this paper, moving obstacle detection
and prediction as well as moving obstacle avoidance is not
adopted.

Instead, obstacle detection function stops PMR within
2[m] ahead. There is one laser scanner mounted horizontally,
and two scanners are looking down to the ground 30[deg]
from horizontal plane. [17].

Another course was set to examine a path following around
engineering building No.6. Fig.12 shows the course. Tree
becomes obstacles to the sky, so that gound can not be seen.
Here GPS is completely not possible to use. The height
diffrence of the course is more than 5[m].

Fig.13 shows a given and executed velocity while the
experiment. In this experiment, 1.0[m/s] was given for trans-
lational speed. Fig.14 shows a localized and given path at the
two corner. Fig.15 shows a PMR in motion in the experiment.

Combining localization, path following and vehicle con-
trol, autonomous path following were achieved with up to
1.2[m/s] translational speed and 0.5[m/s] rotational speed.
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Fig. 11. Localization Result (Z, Roll, Pitch, Yaw) in PMR Experiment

IV. CONCLUDING REMARKS

This paper describes a planar feature based alignment of
laser scanner inputs in order to build large scale outdoor 3D
map that is used for localization and obstacle detection in
mobile robot navigation.

In order to build dense 3D map for localization and obsta-
cle detection, planar feature of laser scan input is extracted.
They are associated and transformation matrices in between
each scan point were iteratively solved. Aligned points were
converted into texture mapped 3D polygons by omitting high
frequency regions, then used for 6DOF localization from
onbody 1D laser scanner. 400x350[m] area in Univ. of Tokyo
were scanned at 59 scan points, and 3D polygon map consists
of 14M polygons were obtained. Experimental results of
localization and autonomous path following by PMR are also
shown.

Particle filter based 6DOF localization with 1M polygon
map works about 10[Hz] with accuracy of about 15[cm] in

Fig. 12. Path Following Experiment Setup

Fig. 13. Given and Executed Velocity in Path Following Experiment
(Translational and Rotational)

XY translation and 12[deg] in yaw angle.
Next, autonomous navigation is our target. In order to

achieve autonomous navigation, we need to find out regions
that can run by PMR in both physical and manner (or rule)
point of view.

We would like to integrate image based structure from
motion together with laser scanner based map. Sparse map
build by image based structure from motion is useful for just
localization, and especially outdoor has enough features.
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