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Abstract— This paper deals with a path planning problem
for turning motion of a car-like vehicle. We propose a turning
method which finds a curvature continuous optimal path
between two positions for a car-like vehicle.

This method suggests two kinds of turning case; 1) Turning
path with an arc of minimum turning radius ; 2) Turning
path without an arc of minimum turning radius. In each case,
we derive an closed form functions, an object function and a
set of related constraints. By using those equations, optimal
turning path candidates corresponding to each case are made.
Furthermore, we find a final distance optimal turning path
among above candidates for each case.

Our algorithm is novel and more challenging compared to
existing path planning algorithms in the sense that it deals more
complicated problem, a turning motion. Moreover, we expect
that the proposed method is helpful in various ways such as
an improvement of existing path planners, like sampling based
planners.

I. INTRODUCTION

To general knowledge, while a car-like vehicle have a

mechanically simple steering structure compared with other

kinds of vehicle such as a differently driven type, the

structure of the car-like vehicle has caused several constraints

related with path’s curvature and have given challenging

issues in generating a distance optimal path.

The firstly considered constraint of car-like path planning

is a minimum turning radius caused by the length of vehicle’s

wheelbase. From the pioneering work by Dubins [1], several

researchers ([2], [3], [4]) conducts a path planning research

with this constraint. By doing so, they can generate a path

closer to car-like vehicle’s real motion. The path, however,

does not consider curvature continuity; Rather, it contains a

quantum jump of curvature in curvature profile.

Later, Kanayama [5] firstly cognates a continuous curva-

ture problem and adopts a clothoid to overcome this problem,

then numerous studies, including [6], [7] and [8], consider

the continuous curvature constraint. All These algorithms

have been studied under just two given configurations in an

obstacle free space, so we call them a local path planner.

Therefore, they can make a path connecting two configura-

tion directly. They, however, cannot make a feasible path if

an obstacle whose size is too big to avoid exists between

two configurations. For this reason, they have had to be

usually used with a global path planner which considers an
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obstacle. Moreover, those works do not evaluate distance

optimality using an analytical way. Instead, some works

including Shkel et al. [9] choose the shortest one among

previously generated path set, like Dubins set. Of course,

some researcher including Yang [10] solves an analytic

solution for turning motion using bezier curve. The research,

however, only focuses on analytic smoothness solution based

on fixed way-points. In other words, the method excludes

the possibility of presence of shorter path based on the way-

points that move to other locations.

In this paper, we expand above works to vehicle’s shortest

path planning for turning motion between two arranged

points with polygonal obstacle’s corner. In addition, we gen-

erate a closed form functions which considers all statements

mentioned above. In that, we consider 1) distance optimality,

2) obstacle avoiding turning motion, and 3) car-like vehicle’s

constraint. When it comes to the constraints, maximum

radius of curvature and continuous curvature profile (limited

curvature derivative) are reflected into the suggested planner,

and to achieve it, we adopt a clothoid curve. We expect that

the novel local planing method is useful not only because

the method can generate a path avoiding an obstacle, but

also because we can analytically analyze path’s distance

optimality using the closed form equations of the method.

We expect that the method can be used in various way.

In fact, turning around the corner is a commonplace affair

in a real world. For instance, serving vehicles in a dinning

room or restaurant may have to plan a turning path to serve

meals from a cuisine to a table. It also became an important

issue in case of unmanned ground vehicle(UGV)’s traveling

in urban area.

The algorithm can be also expected to contribute on the

improvement of existing path planning algorithms. Many

researchers have used a combination of supporting local

path planners with various global path planners, such as

Probabilistic Path Planner ([11], [7], [12], [13]) or Ariadne’s

Clew Algorithm ([8], [14]), to cover vehicle’s kinematical

constraints.

Fig. 1 shows a possible contribution of our method on

PRM. Fig. 1-(a) and Fig. 1-(b) explain a road-map construct-

ing procedure for path planning using PRM. As shown in Fig.

1-(a), PRM randomly and uniformly distributes landmarks

(red cross) in free space. Each landmark consists of Euclidian

coordinates and orientation at the location. Then as shown

in Fig. 1-(a), each landmark evaluates a connectivity with

its neighborhood using a specific local planner researched

above, and then complete a road-map composed of a local

planner (Fig. 1-(b)). For example, configuration 1 and 3 (2
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(a) (b)

(c)

Fig. 1. Path planning procedure of Probabilistic RoadMap method and
suggested method.

and 3 also) are connectable so that they can form a partial

road-map while the local path connecting configuration 1 and

3 cannot be included in the road-map because of collision

with an obstacle.

On the contrary, the proposed method makes possible to

connect configuration 1 and 3 directly without any collision

by generating a turning path ( Fig. 1-(C)). Although it may

lead a slight modification of orientation of 1 and 3, it will

significantly reduces the length of path compared with the

path through 3. Moreover, we can also compute a detailed

range of consideration by using analytically generated equa-

tions.

This paper is organized as follows: In section 2, we

define suggested problem more accurately and explained

key concept of our strategy. Section 3 and 4 state mainly

about the proceedings of equation derivation for path’s length

and related constraints. In final section, we discuss about

simulation results, and conclding remarks follows.

II. PROBLEM DEFINITION AND SOLVING STRATEGY

The main issue we would concern is a distance optimal

turning motion given two point A and B. Fig. 2 briefly

represents the problem we would focus on. In order to

satisfying car-like vehicle’s minimum turning radius and

continuous curvature constraint, turning motion contains

clothoid connecting an arc of minimum turning radius and

a straight line. As stated before, most local path planner in

obstacle free space constitutes a specific path set, like Dubins

set, then selects the distance optimal path among the set.

When it comes to turning motion, however, there cannot exist

any specific feasible path set. Rather, the shape of a generated

path is highly arbitrary. Hence, we choose a different strategy

to get a distance optimal path. In other words, we derive

closed form functions composed of an object function and

related constraint functions set.

Fig. 2. Problem definition.

Object funcion ,J

An Object function denotes the length of entire turning

path. It can be expressed in terms of two variables.

Constraint functions Set, Set of C

Constraint functions are derived considering geometrical

relationship with an obstacle, in that these functions are

derived with relative location of a generated path compared

with an obstacle. Constraint functions can be expressed in

terms of three variables. Two of them are used in above

object function, but one additional variable is not; Thus,

we need two constraint functions to eliminate the additional

variable.

Here, we note that a car-like vehicle is the vehicle which

can move only forward direction with constant linear veloc-

ity. On top of that, the vehicle has a maximum steering speed

in that constant steering speed. It is based on the verification

in [15] and [16] that generated path can be distance optimal

only when steering wheel rotates with maximum speed. We

also state that all clothoid pairs have the symmetrical shape

because we consider a vehicle which has constant linear

velocity and steering speed.

Given two point A and B, generateable feasible path can

be divided into two types as shown in Fig. 3.

Fig. 3. Two possible path compositions. (a) A path which contains an arc
with minimun turning radius. (b) A path which contains only clothoids pair.

According to the shape of a path, central angle θ between

two straight line became different. If θ is enough small, the

shape of the path is as shown in Fig. 3-(a). This type of path

contains an arc of minimum turning radius and clothoid pair

whose curvature at the end of curve is as same as the arc’s
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Fig. 4. Entire shortest path obtaining process. The shortest path is
extracted by hierarchical process. In that, the method choose the shortest
path candidate in case A and case B, than compares these candidates to
select the general shortest path.

curvature. We name the path including the arc as Case A.

In a view point of a real car-like vehicle, case A means that

steering wheel is rotated completely to its limitation angle

so that the car turns around with the corner with a constant

curvature arc. Therefore, the entire path consists of straight

line- clothoid - arc - clothoid - straight line.

On the contrary, Fig. 3-(b) shows a path whose θ is large

enough. We regard this type of path as case B. This suggests

that the car unwinds steering wheel as soon as wind steering

wheel to certain degree of angle. Therefore, it contains no

Arc. Instead, partial fragments of the complete clothoid curve

used in Fig. 3-(a) are placed for turning motion because

steering wheel does not wind up to its limitation angle.

Therefore, entire path of this case is composed of straight

line-incomplete clothoid pairs-straight line.

Then, as shown in Fig. 4, shortest turning path is obtained

among the candidate shortest paths of each case A and

B. In each case, shortest path candidate can be generated

by combining a object function with constraint equation

corresponding to the case.

This paper contains the deriving process of J and C for

each cases. In section III, we will derive JA and C1
A,C2

A for

case A. Then in following section (section IV), we will also

derive JB and C1
B,C2

B for case B.

III. CASE A: TURNING PATH WITH THE MAXIMUM

CIRCLE

In this section, we would derive an object function J 1 and

related constraints C1
A and C2

A for case A. Fig.5, describes

the path we would cope with. We would express the path in

terms of certain variables, θ and θA in the figure, where θ is

the angle between two expanded line of P1P7 and P3P8, and

θA (θB) is the angle between P1P7 and P1P3 (P3P8 and P1P3).

In particular, we utilize a circumcircle with an inscribed

triangle to reduce the number of related variables to achieve

the purpose.

A. Object function JA for case A

As stated in section II, object function is the length of

total path, and the entire path consists of two straight lines,

two clothoids and one arc in case A. Therefore, the object

function can be expressed of the sum of all segments as

follows

Fig. 5. Composition of the path for case A. Case A seeks for the shortest
path that contains an arc of the minimum turning radius.

JA = P1P7 + clo(P7P5)+ Arc(P5P9)

+ clo(P9P8)+ P3P8.

(1)

clo denotes a clothoid which meets with an arc of

minimum turning radius. Then, P2 a freely moves in free

space according to θA and θB whereas P1 and P2 have

fixed location. Therefore, the shape of path is determined

according to the location of P2( in that, the value of θA and

θB), and θB can be represented by θ . It means that we can

express the length of path, (1), in terms of θ and θ A.

Clothoid curves in (1), P̂7P5 and P̂9P8, are constants value,

Sclo, because they are determined by only constant values

such as mechanical limitation of steering wheel’s angle or

winding(unwinding) speed of steering wheel. Therefore, we

narrow the field of our problem into the expression of

P1P7,P3P8 and Arc(P5P9).
1) The length of P1P7 +P3P8: To get the length of P1P7 +

P3P8, we would modify (1) into the following form.

P1P7 + P3P8 = P1P2 + P2P3 − (P7P2 + P2P8). (2)

In this part, we would express all the part of (2) in terms

of θ and θA, but it is very difficult and ambiguous to achieve

it. At this point, we suggest a novel method, a Circumcircle

and Inscribed triangle approach (CI approach).

Fig. 6 briefly describes the CI approach at certain location

of P2. In the figure, inscribed triangle, △P1P2P3, is enclosed

by the circumcircle P1P2P3.

• Derivation of P1P2 + P2P3

To derive the length of (2), we firstly derive the length of

P1P2 + P2P3. Then, from △P1O1P2 and △P3O1P2 in Fig. 6,

the length of P1P2 and P2P3 are given by

P1P2 = Ll = 2R1 cosθ1, (3)

P2P3 = Lr = 2R1 cosθ2. (4)

We have to express R1, θ1 and θ2 in terms of θ and θA.

Firstly, we can get from Fig. 6
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Fig. 6. CI approach for case A. Given configurations at P1 and P3, P2

freely moves in free space, and constitutes a circumcircle and an inscribed
triangle △P1P2P3.

R1 =
ℓ1

2sinθ
. (5)

Meanwhile, we also express θ1 and θ2 in terms of θ and

θA. As stated before, θ equals to θ1 + θ2. Similarly, θA is

also θ1 + θ3. Then, we can derive that,

θ1 = θA −θ3 = θA −
1

2
(π −2θ ) , θ1 = θA + θ −

π

2
,(6)

θ −θ2 = θ1 = θA + θ −
π

2
, θ2 =

π

2
−θA. (7)

P1P2 + P2P3 is given by

Ll =
ℓ1

sinθ
cos(θA + θ −

π

2
) =

ℓ1

sinθ
sin(θA + θ ), (8)

Lr =
ℓ1

sinθ
cos(

π

2
−θA) =

ℓ1

sinθ
sinθA (9)

, then

P1P2 + P2P3 = Ll + Lr

=
ℓ1

sinθ
[sin(θA + θ )+ sinθA] . (10)

• Derivation of P7P2 + P2P8

In previous part, we derived the length of P1P2 + P2P3 in

terms of θ and θA. Now, in this part, we would express

P7P2 + P2P8 in (2) in terms of those variables. Fig. 7 shows

a geometric analysis to derive P7P2 and P2P8 in terms of θ

and θA.

From Fig. 7, we can easily know that

P7P2 + P2P8 = P4P2 + aclo + P2P10 + aclo. (11)

As mentioned in previous section, clothoid’s values in case

A such as aclo, bclo and minimum turning radius Rclo in Fig.

7 are all constants. Therefore, we should represent P4P2 and

P2P10 in terms of θ and θA to derive P7P2 + P2P8.

Fig. 7. Geometrical analysis for case A.

To derive P4P2 first, we will start from the equality as

follows

P5P6 = P2P5 sin(
θ

2
−θ4) = Rclo sin

θr

2
. (12)

By adopting the formula of sin, the left side of (12) can

be modified as

P2P5 sin(
θ

2
−θ4) = sin

θ

2
P2P5 cosθ4 − cos

θ

2
P2P5 sinθ4

= Rclo sin
θr

2
. (13)

As shown in Fig. 7, P2P5 sinθ4 in (13) equals to bclo, and

P2P5 cosθ4 also equals to P2P4.

Then we can solve (13) in terms of P2P4 which is given

by

P2P4 =
1

sin θ

2

[
Rclo sin

θr

2
+ cos

θ

2
bclo

]
. (14)

By symmetric property, we can easily confirm that P2P4 is

equal to P2P10. Then by substituting (14) for P2P4 and P2P10

in (11), we can get the length of P1P7 and P3P8 as follows

P7P2 = P2P8 =
1

sin θ

2

[
Rclo sin

θr

2
+ cos

θ

2
bclo

]
+ aclo (15)

, then

P7P2 + P2P8 =
2

sin θ

2

[
Rclo sin

θr

2
+ cos

θ

2
bclo

]
+ 2aclo. (16)

We can also express θr in (16) by θ and θA as follows

θr = π −2θclo−θ . (17)

By substituting θr in (17) for that in (16), we can get
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P7P2 + P2P8 =
2

sin θ

2

[
Rclo sin

(π −2θclo −θ )

2
+ cos

θ

2
bclo

]

+ 2aclo. (18)

Now, we can get the length of P1P7 + P3P8 in (2) by

combining (10) and (18). After simplifying (10) and (18)

by using cos/sin laws, we can get the function as follows

P1P7 +P3P8 =
ℓ1

sinθ
[sin (θA +θ )+ sinθA]

− 2aclo −
2

sin θ

2

[
Rclo cos (

θ

2
+θclo)+ cos

θ

2
bclo

]
.

(19)

2) The length of Arc (P5P9): The length of Arc (P4P9) is

very simple. We already derive θr in terms of θ and θA in

(17). Therefore, we can get the length as follows

Arc(P5P9) = θrRclo

= Rclo(π −2θclo −θ ). (20)

3) Derivation of Object function JA: Now, we got all

segments of (1). By combining (19), (20) and two complete

clothoid segments, we can complete the object function JA

for case A as follows

JA = P1P7 + clothoid(P7P5)+ Arc(P5P9)+ clothoid(P9P8)+ P3P8

=
ℓ1

sinθ
[sin(θA + θ )+ sinθA]+ 2Sclo

− 2aclo −
2

sin θ

2

[
Rclo cos(

θ

2
+ θclo)+ cos

θ

2
bclo

]

+ Rclo(π −2θclo −θ ). (21)

B. Constraints for case A

In previous section, we derived the length of entire path

using two variables θ and θA. This section derives constraints

C1
A and C1

A. Like the path 4 in Fig. 8, the derivation of

constraints are based on the assumption that the shortest path

exists only when some part of the path places slightly near

obstacle’s corner P11. We can show that the length of any

outer path, like 5, is longer than 4 by conducting simple

MATLAB simulation. We, however, do not denote it because

of page limitation.

On top of that, the location among the path causes an

additional variable. Therefore, there are two constraints in

each case, and one of the constraints is used to reduce the

number of variables of all constraint equations (from three

to two variables).

Finally, there exists two kinds of constraints set in case

A; 1) Constraint set 1 for the case when corner places on

path’s clothoid segments (C1
A−1 and C2

A−1). 2) Constraint set

2 for the case when corner places on path’s arc (C 1
A−2 and

C2
A−2). Each constraint set are used with the object function

JA separately, and the distance optimal path in case A is

obtained among constraint set 1 and 2. The constraint set 1

and 2 is derived in following subsection.

Fig. 8. The change of guideline going with increasing θ . When P
′

2 goes
to P1 closer, the former triangle and the path always enclose the latter.

1) Base Triangle: As mentioned in section II, constraints

are derived by using the relationship with obstacle’s geomet-

rical feature. In this regard, we would firstly define a base

triangle. It is the triangle which connects the point A, B

and obstacle’s vertex (or via-point). For example, △P1P3P11

in Fig. 8 is a base triangle. By using this triangle, we can

derive two constraints which tell about its adjoining path is

the shortest path according to an object function.

Fig. 9. Geometric analysis for constraint A-1.

2) Constraints Set 1 (C1
A−1, C2

A−1) : Vertex contacts with

the point on clothoid: Fig.9 shows the relationship between

variables when point P11 contacts with a left clothoid of

the path. θobs is constant value because A, B andn P11

are given points. However, clothoid related values a 1 (x-

axis projection value) and b1 (y-axis projection value) are

not constant. Instead, they varies according to which part

of clothoid contact with corner. In fact, by equation (4) in

Kostov’s research [17] about clothoid, a1 and b1 are all the

function of another clothoid parameter t1 (like ‘t‘ in [17]).

This parameter is the third variable of this constraint set.

• Derivation of constraint C1
A−1

From △P1P11P16 in Fig. 9 we can easily get the constraint

C1
A−1 which is given by

ℓ2 sin(θA −θobs) = b1, (22)

By adopting clothoid’s Y-axis equation(Fresnel integral in

[17]), we can express (22) in terms of θ , θA, and clothoid

parameter t1 as follows
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ℓ2 sin(θA −θobs) = α

∫ t1

0
sin(

u2

2
)du

(23)

where α is constant parameter which determines the shape

of clothoid related with only car-like vehicle’s specification.

t1, however, is a variable as mentioned in previous paragraph.

• Derivation of constraint C2
A−1

Second constraint is related with the location of point A,

B and obstacle’s corner point P11. In other words, we would

use the height of Base Triangle P1P11P3 in Fig. 9. Then the

fundamental relationship for the constraint C 2
A−1 is given by

P16P13 = P16Pu + P11P12. (24)

From Base Triangle in Fig. 9, we can express P11P12 in

(24) as follow

P11P12 = ℓ2 cosθobs. (25)

Then P11P16 is perpendicular to the P1P16. Therefore,

∠P11P16Pu equals to θA. By using the fact, we can also

represent P16Pu in (25) as follow

P16Pu = b1 cosθA. (26)

Finally, the length of P16P13 in (25) is given by

P16P13 = P1P16 sinθA = (P1P7 +P7P16)sinθA

= (P1P2 −P7P2 +P7P16)sinθA = (eq(8)− eq(15)+a1))sinθA

(27)

Then it can be
[

ℓ1

sinθ
sin (θA +θ )−

1

sin θ

2

[
Rc sin

θr

2
+ cos

θ

2
bclo

]
−aclo +a1

]
sinθA. (28)

Then by substituting (25), (26), and (28) for corresponding

symbols in (24), we can derive constraint C 2
A−1 as follow

(
ℓ1

sinθ
sin (θA +θ )−

1

sin θ

2

[
Rc cos (θclo +

θ

2
)+ cos

θ

2
bclo

]

−aclo +a1)sin θs = b1 sin (
π

2
−θs)+ ℓ2 sinθobs. (29)

where a1 and b1 are functions in terms of t1 by the clothoid’s

property. Therefore, (29) is also the function of θ , θ A and

t1.

3) Constraints Set 2 (C1
A−2, C2

A−2) : Vertex contacts with

the point on Arc of maximum curvature: Fig. 10 describes

the constraint set 2. Similar with constraint set 1, constraint

set 2 also contains an additional variable which denotes the

location of obstacle’s corner on the Arc of path. While t 1

played a role as an additional variable for the constraints set

1, θ ∗
r in Fig. 10 is a key variable in this case. In that, two

constraints in this case will be expressed in terms of θ , θA

and θ ∗
r . Then by combining two constraints with JA, one of

those variables will be eliminated.

• Derivation of constraint C1
A−2

The procedure to derive constraint C 1
A−2 is similar with

constraint C1
A−1.

Fig. 10. Geometric analysis for constraint A-2.

From △P1P11P17 in Fig. 10, we can also say that

ℓ2 sin(θA −θobs) = b2, (30)

Then, to represent the variable b2 in terms of θ ∗
r and

other given variables, we draw a additional dashed line O cQ

parallel with P11P18 or P11P19 as shown in Fig.11. Then the

equation of b2 is given like,

Fig. 11. Obtaining b2 in terms of other variables.

b2 = bclo + Rclo cosθclo −Rclo cos(θ ∗

r + θclo). (31)

By substituting b2 in (31) for that in (30), we can get a

constraint equation C1
A−2 which is given by

ℓ2 sin(θA −θobs) = bclo + Rclo cosθclo −Rclo cos(θ ∗

r + θclo). (32)

• Derivation of constraint C2
A−2

Constraint C2
A−2 is also start from the relationship using the

height of base triangle △P11P1P3 in Fig. 10. The fundamental

relationship of this constraint is like,

P17P15 = P17Pv + P11P14 (33)

We will transform above relation (33) to the function of

θ , θA and θ ∗
r . To achieve it, we firstly have to get the length

of P11P14. From the △P1P11P14, we can get
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P11P14 = ℓ2 cosθobs. (34)

When it comes to P17Pv, we can get also

P17Pv = b2 cosθA. (35)

By substituting b2 in (31) for that in (35), we can get

P17Pv = (bclo + Rclo cosθclo −Rclo cos(θ ∗

r + θclo))cosθA. (36)

Finally, we can get the length of P17P15 in (33) as follows

P17P15 = P1P17 sinθA, (37)

where P1P17 is given by

P1P17 = P1P4 + P7P17 = P1P2 −P7P2 + P7P17

= eq(8)− eq(15)+ aclo + P18P19. (38)

Therefore, P17P15 in (37) is as follow
[

ℓ1

sinθ
sin (θA +θ )−

1

sin θ

2

[
Rclo cos (

θ

2
+θclo)+bclo cos

θ

2

]]
sinθA

+[Rc(sin(θclo +θ
∗)− sinθclo)]sinθA. (39)

Then by substituting P17P15 in (39), P17Pv in (36) and

P11P14 in 34 for those in (33), we can get a constraint C 2
A−2

which is given by

[
ℓ1

sinθ
sin (θA +θ )−

1

sin θ

2

[
Rc sin

π −2θclo −θ

2
+ cos

θ

2
bclo

]]
sinθA

+Rc(sin(θclo +θ
∗)− sinθclo)sinθA

− [bclo +Rc(cosθclo − cos (θ ∗ +θclo))]sin (
π

2
−θA)

−ℓ2 sinθobs = 0.

(40)

IV. CASE B: TURNING PATH WITHOUT THE MAXIMUM

CIRCLE

In this section, we consider the path composed of only

two straight lines and two clothoids. This case occurs when a

vehicle do not need to rotate a corner with maximum turning

radius.

Principles and process to derive an object function JB and

related constraints C2 are as same as the process of case A.

Because of the page limitation, we would state the closed

form result for case B directly.

Object function JB for case B

JB =
ℓ1

sinπ − t22

[
sin(θA + π − t2

2)+ sin(θA)
]
−2a3

+
2b3

tan
π−t2

2

2

+ 2α(π − t2
2), (41)

Constraints for case B, C1
B and C2

B

ℓ2 sin(θA −θobs) = b4, (42)

[
ℓ1

sin (π − t22)
cos (θA − t2

2 +
π

2
)−a3 −

b3

tan
π−t2

2

2

+a4

]
sinθA

−b4 sin(
π

2
−θobs) = ℓ2 sinθobs, (43)

where a3,a4,b3 and b4 are clothoid related variables that

can be represented by clothoid parameters, t (We call the

parameter for a3 and b3 as t2 and t3 for a4 and b4). The

variables in case B are slightly different from case A. In

other words, (41), (42) and (43) are the function in terms of

θA, t2 and t3.

V. SIMULATION RESULT

In order to conduct simulation for suggested algorithm,

we assumed a car-like vehicle whose body length is 4.9m

long cargo unmanned vehicle with 4.96m/s line velocity,

14.32m of Maximum turning radius and π

9
(rad/s) of Steering

Wheel’s Angular Velocity. In addition, the vehicle can only

move forward direction. Then from vehicle’s specification,

we can calculate clothoid’s shape in out simulation according

to clochoid equations. Calculated specification of clothoid is

that τclo is 0.414 and α is 11.96.

Fig. 12. Estimated distance optimal path from simulation result of case A.

Fig. 12 presents the simulation result for the length of

entire path (Object function JA with C1
A−2 and C2

A−2). Ar-

rowed point Pop is the distance optimal path. Z-axis values

(J values) of Pop is lower than any other points. All points

in case for JA with C1
A−1 and C2

A−1 are found that they are

longer than Pop. In addition, all possible path in case B is

revealed that it is not feasible. We cannot state the figures

of lateral two case (J with C1
A−1, C2

A−1 and case B) because

of page limitation.

Fig. 13 shows a visible path generated according to the

Pop. All variables of Pop are stated. In the figure, we can

confirm that θ = 68.91o , θ ∗
r = 34.5o is , and θA = 58.68o.

We compared the path generated by our method with a

path generated by an existing local-global concatenated plan-

ner using MATLAB simulation and drawing tool. Dashed

gray line in Fig. 14 shows an existing method. We randomly
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Fig. 13. Estimated distance optimal path from simulation result of case A.

pointed in the map, and link it according to exiting way

by using drawing tool. On the contrary, colored path is

the proposed method. The line was the result of MATLAB

simulation. The length of our method is 189.9m while the

existing method shows 237.3m. It is 20 percent shorter than

the existing method.

Fig. 14. Local path implementation simulation into global path planner.

VI. CONCLUSIONS

In this paper, we propose a direct approach that generate

a feasible shortest path for a car-like vehicle with a constant

linear and angular velocity. An object function that describes

the length of a path is derived and related constrains that re-

duce the searching region in the solution space is suggested.

With the proposed object function, we can generate a

feasible shortest path for a case when the maximum circle

does not appear during a turning period, then

Although a set of complete closed form functions is

derived, the analytic solution is not yet found. Our future

work is to find an analytic solution which generates the

feasible shortest path in a constant time.
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