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Abstract— Vision based simultaneous localization and map-
ping (SLAM) has recently received much research interest.
However, vision based SLAM could be corrupted with the
inclusion of moving entities, which makes it hard to operate
in dynamic environments. Simultaneous localization, mapping
and moving object tracking (SLAMMOT) serves as a solution to
deal with moving objects while performing SLAM. The existing
work has shown the feasibility of monocular SLAMMOT
in dynamic environments. However, monocular SLAMMOT
inherits the observability issue of bearings-only tracking in
which moving entities would be unobservable according to
motions of the camera and moving objects. In this paper, stereo-
based SLAMMOT is proposed to solve the observability issue
as well as increase the accuracy of localization, mapping and
tracking. Simulation and experimental results demonstrate that
the proposed stereo SLAMMOT is superior than monocular
SLAMMOT in dynamic environments.

I. INTRODUCTION

Over the past twenty years, simultaneous localization and

mapping (SLAM) has acquired extensive research interest

in the robotics literature. It serves as a basic component

for robots exploring in unknown environments. Promising

SLAM has been demonstrated with the use of laser scanners

to achieve large scale and accurate mapping [1]. Recently, the

trend has been moving to using cameras to perform SLAM

for their light weight and low-cost features. In addition, rich

appearance and texture information of the surroundings is

also available to the users. The first remarkable work in

visual SLAM was done by Davison et al. [2] in which

a single camera is used to perform SLAM under the ex-

tended Kalman filtering (EKF) framework. Montiel et al.

[3] proposed an inverse depth parametrization for monocular

SLAM. This parametrization initializes features with no de-

lay and successfully estimates both near and distant features.

Due to bearing only information is available, monocular

SLAM only reconstructs the environment up to a scale if

no other information (e.g. odometry of camera ) or prior

(e.g. features depth) is available. Therefore, stereo vision

systems are often applied to avoid this scale ambiguity in

which feature depths can be directly estimated. Stereo-based

SLAM has been demonstrated in indoor environments [4]

[5]. Sola et al. [6] further pointed out that fusing monocular

information using the inverse depth parametrization from

stereo cameras increases the estimability for far features

and proposed the BiCamSLAM. Paz et al. [7] demonstrated
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6 degrees of freedom stereo-based SLAM by combing the

inverse depth parametrization and Euclidean parametrization.

Although vision-based SLAM has successfully demonstrated

in large scale outdoor environment, most SLAM works

assume the environment is static which could be impractical

for robots operating in dynamic environments [8] [9].

Wang et al. [10] proposed a theoretical framework to

solve the simultaneous localization, mapping and moving

object tracking (SLAMMOT) problem and demonstrated the

feasibility of SLAMMOT using laser scanners. There are a

few attempts to accomplish vision-based SLAM and tracking

in dynamic environment. Sola [11] proposed BiCamSLAM

with a rule-based moving object detection method. Track-

ing was done separately and individually for each moving

object in a robocentric representation. Migliore et al. [12]

proposed monocular SLAM and moving object tracking in

which moving objects are detected by a simple statistic test

and tracked by separated bearing only trackers. However,

both works separate SLAM and tracking for reducing the

computational complexity. Both works mentioned the ob-

servability issue in bearing only tracking(BOT) also occurs

in monocular SLAMMOT in which the camera needs to

perform higher order trajectories to estimate the full state

of moving objects [13]. Wang et al. [14] recently proposed

an augmented state approach to monocular SLAMMOT in

which the states of moving objects are augmented into the

SLAM state vector, and demonstrated that moving object

tracking could improve the SLAM performance. To avoid

the unobservable conditions, the camera performed spiral

motions for achieving converged tracking results.

This work is an extension work of augmented state SLAM-

MOT using a single camera. We proposed a stereo-based

SLAMMOT approach to overcome the observability issue.

Two cameras are treated as two observers, and measurement

updates are performed for each instance in EKF. Monte

Carlo simulations and real experimental results show that

stereo SLAMMOT is outperformed monocular SLAMMOT

in terms of the performance of SLAM and tracking and the

observability issue.

The rest of paper is organized as follows: The theoretical

foundation of monocular SLAMMOT are briefly reviewed

in Section II. In Section III, the proposed stereo SLAM-

MOT is introduced and the simulation results are described.

Section IV shows the experimental results using real image

sequences and Section V addresses our conclusion and future

work.
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II. THEORETICAL FOUNDATION

In this section, we described the theoretical foundation

of monocular SLAMMOT proposed by Wang et al. [14]

for understanding the proposed stereo SLAMMOT approach

described in the next section.

A. Monocular SLAMMOT using the Inverse Depth

Parametrization

In monocular SLAMMOT, the camera location xk, map

features mi
k and moving objects oi

k are simultaneously

estimated using the EKF algorithm. The states of moving

objects are augmented into the original SLAM state vector to

improve the SLAM and moving object tracking performance.

SLAMMOT state vector χ are defined as:

χ = (x⊤
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where xc
k and quaternion qc

k with the norm constraint ‖
qc

k ‖= 1 [15] denote the camera location and orientation in

the world coordinate system. vc
k, ωc

k represent the velocity

and the angular velocity of the camera, respectively. Both

map features and moving objects are coded using the inverse

depth parametrization. The velocities of moving objects in

the global coordinate are also coded. In this work, the

constant velocity model is applied to describe the motions

of moving objects. The states of mi
k and oi

k are:
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where (x y z)⊤ represents the camera optical center

position with respect to the world coordinate system when

the feature was first observed. θ and φ are azimuth and

elevation of the ray defined in the world coordinate. ρ is the

inverse depth between the feature and camera optical center.

pk represents the moving object position in the inverse depth

parametrization and vk is the velocity estimate of moving

object in the world coordinate. Let r = (x y z)⊤ and

the direction vector G(θ, φ) defines the direction of the

ray, then the point can be transformed from inverse depth

parametrization to 3D points as:

r +
1

ρ
G(θ, φ) (5)

In the prediction statge of EKF, camera motion model is

assumed to be constant velocity (CV) and constant angular

velocity (CAV). For motion model of moving objects, CV

model is applied. Thus the equations in the prediction stage

of EKF are:
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where Gk+1 and ρk+1 are the new direction vector and

inverse depth of moving objects.

In the measurement stage of EKF, Both map features and

moving objects are transformed to the camera coordinate

system and then projected on the camera image plane. Let

Rc
k be the rotation matrix defined by the camera orientation

qc
k. The points are transformed to the camera coordinate by:
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The predicted measurements on the image plane are:
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where Proj is the project function, (u0, v0) is the camera

center in pixels, f is the focal length, dx and dy represent

the pixel size. The monocular SLAMMOT state vector is

updated by the EKF algorithm.

B. Moving Object Detection in Monocular SLAMMOT

In the monocular SLAMMOT approach, it is assumed that

objects can be classified as stationary or moving. The detec-

tion method is based on an observation that misclassifying

a moving object and adding this moving object into SLAM

would significantly degrade the SLAM performance. Both

the camera estimate and stationary object estimates would

be affected. Therefore, moving objects could be detected

by examining monocular SLAM results under different hy-

potheses. Two local monocular SLAMs are initialized under

two hypotheses when a new feature is extracted. One is

local monocular SLAM without adding this new feature and

the other is local monocular SLAM under the assumption
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that this new feature is stationary. The difference of two

hypotheses is defined as:

dm = (xc
m − xc

r)
T Σ−1

x
c
r
(xc

m − xc
r) (12)

where xc
r and xc

m are camera poses for two hypotheses with-

out and with adding this new feature. Σx
c
r

is the covariance

matrix of xc
r. Instead of making a hard decision to classify

the feature type, the differences of two hypotheses are

temporally integrated using a binary Bayes filter. By setting

up an inverse measurement model p(Hm|dm) properly, the

log odds ratio can be computed as:

lt(Hm) = log
p(Hm|dm)

1 − p(Hm|dm)
− log

p(Hm)

1 − p(Hm)
+ lt−1(Hm)

Since dm is a a chi-square variable, p(Hm|dm) is similar to

chi-square distribution. After a fixed number of updates, a

new feature could be classified as static if the log odds ratio

lt(Hm) is larger then a predetermined threshold λ, otherwise

the feature is classified as moving.

In addition, adding misclassified moving objects into the

state vector of monocular SLAM often induce unexpected

negative inverse depth estimates. Negative inverse depths

could originate from inconsistencies between measurements

and predictions, which is likely to happen if a moving

object is assumed as stationary. Therefore, the appearance of

negative inverse depths is also checked for detecting moving

objects. Both binary Bayes filter method and negative inverse

depths check are integrated by a decision tree. The detection

method first examines the inverse depth of the new feature

in local SLAM, if inverse depth is still positive, the binary

Bayes filter method is then performed.

III. STEREO SLAMMOT

In this section, the detail of the proposed stereo SLAM-

MOT approach is described. The effect of stereo SLAMMOT

to the observability issue is discussed. The comparisons of

monocular SLAMMOT and stereo SLAMMOT are shown

by Monte Carlo simulations.

A. Stereo SLAMMOT

The proposed stereo SLAMMOT follows the monocular

SLAMMOT framework with additional measurement update

from the second camera. The two cameras are calibrated and

images are rectified with the both principle axes pointing to

the Z direction in the camera coordinate. The stereo camera

setup and the camera coordinate system used in this work

are shown in Fig.1. The right camera represents the origin

of the camera coordinate and the left camera is placed along

the x axis with the baseline vector b = (b 0 0)⊤ where

b is the distance between two cameras. To project the point

into the left camera, the point’s relative position to the left

camera is:

h
y
k,l = h

y
k,r − b (13)

where y ∈ {m1
k
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the point state vector of map features or moving objects.

The projections in the left camera are z
y
k,l = Proj(hy

k,l).
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Fig. 1. The coordinate system of the stereo cameras. The origin is set on
the optical center of the right camera. The left camera is set along the x
axis with the distance of baseline.

Since hk,r and hk,l is only different by a baseline vector,

Jacobians of two measurements are similar in which the only

difference is the projection Jacobians. Given the Jacobians

of the measurements of the two cameras, the SLAMMOT

state vector is updated accordingly.

In order to deal with features at far distances, the proposed

method makes the use of the inverse depth parametrization.

As shown by Paz et al. [7], the inverse depth parametrization

has more correct uncertainty modelling for features at far

distances. The XYZ parametrization tends to overestimate

features around near regions and underestimate features at

far distances.

B. Observability of Stereo SLAMMOT

It has been shown that multiple observers can avoid the

unobservable conditions in bearings-only tracking. Fig.2(a)

and Fig.2(b) show the monocular SLAMMOT results in an

unobservable condition and in an observable condition, re-

spectively. In the unobservable condition, the camera moves

forward with a speed of 0.5m/s. In the observable condition,

a circular motion on the XY surface is added in the constant

velocity motion when the moving object appears in the view

of the camera. It is clearly shown that the state of the tracked

moving object can not be converged in the unobservable

condition. Fig.2(c) shows the stereo SLAMMOT result in

the same condition of Fig.2(a). The stereo camera follows

the constant velocity motion with the baseline of 24cm.

In both monocular SLAMMOT and stereo SLAMMOT, the

depth’s 95% uncertainty bound is set to cover from a prede-

fined close distance of 2.1 meters to infinity in the inverse

parametrization. Fig. 2(d) shows the moving object depth

uncertainty under three conditions. The largest principle axis

of the 95% uncertainty volume is computed and the range

of uncertainty volume along the principle axis is defined as

the depth uncertainty in this work. Under the unobservable

condition, the depth uncertainty is large (103 ∼ 104 meters).

In the observable and stereo conditions, the depth uncertainty

quickly decreased and converged below 10 meters after 150

frames. The result showed that stereo SLAMMOT does not

have the observability issue.
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(a) Monocular SLAMMOT in an un-
observable condition

(b) Monocular SLAMMOT in an ob-
servable condition

(c) Stereo SLAMMOT in an unob-
servable condition
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Fig. 2. Observability in monocular SLAMMOT and stereo SLAMMOT.
Grey dots and grey lines represent the true locations of static objects and the
true trajectories of the moving object, respectively. Light grey line indicate
the camera trajectory ground truth. Squares and circles indicate the location
estimates of the static objects and the moving object, respectively. Only the
moving object uncertainty is drawn for clarity.

C. Comparisons of Monocular SLAMMOT and Stereo

SLAMMOT

The comparisons of monocular SLAMMOT and stereo

SLAMMOT are evaluated with 40 Monte Carlo simulations

in total. The simulated camera has a resolution of 320×240
and a focal length of 170 in pixel unit. This setup makes the

simulated camera have a wide field-of-view of 86 degrees.

In stereo SLAMMOT, the stereo camera have a baseline of

24 cm. Fig. 3 shows the simulation scenarios for both cases.

Map features are randomly located within a rectangular cube

with a width of 30 m and a height of 10 m. Moving

objects are randomly placed in the camera’s field-of-view

with a maximum depth of 10 m. Each moving object moves

with a constant speed of 0.75 m/s and a random initial

moving direction. There are about 50 moving objects and 140

map features in each Monte Carlo simulation. The synthetic

images are generated by the projections of map features

and moving objects into camera. Zero mean Gaussian image

noise with σ of 1 pixels are added in each image. In

the monocular SLAMMOT simulations, the camera moves

spirally to avoid the observability issue with a trajectory

length of 59 m. In the stereo SLAMMOT simulations,

camera moves at a constant velocity with a trajectory of 56

m.

Table I summaries the detection results of the two ap-

proaches. Both approaches have a similar detection rate of

0.8 on detecting moving objects and the false alarm rate of

0.1 on misclassifying map features as moving. The detec-

tion performance is not affected in the stereo SLAMMOT

approach. For evaluating SLAM and moving object tracking
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(a) Monocular SLAMMOT
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(b) Stereo SLAMMOT

Fig. 3. The Monte Carlo simulation environments. The black solid line
indicates the camera trajectory. Grey squares and black circles indicate
true stationary and moving objects, respectively. The trajectories of moving
objects are also shown.

performance, the root mean square error (RMSE) of the esti-

mated camera trajectories and moving objects positions in 40

Monte Carlo simulations are used. Moving objects positions

are evaluated in camera coordinate for decoupling SLAM

performance and tracking performance. Table II shows that

stereo SLAMMOT improved the accuracy of localization

and moving object tracking. Unlike monocular SLAMMOT

needs known feature depths at the beginning to estimate the

scale, stereo SLAMMOT can be automatically operated in

dynamic environments and provides more accurate SLAM-

MOT estimates than monocular SLAMMOT.

TABLE I

DETECTION RESULT

True False True False

moving static static moving

Stereo 896 224 2552 290

Monocular 927 186 2597 271

TABLE II

SLAMMOT PERFORMANCE

Camera Moving object

RMSE RMSE

Stereo 0.17 m 0.30 m

Monocular 0.71 m 1.12 m

IV. EXPERIMENTAL RESULTS

In this section, the proposed stereo SLAMMOT approach

is evaluated using real image sequences. The limited ground

truth is provided by laser based SLAMMOT on the XZ
plane.

A. Experiment Setting

Fig. 4 shows the robotic platform, NTU-PAL7, in which

a Point Grey Bumblebee X3 stereo camera was used to

collect image data and a SICK S200 laser scanner was used

for ground truthing. The stereo cameras have a baseline of

24 cm and a field-of-view of 66 degrees. Image data are

acquired at 10 Hz and the resolution of the collected images

is 640 × 480. Fig.5 shows the experiment environment of a

corridor scenario (2.7 m × 14.5 m). Three pedestrians with

their trajectories are shown in Fig.5. The first pedestrian went
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Fig. 4. The NTU PAL7 robot.
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(d) LIDAR-based SLAMMOT

Fig. 5. The ground truth of the real data experiment from LIDAR-based
SLAMMOT. The trajectories of the camera and three pedestrians are denoted
as thick and thin grey lines, respectively. The map ground truth is drawn
with light grey color.

toward the positive z direction and disappeared around the

corner (frame 53 to 200). The second pedestrian went across

the corridor and toward the camera (frame 286 to 342). The

third pedestrian went along the positive x direction (frame

440 to 507).

Image features extraction were done using the good feature

approach [16], and then a non-maximum suppression is

applied to obtain a sparse feature set from images. The

selected features were tracked by the Kanade-Lucas-Tomasi

(KLT) tracker [17]. In cases that the KLT tracker fails, an

active feature [18] searching method is used. After obtaining

the image feature tracking result on first camera, the images

features on second camera were obtained directly using

established correspondences from the stereo camera.

B. Experimental Results

In this experiment, the camera moved at a constant veloc-

ity. Table. III shows the moving object detection results. As

there were more than one selected features on each person,

21 correct moving features were detected by our detection

method. The tracking performance was evaluated on those

successfully detected moving objects. 6 map features which

misclassified as moving were discarded in evaluation.

Fig. 6 shows the stereo SLAMMOT result at three instants.

Map features corresponding to the ceiling or the floor were

removed manually for emphasizing moving object tracking

results. It is showed that moving objects were successfully

detected and tracked by the proposed approach. Even in the

condition that Person 1 appeared in the image sequence for

long time, our SLAM result was not corrupted in dynamic

environments. The depth uncertainty of these three persons

went below 1 meters when the true depths were within 3.5

meters. In the case that moving objects left away from the

camera, the depth uncertainty became larger as the distance

estimates were more uncertain at far distances.

Table IV shows the camera localization RMSE and the

tracking RMSE over the three person trajectories. The result

showed that our approach achieved a low localization error

of 0.40 m and low tracking error with average of 0.46 m.

Person 2 had a higher position error as the 2D image tracking

was temporally lost. Relocating the target caused a higher

location error. The performances of localization, mapping

and tracking all verify that the proposed stereo SLAMMOT

approach is feasible in dynamic environments.

TABLE III

DETECTION RESULT

Ground Truth

Moving objects Map features

Moving 26 6

Stationary 4 128

TABLE IV

LOCALIZATION AND TRACKING POSITION ERROR

Camera Trajectory

1 2 3

RMSE 0.40 m 0.29 m 0.49 m 0.46 m

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed the stereo SLAMMOT ap-

proach to avoid unobservable conditions and demonstrated

the promising tracking results in both simulations and the real

experiment. With the use of the inverse depth parametriza-

tion, we performed EKF updates in original monocular

SLAMMOT for two cameras. No special camera trajectory

is needed to perform tracking. The Monte Carlo simulations

showed the overall performance of stereo SLAMMOT is

superior than monocular SLAMMOT and the real experiment

results demonstrated the feasibility of the proposed stereo

SLAMMOT approach in dynamic environments.

One limitation of this work is the need of reliable 2D

feature tracking over images to perform stable stereo SLAM-

MOT. It has been discussed to model static features as planar

patches to assist feature tracking in vision based SLAM [19].

However, it could be more challenging in the moving object

cases because of sudden appearance changes. In the future

we plan to investigate the use of more dense image features

[20] to increase the stability of 2D feature tracking on

moving objects. In addition, the stereo SLAMMOT approach

could serve as a guideline to decide which region should have

denser features according to the SLAMMOT estimates.
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