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Abstract— In this paper, we present a port-Hamiltonian
model of a multi-fingered robotic hand, with soft-pads, while
grasping and manipulating an object. The algebraic constraints
of the interconnected systems are represented by a geometric
object, called Dirac structure. This provides a powerful way
to describe the non-contact to contact transition and contact
viscoelasticity, by using the concepts of energy flows and power
preserving interconnections. Using the port based model, an
Intrinsically Passive Controller (IPC) is used to control the
internal forces. Simulation results validate the model and
demonstrate the effectiveness of the port-based approach.

I. INTRODUCTION

Dextrous manipulation skills, for personal and service

robots in unstructured environments, are of fundamental

importance in performing different tasks. Usually, a robotic

hand has to manipulate objects of different shape, size,

weight, material, and, in some cases, has to interact with

human beings. During manipulation, the dynamic properties

of the controlled system change, due to the non-contact to

contact transitions and due to the contact viscoelasticity.

Therefore, in order to derive the dynamic model of a hand-

object system during grasping, the contact model between

the fingers and the object is of crucial interest.

In the Lagrangian formulation, the dynamic model of the

hand-object system takes the form of a multibody system. In

case of rigid contact, the whole system is a nonholonomic

constrained system and the equations can be obtained us-

ing the Lagrange-D’Alembert formulation, considering the

grasping constraint equations [1]. In case of a compliant

contact model, where the fingers have thick compliant layers

of viscoelastic material, the grasping constraint equations are

not valid anymore. Moreover, the dynamics of the contact are

influencing the system dynamics, and have to be considered.

The port-Hamiltonian framework is based on describing a

system in terms of energy variables and the interconnection

of systems by means of power ports. Any physical system

can be described by a set of elements storing kinetic or

potential energy, a set of energy dissipating elements, and

a set of power preserving ports, through which energy can

only be transferred and not produced [2]. The energy flow
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variables are intrinsically defined and are independent of the

particular configuration of the physical systems. The concept

of a power port is an efficient and useful way to describe the

interaction between physical systems and between the system

and the environment.

The theory of port-Hamiltonian systems allows to describe

the system behavior in a coordinate-free way and can be

naturally extended to include constrained systems and com-

pliant contact models. This approach is useful to model

and control the interaction between a robot and a passive

environment. The robot is a n-DOF mechanical passive

system with respect to the controller, that can be modeled as

a port-Hamiltonian system. To preserve a passive behavior in

the interaction with the environment, both in case of contact

and non-contact, an Intrinsically Passive Controller (IPC) [3],

based on impedance control [4], can be used.

Since the IPC approach yields an intrinsically passive

system, the controlled system will be stable, both in case

of contact and non-contact phases, for every passive, even

unknown, environment. This is in contrast with a conven-

tional hybrid controller, which switches from position to

force control when a contact occurs. Such controllers can

easily become unstable, because of noise affecting the force

sensors that detect the contact. Moreover, a hybrid force-

position control requires a perfect planning of the tasks,

which is only possible if the environment is known.

In this paper, we present a port-Hamiltonian model of a

multi-fingered robotic hand, with soft-pads on the finger tips,

grasping an object. The viscoelastic behavior of the contact

is described in terms of energy storage and dissipation. Using

the concept of power ports, the dynamics of the hand, the

contact, and the object are described in a coordinate-free

way. Moreover, an IPC is applied to control the motion

of the object and to regulate the internal forces, i.e. the

forces applied at the contact points and not influencing the

object motion. These forces are important to have a stable

grasp. In the model of the hand-object system, we assume

that the contact forces are always satisfying the friction

cone conditions, i.e. the contact forces are always inside the

friction cone, and we assume that there is no rolling contact.

This means that the grasp matrix is constant.

The main advantage of the port-Hamiltonian formulation

for constrained systems is that we do not need to modify

the dynamic equations when a change occurs in the contact

state. Instead, it is possible to represent both cases in a

time-dependent geometrical structure, that satisfies the power

continuity conditions in every contact state. This framework

allows to approach the problem in a more intuitive and

compact way. The graphic bond graph representation of
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the system is based on the energy flow through the ports

connecting the single components.

The paper is organized as follows. In Sec. II, we formulate

the problem in a port-based setting and present the mathe-

matical framework. In Sec. III, we derive the dynamics of the

contact model. In Sec. IV, we propose the port-Hamiltonian

model of the system, based on the analysis of the energetic

interconnections and the properties of the subsystems. In

Sec. V, simulation results are presented to validate the model

and to show the behavior of the system when an IPC based

controller is applied. Finally, Sec. VI provides conclusions

and sketches the future work.

II. PORT-BASED FORMULATION

The port-Hamiltonian formalism has been introduced by

van der Schaft and Maschke in [6]. Port-based modeling is at

the basis of network theory, in which the different parts of the

system are interconnected through power ports and described

in terms of power exchange. A power port is defined by

a pair of dual variables, a flow f and an effort e, whose

intrinsic dual product 〈e|f〉 yields power. If V is the linear

space of flows, then the dual space V∗ is the linear space of

efforts. On the space V ×V∗, it is possible to define a power

continuous structure, called Dirac structure, which defines

the interconnection between the power ports, i.e. it describes

how the power is distributed between the ports. The Dirac

structure is a subspace D ⊂ V × V∗ such that [7]:

D = {(f, e) | 〈e|f〉 = 0, ∀(f, e) ∈ D ⊂ V × V∗}

A generic Dirac structure is depicted in Fig. 1. The bonds,

connected to the structure, realize the ports through which

energy can be exchanged with energy storage elements, en-

ergy dissipating elements, the controller, and the interaction

port, with which the system interacts with the environment.

In order to derive the mathematical model of the manip-

ulation system as a port-Hamiltonian system, we need to

define a state manifold S, of which the coordinates represent

energy variables, and on S a Hamiltonian energy function

H : S → R describing the total energy of the system.

Then, by making explicit the Dirac structure, the system

dynamics can be derived. Since an interconnection of port-

Hamiltonian systems is again a port-Hamiltonian system, we

can proceed by individually modeling the hand, the object

that is manipulated, and the contacts, and to define the

interconnection of the systems.

Regarding the Dirac structure of the contact model, ob-

serve that the contact represents the power continuous inter-

connection between the finger, the soft-pad and the object, in

terms of elastic energy storage and energy dissipation. This

interconnection can be represented considering the finger and

the object as two rigid bodies connected trough a viscoelastic

soft-pad. Since in a manipulation task both contact and

non-contact situations may occur, the Dirac structure is not

constant in time [8]. The contact and non-contact state

are both represented in the same switching Dirac structure,

which is, obviously, time dependent.

Fig. 1. Dirac structure of a generic port-Hamiltonian system.

A. Problem statement

In the Lagrangian formulation, the dynamic model of a

n-fingered hand, each with r degrees of freedom, has the

form:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ − JT
h Wc

where q = {q1, . . . ,qn} ∈ Q is the vector of the generalized

configuration variables for the n fingers, with Q configu-

ration manifold and q̇ ∈ TqQ their generalized velocities,

belonging to the tangent space of Q at q. The vector τ ∈
T ∗

q Q represents the generalized actuator forces at the joints,

belonging to the co-tangent space of Q at q. The matrix Jh

is the hand Jacobian, that maps the joint velocities to the

Cartesian fingertip velocities. From duality, it follows that

the transpose JT
h maps the fingertip forces to generalized

joint forces. Let Wc = {Wc1
, . . . ,Wcn

} be the vector of

the contact wrenches.

The dynamics of the object are given by:

M0(x0)ẍ0 + C0(x0, ẋ0)ẋ0 + g0(x0) = GWc + Fenv

where x0 ∈ X represents the pose of the object, with

X the configuration manifold of the object, and ẋ0 its

generalized velocity. To avoid singularities due to the local

representation of the pose, we can describe the object dy-

namics globally by applying the Newton-Euler equations to

the body configuration expressed in the Special Euclidian

group SE(3), and then obtain the Lagrange-D’Alembert

representation choosing the local coordinates x0 ∈ X for

the object configuration. The matrix G is the grasp matrix,

which is a linear map between the contact forces, expressed

in the contact frame, and the resultant force on the object,

expressed in the object frame [9]. The vector GWc describes

the effect of the fingertip forces on the object, applied at

the contact points. The external forces acting on the object

are described by Fenv. In the hand and object dynamics,

the matrices M(q), M0(x0) are the symmetric and positive

definite inertia matrices, the matrices C(q, q̇), C0(x0, ẋ0)
contain the centrifugal and Coriolis components, and g(q),
g0(x0) are the vectors of generalized gravity forces acting on

the hand and the object, respectively [1]. In the context of Lie

group theory, the relative configuration of two bodies can be

studied using SE(3). The relative instantaneous motion can

be studied using the Lie algebra se(3) associated to SE(3),
which is a 6D algebra, and corresponds to the six possible

motions of a rigid body. The wrenches belong to the dual

algebra se∗(3).
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Fig. 2. The geometrical contact model: the soft-pad is modeled as a spring
and a damper according to the nonlinear Hunt-Crossley model.

We assume that the fingers have thick compliant layers

of viscoelastic material, and the dynamical behavior of the

soft layers is modeled as a spring and a damper [10]. The

model can be extended to a proper generalization to the full

geometrical contact description, as proposed in [11]. In this

work, we started from this geometrical analysis of the vis-

coelastic contacts between two objects without constraints,

and extended this to a manipulation context, a complex multi-

body system including the robotic hand, the soft-pads and

the object and subject to constraints. The contact dynamics

between the fingers and the object are represented with

the same geometrical and energetically consistent model.

Moreover, a nonlinear Hunt-Crossley model of the contact

is taken into account, for a better physical consistency and

description of soft material behavior [12].

In Fig. 2, a schematic representation of the object and one

finger in contact is shown. During the contact, a finger with

soft-pad is able to transfer to the object four components of

the contact wrench Wci
, i.e. the three components of the

linear contact force and the component of the contact torque

around the direction orthogonal to the surface of the object

in the point of contact. Our goal is to describe the dynamics

of this system in the port-Hamiltonian framework, including

the contact dynamics. This allows to present the problem

in a more intuitive and compact way. Moreover, given the

port-Hamiltonian system representation, an IPC can be easily

derived to control the system.

III. CONTACT MODEL

In this Section, we derive the dynamic model of the

contact, based on the Hunt-Crossley contact model [12]. The

Hunt-Crossley model incorporates a spring in parallel with

a nonlinear damper to model the viscoelastic dynamics.

In order to obtain a local representation of the Dirac

structure of the contact in a matrix form, we have to define

a contact frame in the contact point ci on the object, as

indicated in Fig. 2. The contact frame Σci
related to the

finger i, has the origin in the contact point ci, and the axis

zci
is normal to the object surface, pointing inside the object.

There is a unique plane O orthogonal to zci
and passing

trough ci, spanned by the axis xci
and yci

of the contact

frame. In Fig. 2, the object reference frame Σo, and the

world frame Σb are also depicted.

If we chose a basis of the two screws (rx, ry), representing

pure rotations around the two axes xci
and yci

of the

contact frame, and a basis of the screws representing rotation

around zci
and the three translations (rz, tx, ty, tz), we can

decompose se(3) in the direct sum of the two subspaces S :=
span {rz, tx, ty, tz} and N := span {rx, ry}, representing

the subspace of the transferable wrenches in the contact point

and the non transferable wrenches respectively. In particular,

the motions in S involve a change in storage of potential

energy in the viscoelastic contact [11].

A tangent map P exists, that projects a twists in se(3) in

the subspace S of motions, and the dual cotangent map P
∗:

P : se(3) → S, and P
∗ : S∗

→ se∗(3)

Consequently, the elastic storage element, representing the

elastic energy stored in the compressed surface of the soft-

pad in contact with the object, is a 4D port with power

variables T̄
ci,ci

ri
and W̄

ci

ci,store, that are, respectively, the

relative twist and the contact elastic wrench expressed in

the contact frame and projected in the subspace of motions

involving elastic storage of energy. In particular:

T̄
ci,ci

ri
= PT

ci,ci

ri
, W

ci

ci,store = P
∗

W̄
ci

ci,store

Since the dynamics of the object are dependent of the set

of all wrenches acting on it, it is necessary to measure the

contact wrenches in order to compute the position of the

object center of mass and of the points of contact. Once

the measurements of the contact wrenches are available, and

the stiffness of the elastic storage element is known, the

deformation (x, y, z, θ) of the soft-pad can be computed in

the basis of the screws spanning the subspace of relative

motions involving elastic storage of energy S.

Writing this deformation, relative to the contact coordinate

frame, as an element H̄ ∈ SE(3):

H̄ =









cos(θ) − sin(θ) 0 x

sin(θ) cos(θ) 0 y

0 0 1 z

0 0 0 1









the storage of potential energy in the element can be repre-

sented by a function V (H̄) : SE(3) → R.

If H̄(t) is known, the relative twist T
ci,ci

ri
of the object

at the contact point with respect to the finger i, can be

expressed, in theory, in the contact frame as T
ci,ci

ri
= ˙̄

HH̄
−1.

In practice we can obtain this twist by measuring the defor-

mation of the soft-pad using and estimate the derivative using

an observer or by numerical differentiation. The wrench

generated due to a deformation δT
ci,ci

ri
, related to the relative

position of the rigid finger tip x
ci

ri
and the object contact

point x
ci

ci
, has the following expression in the contact frame,
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according to the Hunt-Crossley model1:

Wci
ci

= Ksi

(

δTci,ci
ri

)

+ Dsi

(

δTci,ci
ri

)

Tci,ci
ri

(1)

where Ksi
is the two-covariant stiffness tensor [14], such

that

Ksi
= P∗K̄si

P

with K̄si
the stiffness matrix that relates the 4D port vari-

ables (T̄ci,ci
ri

,W̄ci
ci,store), and Dsi

(

δTci,ci
ri

)

is the damping

matrix that depends on the deformation, and is defined

locally as
(

δTci,ci
ri

)T
D, with D a constant diagonal matrix

depending on the structure and on the material of the soft-

pad. By considering the map P∗, we can express the vector

of contact wrenches with respect to the contact deformation:

Wci
ci

= P∗
(

K̄si

(

δT̄ci,ci
ri

)

+ D̄si

(

δT̄ci,ci
ri

)

T̄ci,ci
ri

)

where D̄si
is defined analogous to Dsi

, but with respect to

the 4D vector of the deformations:

δT̄ci,ci
ri

= [x, y, z, θ]T

which represents the deformation of the soft-pad in the

allowed directions.

IV. PORT-HAMILTONIAN MODEL

In this Section, we intend to derive the port-Hamiltonian

equations of the complete system. Therefore, starting from

the general representation of Fig. 1, we can characterize

the Dirac structure by explicitly describing the three differ-

ent sub-systems, i.e. the hand, the object and the contact.

The complete system is composed by a number of storage

and dissipative elements and interaction ports, connected

together, as shown in Fig. 3.

The power port between the Dirac structure of the fingers

and the Dirac structure of the contact is a multi-bond port.

In particular, the interconnection between the hand and the

contact is identified by the effort Wb
cf

, i.e. the vector of the

wrenches exerted by the soft-pads (due to the object) on the

fingers, and by the flow Tb
r = Jhq̇ ∈ R

6n , i.e. the vector

of the twists of the (rigid) finger tip in the base frame.

The power port between the Dirac structure of the object

and the Dirac structure of the contact is a multi-bond port

as well. The port is characterized by the effort Wb
co

, i.e.

the vector of wrenches exerted by the fingers on the object,

and by the flow Tb
c = GT (x0)ẋ0 ∈ R

6n, i.e. the vector

of the twists of the object in the contact points in the

base frame. The power port between the storage element

of the soft-pads and the Dirac structure of the contact is

characterized by the effort W̄c
c,store, i.e. the vector of the

wrench transferable component due to the (soft-pad) springs,

represented by the vector of the partial derivatives of the total

Hamiltonian energy function with respect to the vector of

the states of the (soft-pad) springs, ∂H
∂sT

c
, and by the flow

T̄c,c
r = ṡc, i.e. the vector of the relative twists between

the fingers and the object, projected in the subspace S of

1In the Hunt-Crossley model, the stiffness and damping forces are taken
proportional to δm, with δ the scalar deformation and m usually close to
unity. For simplicity, we have assumed m = 1 in this work.

Fig. 3. Dirac structure of the whole constrained port-Hamiltonian system.
The fingers and the object are connected with two effort sources, that are,
respectively, the control action and the external forces acting on the object.

the motion involving elastic storage of energy. The power

port between the dissipative element of the soft-pads and the

Dirac structure of the contact is characterized by the effort

W̄c
c,dis, i.e. the vector of the wrench transferable component

due to the (soft-pad) dampers, and by the flow T̄c,c
r .

To complete the description of the system represented

in Fig. 3, we need to consider the inertia of the fingers,

connected to the finger Dirac structure by means of the

power flow defined by the conjugate variables
(

ṗ, ∂H
∂pT

)

,

and the control port described by (q̇, τ ). For the object, we

need to consider the inertia of the object, connected to the

object Dirac structure by means of the power flow defined

by the conjugate variables
(

ṗo,
∂H
∂pT

o

)

, and the environment

interaction port described by (ẋo,Fenv). For the sake of

simplicity, we neglect Coriolis effects. This simplification is

justified because of the small work space we consider, and

the relatively low velocities of the system.

For clarity, in the figure we have omitted the power port

of the gravity external force, that we take in account in the

port-Hamiltonian equations, for the fingers and the object,

i.e.
(

q̇w, ∂H
∂qT

)

and
(

ẋo,w, ∂H
∂xT

o

)

respectively.

A. Dirac Structure of the fingers

The Hamiltonian energy function of the fingers is

H(sc,p,q) =
1

2
pT M−1(q)p +

1

2
sT
c K̄ssc + V (q)

where the first term is the kinetic energy of the finger, the

second is the potential energy of the springs that model the

soft-pads and V (q) is the potential energy of the fingers due

to gravity. The Hamiltonian equations of the fingers are:

ṗ = −
∂H

∂qT
+ JT

h Wb
cf

+ τ , q̇ =
∂H

∂pT

The Dirac structure can be represented by a skew-
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symmetric matrix:








ṗ

q̇

Tb
r

q̇w









=









0 −1 −JT
h −1

1 0 0 0

Jh 0 0 0

1 0 0 0

















∂H
∂pT

−τ

−Wb
cf

∂H
∂qT









where 0 and 1 denote zero and identity matrices of appro-

priate dimensions.

B. Dirac Structure of the object

The Hamiltonian energy function of the object is given by

H(p,xo) =
1

2
pT

o M−1po + Vo(xo)

where Vo(xo) is the potential energy of the object due to

gravity. The Hamiltonian equations of the object are:

ṗo = −
∂H

∂xT
o

+ GWb
co

+ Fenv, ẋo =
∂H

∂pT
o

The Dirac structure can be represented by a skew-

symmetric matrix:









ṗo

q̇o

Tb
c

ẋo,w









=









0 −1 −G −1

1 0 0 0

GT 0 0 0

1 0 0 0

















∂H
∂pT

o

−Fenv

−Wb
co

∂H
∂xT

o









C. Dirac Structure of the contact

In order to obtain a local representation of the Dirac

structure of the contact in a matrix form, we have to

choose a reference frame of the contact, and consider the

transformation between the contact frame Σc and the world

frame Σb. In the case of soft finger contact model, the Dirac

structure of the contact is the following:








Wb
cf

Wb
co

T̄c,c
r

ṡc









=









0 0 −A∗ −A∗

0 0 A∗ A∗

A −A 0 0

A −A 0 0

















Tb
r

Tb
c

W̄c
c,dis

∂Ho

∂sT
c









where A∗ is the matrix representation of the operator:

A∗ := diag {A∗

1
, ...,A∗

n} , A∗

i = (s∆,i − 1)AdT

H
ci
b

P∗

The matrix A is the dual operator to A∗, and is expressed

as the transpose of matrix expression for A∗. The binary

signal s∆,i is defined as s∆,i = 1 if there is no contact, and

s∆,i = 0 if there is contact [11]. If the position of the object

is unknown, as in an unstructured environment, the binary

signal can be related to the signal of a force sensor located

in the soft-pad.

The adjoint operator AdH
ci
b

transforms the relative twist

between the rigid part of the finger i and the contact point

on the object from coordinates in Σb, the world frame, to

Σci
, the contact coordinate frame. The first two equations

give the expression of the contact forces acting on the finger

and on the object in case of contact and non-contact, thanks

to the binary signal. In case of non-contact they are zero and

in the other case they are obviously opposite, and they have

the expression of Hunt-Crossley model.

D. Dirac Structure of whole system

In this Section, we derive the Dirac structure of the whole

system by combining the three Dirac structures derived for

the different sub-systems. It follows that the skew-symmetric

Dirac matrix, from Eq. (2) at the top of next page, describes

the energy flows through the system.

From Eq. (2) it is possible to obtain the input-state-output

port-Hamiltonian system of the whole system. The flow

and effort variables of control and interaction port are split

into conjugated input-output pairs. The general form is the

following:

ẋ = (J(x) − R(x))
∂H

∂xT
+ g(x)u

y = gT (x)
∂H

∂xT

where (u,y) are the input/output pairs corresponding to

the control port, the matrix J(x) is a skew-symmetric

matrix representing the port topology defined by the Dirac

structure, while the matrix R(x) = RT (x) ≥ 0 specifies

the energy dissipation. In our case we have the state x =
[

p q po xo sc

]T
and energy function

H(x) = 1

2
pT M−1(q)p + 1

2
sT
c K̄ssc + V (q)

+ 1

2
pT

o M−1po + Vo(xo)

Furthermore, we obtain:

J(x) =













0 −1 0 0 −JT
h A

1 0 0 0 0

0 0 0 −1 GA

0 0 1 0 0

AT Jh 0 −AT GT 0 0













R(x) =













JT
h AD̄AT Jh 0 JT

h AD̄AT GT 0 0

0 0 0 0 0

−GAD̄AT Jh 0 GAD̄AT GT 0 0

0 0 0 0 0

0 0 0 0 0













g(x) =

[

0 1 0 0 0

0 0 0 1 0

]T

u =
[

τ Fenv

]T
, y =

[

q̇ ẋo

]T

The matrix J(x) is obtained from Eq. (2) by inspection, as

well as matrix g(x). The matrix R(x) is obtained consider-

ing the expression of the damping force in Eq. (1).

V. SIMULATIONS

For the validation of the model, a simple example mod-

eled in 20-sim simulation software [15] is considered. We

implement the bond graph representation of two fingers with

soft-pads, that interacts with an object in a plane. An IPC is

implemented to control the joint torques:

τ = g(q) + JT
h [Kc(xrd

− xr)] − Dcq̇

where the terms Kc and Dc are the proportional and deriva-

tive control gains. Here the desired rigid finger tips positions
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ẋo,w

T̄c,c
r

ṡc
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Fig. 4. Simulation results - The simulations validate the model with control
of the internal force and control of the object motion. When the binary signal
switches from 1 to 0, the fingers are in contact with the object.

xrd
are derived considering the desired forces at the contact

and the model of the soft-pad. By means of the virtual

position, we are able to regulate the motion of the object

and, through the null space of the grasp matrix, to regulate

the internal forces as well by controlling the relative position

of the finger tips. The soft-pad is modeled as a spring and a

damper, with a stiffness constant k = 50 N/m, and damping

constant d = 3 Ns/m. When the soft-pad touches the object,

the binary signal s∆ switches from 1 to 0.

The simulation is divided in three phases. First, the fingers

move, touch the object and push against it until the internal

forces are regulated at 16.5 N. Then, the fingers move the

object, while maintaining the regulation of the internal forces

at the same value. The difference from the contact force of

the two fingers are due to the inertia of the fingers and of

the object. In the third step the fingers move away from the

object. The object continues to move in the left direction,

due to the deformation in the soft-pads, and it will stop due

to the friction. Fig. 4 shows the diagrams of the positions of

the finger tips and of the object, and the contact forces at

the finger tips. For a better understanding of the simulation

results, a video of a 3D animation in 20-sim has been made

and attached to the paper.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a port-Hamiltonian analy-

sis and model of a multi-fingered robotic hand with soft-

pads while grasping and manipulating an object. The main

advantage of this formalism is that it allows to describe

the behavior of the system in terms of energy storage

and energy flow, using the concept of power ports. This

formalism represents an efficient and useful way to describe

the interaction between the object and the fingers, as well as

the interaction of the whole system with the environment.

Using screw theory and Lie group theory, the viscoelastic

description of the contact can be expressed as a power

continuous interconnection, represented by a Dirac structure.

Therefore, we are able to describe non-contact to contact

transition, and contact viscoelasticity without changing the

dynamical equations of the model.

Future work will focus on the passive control of the

internal and external forces, also in case of sharing tasks

with a human being. Moreover, different models of the soft-

pad will be used, like soft-pads with nonlinear stiffness [13].
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