
A Vision-Based Boundary Following Framework for Aerial Vehicles
Anqi Xu and Gregory Dudek

Abstract— We present an integration of classical computer
vision techniques to achieve real-time autonomous steering of
an unmanned aircraft along the boundary of different regions.
Using an unified conceptual framework, we illustrate solutions
for tracking coastlines and for following roads surrounded by
forests. In particular, we exploit color and texture properties
to differentiate between region types in the aforementioned
domains. The performance of our system is evaluated using
different experimental approaches, which includes a fully au-
tomated in-field flight over a 1 km coastline trajectory.

I. INTRODUCTION
In this paper we describe the design and evaluation of a

system for autonomous vision-based control of an unmanned
aerial vehicle (UAV). While various control frameworks
exist for UAVs, they typically depend on global positioning
system (GPS) data for guidance, and often require constant
supervision from a human operator. In this work, we examine
a control approach for automated flight based on tracking
visual cues on the ground. Our work is motivated by the
desire to track and follow the boundaries of environmental
features such as coastlines, areas with vegetation, and large
animal herds. In the short term, we aim to perform aerial
reconnaissance and detect salient geological features that can
be used to guide marine robotic vehicles.

This work focuses on boundary tracking tasks in which
the regions of interest are visually homogeneous and exhibit
features that differentiate them from their surroundings.
Some potential airborne reconnaissance and surveillance ap-
plications include air-fighting forest fires, confining oil spills,
and cataloging the development of geological structures.

The primary solution presented in this work focuses on
tracking and following coastlines. This is part of a larger
project in which aerial vehicles serve as scouts for underwa-
ter robotic systems. Moreover, because the coastline tracker
can detect coral reefs, this standalone implementation can
potentially be used to assist in the work of biologists studying
these endangered marine ecosystems.

In addition to the previous task, one of the most beneficial
applications of our framework is to potentially assist firemen
in suppressing forest fires. We are motivated to control air-
tankers and helicopters to douse water along the perimeters
of the fire to contain its spread. As a proof of concept, we
present a solution to detect and track highways and roads
surrounded by forests using texture classification.

This work presents the synthesis of several components
of the control system to achieve fully autonomous flight

The authors are with the School of Computer Science, McGill
University, 3480 University Street, Montréal, QC, Canada H3A 2A7
{anqixu,dudek}@cim.mcgill.ca
The authors gratefully appreciate the financial support of the National
Science and Engineering Research Council (NSERC) of Canada.

Fig. 1. The Procerus R© Unicorn is a fixed-wing unmanned aerial vehicle
with an on-board autopilot microprocessor and gimbal-mounted camera.

for the vehicle shown in Fig. 1. We however omit discus-
sions on some important aspects of the problem, including
vehicle dynamics, flight stabilization, and low-level image
processing techniques. While each of these are instrumental
to the overall performance of our system, they are based on
established methods outside the scope of this paper.

Our primary goals are to design a robust and real-time
system. To address the speed requirement, we rely predom-
inantly on well-studied existing computer vision techniques
known to be fast and reliable. To ensure robustness, we
introduce fallback schemes and rejection criteria to either
recover from or filter poor intermediate results.

II. RELATED WORK
Despite much work on UAV automation, there has been

only limited work to date on the use of appearance-based
models for visual guidance. Our work has similarities to
vision-based target trackers for miniature quadrotor aircraft
[2], for conventional helicopters [14], and for more exotic
aerial vehicles [1]. Bourgault et al. [4] also investigated
automated target tracking and search tasks for fixed-wing and
other flying robots, although their emphasis was primarily on
the probabilistic modeling of the abstract problem.

Our work draws inspiration from the well-established
automated road following literature for terrestrial vehicles,
which includes the seminal work by Pomerleau [12] using
Artificial Neural Networks and an appearance-based algo-
rithm. Similarly, Ma et al. [10] tracked the curve dynamics
in noisy images of roads using an Extended Kalman Filter.

Giguère and Dudek [8] developed an unsupervised clus-
tering technique for terrain classification. This work exploits
both spatial and temporal continuities to increase the sys-
tem’s accuracy and robustness, which we drew inspiration
from in the design of our boundary tracker.

Classifiers used in our system are similar to previous
works on color segmentation [17][9]. In a classical survey
on texture classifiers, Randen and Husøy [13] compared the

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 81

Heading /

Waypoint

Segmenta t ion Phase

Smooth ing

Fi l ter

Cluster

Based

Reject ion

Cluster ing

H u e

Based

Texture

Based

Per -Frame

Boundary

Detect ion

Head ing

Based

Reject ion

Edge

Detect ion

when

possible
Temporal

Boundary

Tracking

i f failed

Boundary Detect ion Phase

Fig. 2. Block diagram of the proposed boundary tracking framework.

performance of Gabor filter banks, wavelet analysis, and Dis-
crete Cosine Transforms. Although the experimental results
illustrated the high discriminating powers of these methods,
the presented data also implies that these algorithms are too
computationally demanding for our application. Martin et al.
[11] combined weaker texture classifiers with color cues to
build a swift and accurate boundary detection framework.

III. BOUNDARY TRACKING FRAMEWORK
This work processes aerial images to extract boundary

information of a region of interest in two phases: first, a
segmentation algorithm labels each pixel in the scene as
either belonging to the target region or not, and then a
boundary line is fit through the connected group of edge
elements in the binary labeled image. We can compute a
new waypoint or heading for the UAV from one of the
extremities of the resulting boundary line segment. The main
components of this framework are illustrated in Fig. 2.

A. Segmentation Phase

We employ conventional cluster analysis to segment im-
ages and highlight regions of interest. This operation depends
on an image representation well matched to the domain of
interest. We use color cues to distinguish water from land
and texture traits to differentiate between forests and roads.

1) Hue-Based Clustering for Tracking Coastlines: A nat-
ural representation to discriminate water from land within
aerial photos of coastline is the dominant color for these
two regions. In particular, the hue of a pixel is computed
from its Red-Green-Blue (RGB) representation as:

C = max(R,G,B)−min(R,G,B)

H =

0 ◦, if C = 0
G−B

C ·60 ◦, if max(R,G,B) = R
B−R

C ·60 ◦+120 ◦, if max(R,G,B) = G
R−G

C ·60 ◦+240 ◦, if max(R,G,B) = B

(1)

(a) (b)
Fig. 3. Aerial photo of a tropical beach (a) and its hue representation (b).

Although Eq. (1) is equivalent to one of the canonical
definitions of hue [15], we explicitly mapped neutral colors
(C = 0) to red hue (H = 0◦). This ensures that buildings,
rocks and corals are classified together with trees, grass and
sand, as seen in Fig. 3. This allows us to easily identify
aquatic regions from the rest of the scene.

To determine the label of a pixel Lx,y, we compare its
color Hx,y to the hue of different classes Hwater and Hland :

∆Hwater =
∣∣(Hx,y−Hwater +180 ◦)mod 360 ◦−180 ◦

∣∣
∆Hland =

∣∣(Hx,y−Hland +180 ◦)mod 360 ◦−180 ◦
∣∣

Lx,y =

{
’water’, ∆Hwater ≤ ∆Hland

’land’, otherwise

We compute Hwater and Hland by manually choosing initial
hues and then applying the K-means algorithm [6] on training
footage collected in the field.

2) Texture-Based Clustering for Tracking Forest Paths:
We present a fast and accurate method for differentiating
coarse tree texture from smooth road texture using a repre-
sentation based in the Speeded-Up Robust Features (SURF)
descriptor [3]. This descriptor summarizes directional gra-
dient information within the neighborhood of a target pixel
as a single numerical vector. Although the original SURF
algorithm only computes these vectors at locations pertaining
to salient features, we apply this technique to describe local
regions (at a fixed scale) of all uniformly sampled image
coordinates. In contrast to the original design, we also omit
the vector normalization step, thus preserving the distinction
between strong and weak gradients corresponding to coarse
and smooth textures.

Each SURF vector can be computed efficiently using a
constant number of integer operations regardless of the scale.
Our system only computes these vectors for sub-sampled
locations within the image, since we do not typically require
pixel-level accuracy. In addition, we chose the scale the
SURF descriptor empirically using our collected footage.

We apply the K-means algorithm to map SURF vectors to
a binary label indicating whether the corresponding location
contains trees or roads. Although in general we cannot pre-
dict the final locations of the two clusters in vector space, we
assume that our aerial footage contains primarily these two
terrain types. Under this assumption, Fig. 4 shows that the
K-means algorithm is capable of differentiating trees from
roads, where the tree label is attributed to the centroid with
the larger magnitude corresponding to the coarser texture.

82

3) Post-Clustering Refinement: Both our manual cluster
analysis and the K-means algorithm assign labels to each
pixel independently from its neighbors, and thus the clustered
image often contains small patches of incorrectly labeled
pixels, as illustrated by Fig. 4(b). We apply a smoothness
constraint to minimize the sizes of these erroneous regions,
which we implement using a median filter [16].

The success of the segmentation phase depends on certain
domain-specific assumptions being met. For the coastline
tracker, each image should ideally contain approximately
the same amount of water and land. But if the plane is
suddenly pushed away from the coastline (e.g. due to strong
lateral winds), then the resulting frames might contain insuf-
ficient coastline information. We define the rejection criterion
Rcluster by imposing minimum and maximum bounds σ and
Σ on the relative size of the target region:

Rcluster =

{
0, σ ≤ p

wh ≤ Σ

1, otherwise

where p is the number of pixels labeled as the target region
and w and h are the width and height of the image. Frames
for which Rcluster = 1 are dropped immediately.

(a) (b)

Fig. 4. Aerial photo of a road surrounded by trees (a) and its labeled
representation using the SURF descriptor and the K-means algorithm (b).

B. Contour Detection Phase

The second phase of our framework involves fitting a
straight line through the binary image’s boundary, which can
be then transformed into a desired heading for the UAV.

For simplicity, our framework currently assumes that only
a single hypothesis exists; that is to say, we assume only
one continuous border between water and land or between
forest and road. Despite using this idealized assumption, we
will demonstrate in Section IV that our framework produces
accurate results for realistic setups, even in the road tracker
setting where forest-road boundaries come in pairs.

1) Edge Detection: The edge pixels (or edgels) of the
clustered image can be computed using any classical edge
detection method. We use the Sobel operator [5] to generate
connected edgel sets from our binary images.

2) Temporal Boundary Tracking: Given the availability of
a recent line fit, we take advantage of temporal continuity by
assuming that the boundary in the current frame corresponds
to the connected group of edgels closest to this previous
line. Since the plane is travelling at a high altitude, the
contents in consecutive frames do not change drastically and
thus allow us to make this temporal association. Our linear
regression implementation rotates the coordinate axes about
the principal component and then applies linear least squares.

3) Per-Frame Boundary Detection: The accuracy of our
temporal boundary tracker depends on having a previous line
fit from a relatively recent frame. Notwithstanding the very
first iteration where no previous fit is available, our cluster-
based rejection criterion Rcluster can also potentially reject
a large sequence of frames. In these cases where temporal
continuity cannot be guaranteed, we use the RANSAC algo-
rithm [7] to fit a straight line through the largest number of
edgels within a reasonably close distance.

4) Post-Fit Refinement: After obtaining the line fit, we
compute its two intersections with respect to the image
borders. Since we choose not to make assumptions about the
structure of the boundary beyond the current frame, we use
the intersection closest to the front of the plane to determine
a new heading direction for the UAV.

Despite the presence of our failsafe mechanisms, there are
cases where the computed heading may be erroneous and, in
particular, may direct the plane in the opposite direction of
its bearing. To prevent the UAV from back-tracking through
previously covered terrain, the rejection criterion Rheading
imposes an upper bound Φ on the distance between the
current heading φ t−1 and the newly computed direction φ t :

Rheading =

{
1, |(φ t −φ t−1 +180 ◦)mod 360 ◦−180 ◦|> Φ

0, otherwise

IV. EMPIRICAL VALIDATION

We conducted three sets of experiments to assess the
performance of the proposed boundary tracking framework.
The first two trials evaluate our coastline-following imple-
mentation, where we deployed our UAV to fly along the
shores of a tropical island. For the third trial, we conducted
a preliminary assessment of the road tracking implementation
using publicly available aerial photos.

A. Hardware and Software Setup
Our unmanned aerial vehicle is a rigid body fixed-wing

plane commercially available from Procerus R© Technolo-
gies. The UAV’s 1 meter wingspan is built using expanded
polypropylene (EPP) foam, which allows it to bounce upon
landing. An electric motor powered by a pair of 3-cell lithium
polymer batteries can drive the plane at average ground
speeds of 14m/s and for durations up to 30 minutes.

The plane’s moment-to-moment heading and flight char-
acteristics are regulated using a micro-processor unit. This
autopilot is connected to numerous sensors, including a 3-
axis accelerometer, a pressure sensor, a magnetometer, and
a GPS unit. Communication between the autopilot and the
ground control software is achieved via radio frequency. This
UAV can operate in many modes, ranging from purely man-
ual control to fully autonomous waypoint-based navigation.

An on-board camera transmits live analog video stream
at 30 fps via a separate radio frequency. This camera is
attached to a gimbal which can be controlled either by a
human operator or via software interfacing with the ground
control application. Because the transmission is sensitive
to environmental disturbances, some of the received frames
contain significant image distortions, as illustrated by Fig. 5.

83

Although we successfully ran our tracker on this noisy
stream, we also manually attached a separate video recorder
on the underbelly of the UAV to capture noise-free video for
use as training data.

(a) (b)

Fig. 5. Some of the frames from the transmitted video stream contain
noise such as scan line artifacts (a) and color distortions (b).

We implemented our tracking framework in C++ and
within a Linux environment on-board a 1.66GHz dual core
notebook computer. The analog video stream transmitted
from the UAV is acquired by a USB video capture device
and is processed in real-time at 10 Hz.

We continuously regulate the gimbal orientation so that it
is always perpendicular to the ground plane. This removes
the need to transform frames using projective geometry.

B. Coastline Tracker Evaluation Criterion
We collected video footage from our manually mounted

recorder spanning three flight sequences along the same
shoreline. Nearly 6000 frames were extracted from the
H.264-encoded video files at a resolution of 640×480 pixels
at 30 fps; these were used for off-line performance evalua-
tion. Although the video quality is much cleaner compared to
the on-board gimbal-mounted camera, these frames are not
always parallel to the ground plane, and thus some might
contain too much land or too much water. Thankfully, our
system can filter out these bad frames using the Rcluster
rejection criterion.

We compute the absolute angular distance between the
headings generated by our tracker φ t and by the i-th volunteer
φ i

t . We summarize our results as average and worst-case
values for errors ∆φ t per frame t averaged over all human
datasets, and we compare these errors with the average
pairwise discrepancy ∆φ ∗t among humans:

∆φt =
1
5

5

∑
i=1

∣∣(φt −φ
i
t +180 ◦

)
mod 360◦−180◦

∣∣
∆φ
∗
t =

1
10

5

∑
i=1

5

∑
j=i+1

∣∣∣(φ
i
t −φ

j
t +180 ◦

)
mod 360◦−180◦

∣∣∣
C. Coastline Tracker Experimental Results

Fig. 6 shows the average discrepancy among humans for
selecting UAV headings. Since our footage consists of three
flights over the same coastline, we observe that the volunteers
disagreed consistently during the middle portion of each
flight, which correspond to the large coral reefs seen in
Fig. 11. This illustrates the difficulty of the problem that
we are trying to solve – if humans strongly disagree with
each other on the location of the shoreline in these frames,

then it is ambiguous to even define a baseline to compare
against our system’s performance. Despite this, we assume
that the average discrepancy among our human data provides
a reasonable reference of optimal accuracy.

1000 2000 3000 4000 5000 6000
0

15

30

45

60

75

90

Frames t

A
b
s
o
lu

te
 D

if
fe

re
n
c
e
 i
n
 H

e
a
d
in

g
 ∆

φ
t (

d
e
g
)

∆φ
t
*

mean
t
(∆φ

t
*)

max
t
(∆φ

t
*)

Fig. 6. The average discrepancy in terms of heading among human datasets
suggest that in certain scenes (e.g. containing coral reefs) even humans
strongly disagree with each other on the location of the coastline.

We analyzed the effects of the lower bound σ on the
required amount of water in each frame, without restricting
other parameters (i.e. Σ = 1 and Φ = 180 ◦). Fig. 7 shows that
although we can increase accuracy by tuning σ , the number
of rejected frames becomes too large before we can observe
significant improvement in the worst-case error.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Minimum Acceptable Ratio of Water Pixels in Frame σ

A
b

s
o

lu
te

 D
if
fe

re
n

c
e

 i
n

 H
e

a
d

in
g

 ∆
φ

t (
d

e
g

)

/
R

e
je

c
te

d
 F

ra
m

e
s
 (

%
)

mean
t
(∆φ

t
) (deg)

mean
t
(∆φ

t
*) (deg)

max
t
(∆φ

t
) (deg)

max
t
(∆φ

t
*) (deg)

Rejected Frames (%)

Fig. 7. By rejecting frames with too little water in them, the performance
of our system improves slowly compared to the number of frames rejected.

1000 2000 3000 4000 5000 6000
0

15

30

45

60

75

90

Frames t

A
b
s
o
lu

te
 D

if
fe

re
n
c
e
 i
n
 H

e
a
d
in

g
 ∆

φ
t (

d
e
g
)

∆φ
t

∆φ
t
*

mean
t
(∆φ

t
)

mean
t
(∆φ

t
*)

Fig. 8. By setting σ = 0.5, Σ = 1, Φ = 180◦, our system performs on
average less than two times as poor as the average inter-human discrepancy.
Unfortunately, this configuration dropped too many consecutive frames,
including regions with low inter-human discrepancy.

Fig. 8 illustrates our system’s average performance with
σ = 0.5. Because our implementation processes video at

84

10 Hz, it can tolerate errors spanning several frames so
long as the total duration is limited. By dismissing these
isolated errors, the average performance is quite comparable
to the human discrepancy rate. Unfortunately, the system
also rejected large number of consecutive frames (e.g. t ∈
[3500,3800] and t ∈ [5550,5850]), meaning that the UAV
would not be regulated for up to 9 seconds intervals. We thus
conclude that increase σ alone is too dangerous because it
might drop too many consecutive frames.

0102030405060708090
0

10

20

30

40

50

60

70

80

90

100

Upper Bound on Absolute Change in Heading Φ (deg)

A
b

s
o

lu
te

 D
if
fe

re
n

c
e

 i
n

 H
e

a
d

in
g

 ∆
φ

t (
d

e
g

)

/
R

e
je

c
te

d
 F

ra
m

e
s
 (

%
)

mean
t
(∆φ

t
) (deg)

mean
t
(∆φ

t
*) (deg)

max
t
(∆φ

t
) (deg)

max
t
(∆φ

t
*) (deg)

Rejected Frames (%)

Fig. 9. By rejecting frames where the desired heading is significantly
different from the current heading, we can significantly improve both the
average and worst-case performance while preserving most of the frames.

1000 2000 3000 4000 5000 6000
0

15

30

45

60

75

90

Frames t

A
b
s
o
lu

te
 D

if
fe

re
n
c
e
 i
n
 H

e
a
d
in

g
 ∆

φ
t (

d
e
g
)

∆φ
t

∆φ
t
*

mean
t
(∆φ

t
)

mean
t
(∆φ

t
*)

Fig. 10. By setting σ = 0, Σ = 1, Φ = 45◦, our system overall performs
comparably to the average inter-human discrepancies. In addition, this
configuration dropped consecutive frames of at most 4 seconds, and during
times where humans strongly disagreed with each other.

We also investigated the change in performance by re-
stricting the maximum deviation Φ between the current
UAV heading and the waypoint generated by our system,
without using the cluster-based rejection criteria (i.e. σ = 0
and Σ = 1). This experiment indicates that we do not need
to reject as many frames as previously to obtain decent
results, as illustrated in Fig. 9. By imposing a maximum
absolute tolerance of Φ = 45 ◦, Fig. 10 shows that the system
correctly ignores scenes with large associated inter-human
discrepancies. More importantly, the longest consecutive
frame drop was only about 4 seconds long (t ∈ [2900,3100]),
and furthermore almost none of the frames containing non-
ambiguous boundaries were rejected.

In conclusion, we observe that the heading-based rejection
threshold Φ is more effective at filtering out ambiguous
scenes than the cluster-based threshold σ . The final results

TABLE I
AVERAGE AND WORST-CASE ABSOLUTE DISTANCE IN GENERATED

HEADING BETWEEN OUR ALGORITHM AND TWO HUMANS

Average Value Worst-Case Value
Error with Respect 4.37◦ 11.67◦
to Subject 1 ∆φ 1

t
Error with Respect 4.50◦ 10.12◦
to Subject 2 ∆φ 2

t
Discrepancy Between 0.81◦ 3.14◦Subjects ∆φ∗t

in Fig. 10 illustrate that our system performs quite accurately
on average (with a mean error of less than 15 ◦). In addition,
among frames where the coastline is potentially ambiguous
(i.e. where the inter-human discrepancy is above its mean
∆φ ∗t > mean t (∆φ ∗t)), our system performs only 39% more
worse than humans.

D. Coastline Tracker Field Trial
For our trial, we imposed lenient parameters for all three

rejection thresholds (σ = 0.35, Σ = 0.8, Φ = 135 ◦) to assess
the tracker’s performance in the worst-case scenarios. After
manually aligning the UAV with the coastline, our algorithm
processed the transmitted stream from the on-board gimbal-
mounted camera and steered the plane comfortably in real-
time (at 10 Hz) along a 1 km stretch of the shore made up
of various terrain types. The vehicle traveled at a nominal
altitude of 150m with an average ground speed of 14m/s with
7m/s lateral wind speed. The trajectory is shown in Fig. 11.

This trial demonstrates that our framework is capable of
tracking the shoreline under real flight conditions. Despite
the significant amount of imaging and transmission noise
present (e.g. Fig. 5), our overall performance was still robust
and could likely be further improved with additional tuning
of the parameters.

E. Forest Path Tracker Experiment
To gauge the performance of the texture-based classifier

for differentiating roads from its tree surrounding, we ran our
algorithm through 15 manually selected aerial photos from a
publicly available image database. We asked two volunteers
to define pairs of waypoints in each image corresponding to
headings along the center of the roads. Since our classifier
identifies the side of the road rather than its center, our results
should be interpreted qualitatively due to this discrepancy.

Fig. 12. Despite some noticeable mis-classified regions, our framework is
able to provide a linear estimate of the location for the side of the road.

85

Fig. 11. Our tracking algorithm successfully drove an UAV along a 1km tropical coastline. The bright curve denotes the trajectory of the vehicle. Please
refer to our accompanied video submission for a playback of this flight (at 2x speed).

The results of our system with all rejection criteria
disabled are shown in Table I. Despite the fundamental
discrepancy between the headings produced by our algorithm
and those specified by humans, our framework achieved
both decent average and worst-case performance. Although
additional experiments are required to be conclusive, we are
very pleased with these preliminary results (e.g. Fig. 12).

V. CONCLUSIONS AND FUTURE WORK
In this paper we presented a fully autonomous vision-

based control framework for steering a small aircraft along
the boundary of various terrains or regions of interest.
Our design approach involved using well-established vision
algorithms in addition to fallback mechanisms and rejection
criteria to ensure that the system performs accurately.

We used hue to distinguish water from land in our coast-
line tracking experiments, and employed a novel texture-
based representation to differentiate between forest and
ground cover in our road tracking assessment. In addition
to our off-line experiments, we successfully flew our UAV
along a 1 km tropical coastline solely using our algorithm.

We are currently investigating generalizations to our clas-
sifier for both the coastline tracking and road tracking appli-
cations. In addition, we are interested in introducing limited
human interaction prior to execution to improve the overall
performance of our tracking. For example, if the operator
generates either a general heading or a sample trajectory
prior to launch, we can use this information to fine-tune our
rejection criteria and minimize premature rejections. Finally,
we are in the preliminary stages of extending our aerial
tracker to perform coverage, surveillance, and collaboration
with underwater robotic vehicles.

REFERENCES

[1] J.R. Azinheira, Patrick Rives, J.R.H. Carvalho, Geraldo F. Silveira,
Ely C. de Paiva, and Sameul S. Bueno. Visual servo control for the
hovering of an outdoor robotic airship. volume 3, pages 2787–2792,
2002.

[2] Abraham Bachrach, Alborz Geramifard, Daniel Gurdan, Ruijie He,
Sam Prentice, Jan Stumpf, and Nicholas Roy. Co-ordinated tracking
and planning using air and ground vehicles. In The 11th International
Symposium on Experimental Robotics, pages 137–146, Greece, 2008.

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.
Speeded-up robust features (surf). Computer Vision and Image
Understanding, 110(3):346–359, 2008.

[4] Frédéric Bourgault, Tomonari Furukawa, and Hugh F. Durrant-Whyte.
Optimal search for a lost target in a bayesian world. In Shin’ichi
Yuta, Hajime Asama, Sebastian Thrun, Erwin Prassler, and Takashi
Tsubouchi, editors, FSR, volume 24 of Springer Tracts in Advanced
Robotics, pages 209–222. Springer, 2003.

[5] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene
Analysis. John Wiley & Sons Inc, 1973.

[6] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern
Classification (2nd Edition). Wiley-Interscience, 2 edition, 2000.

[7] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Comm. ACM, 24(6):381–395, 1981.

[8] Philippe Giguere and Gregory Dudek. Clustering sensor data for
terrain identification using a windowless algorithm. In Proceedings
of Robotics: Science and Systems IV, Zurich, Switzerland, June 2008.

[9] Patrick Lambert and Thierry Carron. Symbolic fusion of luminance-
hue-chroma features for region segmentation. PR, 32(11):1857–1872,
November 1999.

[10] Yi Ma, Jana Koscká, and Shankar S. Sastry. Vision guided navigation
for a nonholonomic mobile robot. IEEE Transactions on Robotics and
Automation, 15(3):521–536, 1999.

[11] David R. Martin, Charles C. Fowlkes, and Jitendra Malik. Learning
to detect natural image boundaries using local brightness, color, and
texture cues. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(5):530–549, 2004.

[12] Dean A. Pomerleau. —efficient training of artificial neural networks
for autonomous navigation. Neural Computing, 3(1):88–97, 1991.

[13] Trygve Randen and John Håkon Husøy. Filtering for texture classifi-
cation: A comparative study. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21:291–310, 1999.

[14] Srikanth Saripalli, James F. Montgomery, and Gaurav S. Sukhatme.
Visually guided landing of an unmanned aerial vehicle. IEEE Trans-
actions on Robotics and Automation, 19(3):371–380, 2003.

[15] A. R. Smith. Color gamut transform pairs. In Proceedings of the 5th
annual conference on Computer graphics and interactive techniques
(SIGGRAPH’78), pages 12–19, New York, NY, USA, 1978. ACM.

[16] Emanuele Trucco and Alessandro Verri. Introductory Techniques for
3-D Computer Vision. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1998.

[17] Chi Zhang and P. Wang. A new method of color image segmentation
based on intensity and hue clustering. volume 3, page 3617, Los
Alamitos, CA, USA, 2000.

86

