
 

 

 

 

Abstract— Utterance interval detection is a bottleneck for the 

current speech recognition performance in robots embedded in 

real noisy environments. In the present work, we make use of 

sound localization technology using a microphone array, not 

only for localizing, but also for detecting sound intervals of 

multiple sound sources. In our previous work we have 

implemented and evaluated sound localization in the 3D-space 

using the MUSIC (MUltiple SIgnal Classification) method. In 

the present work, we proposed a method for detecting sound 

intervals based on the sound directivity information inferred 

from the dynamics of the MUSIC spectrogram. The proposed 

method achieved high sound interval detection accuracies and 

low insertion rates compared with the previous sound 

localization results. 

I. INTRODUCTION 

N human-robot speech communication, the microphones 

on the robot are usually far (more than 1 m) from the human 

users, so that the signal-to-noise ratio becomes lower than for 

example in telephone speech, where the microphone is 

centimeters from the user’s mouth. Due to this fact, 

interference signals, such as voices of other subjects close to 

the robot, and the background environment noise, would 

degrade the performance of the robot’s speech recognition. 

Therefore, sound source localization and posterior separation 

become particularly important in robotics applications. 

One of the main difficulties that degrade speech recognition 

performances in the robot’s real noisy environment is the lack 

of accuracy in utterance detection. Classical methods for 

utterance detection are using audio power thresholds or the 

use of models such as GMM (Gaussian Mixture Models) or 

HMM (Hidden Markov Models) for speech and noise [1-4]; 

however, the performance of these methods degrades when 

the robot is put in a new noisy environment. In the present 

work, we make use of sound localization (or more specifically, 

sound directivity information) for improving utterance 

detection. 

There are many works about sound source localization 
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[5-13]. The sound localization method adopted in the present 

work is the MUSIC (MUltiple SIgnal Classification) 

algorithm, which is a well-known high-resolution method for 

source localization [5-8]. However, there are two issues 

regarding the MUSIC algorithm, which constrain its 

application for sound localization in practice. One is the heavy 

computational cost, while the other is the need of previous 

knowledge about the actual number of sources present in the 

input signal. 

Regarding evaluation, although there are many works 

related to sound localization, most of them only evaluate 

simulation data or laboratory data in very controlled 

conditions. Also, only a few works evaluate sound localization 

in the 3D space, i.e., considering both azimuth and elevation 

directions [12-13]. Looking at the user’s face while the subject 

is speaking is also an important behavior for improving 

human-robot dialogue interaction, and for that, a sound 

localization in 3D space becomes useful. 

Taking the facts stated above into account, in our previous 

work [14], we constructed a MUSIC-based 3D-space sound 

localization (i.e., estimation of both azimuth and elevation 

directions) in the communication robot of our laboratory, 

“Robovie”, and evaluated it in real noisy environments. 

However, only the raw data (without sound interval 

segmentation) was evaluated. Also, there still are considerable 

insertion error rates, for getting high detection rates.  

In the present work, we exploit the dynamic properties of 

the MUSIC spectrogram, and propose and evaluate a sound 

interval detection method based on sound directivity.  

This paper is organized as follows. In Section II, 

descriptions about the hardware and data collection are given. 

In Section III, the proposed method is explained, and in 

Section IV, analyses and evaluation results are presented. 

Section V concludes the paper. 

II. HARDWARE AND DATA COLLECTION 

A. The microphone array 

A 14-element microphone array was constructed in order to 

fit the chest geometry of Robovie, as shown in Fig. 1.  

The chest was chosen, instead of the head, due to geometric 

limitations of Robovie’s head. Several 3D array architectures 

were tested using simulations of the MUSIC algorithm. The 

array geometries were designed in such a way to cover all 

three-dimensional coordinate axes, giving emphasis to 

resolution in azimuth direction, and sounds coming from the 
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front. The array configuration shown in Fig. 1 was chosen 

since it produced fewer side-lobes and had a fairly good 

response over different frequency bins.  

 

 
Fig. 1. (a) The geometry of the 14-element microphone array. (b) Robovie 

wearing the microphone array. 

 

A 16-channel A/D converter TD-BD-16ADUSB from 

Tokyo Electron Device Limited was used to capture the 

signals from the array microphones. Sony ECM-C10 

omni-directional electret condenser microphones were used as 

sensors. Audio signals were captured at 16 kHz and 16 bits. 

B. Recording setup 

The microphone array was set on the robot’s chest structure, 

as shown in Fig. 1. The robot was turned on to account for the 

noise produced by its internal hardware. The sources 

(subjects) were positioned around the robot at a distance of 

about 1 m from the robot, in different configurations and were 

instructed to speak to the robot in a natural way. The contents 

of the speech utterances were free: one of the subjects uttered 

in Japanese, while the other subjects uttered in different 

languages. The uttered contents were most of time 

descriptions of the audio environment, but sometimes 

included greeting and asking for directions. Each subject had 

an additional microphone to capture their utterance. The 

signals from these additional microphones, which we will call 

“source signals” throughout the paper, will be used only for 

analysis and evaluation. Nonetheless, the source signals are 

not required by the proposed method in its final 

implementation.  

C. Data collection and environmental conditions 

Recoding data using the microphone array was collected in 

two different environments. One is an office environment 

(OFC), where the main noise sources are the room’s air 

conditioner and the robot’s internal hardware noises. The 

second environment is a hallway of an outdoor shopping mall 

(called Universal City Walk Osaka – UCW), where a field 

trial experiment has been executed [15]. The main noise 

source in UCW was a loud pop/rock background music 

coming from the loudspeakers on the hallway ceiling. The 

ceiling height is about 3.5 meters. Recordings were done with 

the robot faced to different directions, in several places. 

In OFC, four sources (male subjects) are present. At first, 

each source speaks to the robot for about 10 seconds, as the 

others remain silent. In the last 15 seconds of the recording, all 

four sources speak at the same time. For this recording, two of 

the subjects wore microphones connected to the two 

remaining channels of the 16-channel A/D device, while the 

other two subjects wore microphones connected to a different 

audio capture device (M-audio USB audio). A clap at the 

beginning of the recording was used to manually synchronize 

the signals of these two speakers to the array signals. It is 

worth to mention that a strict synchronization between the 

source signals was not necessary, because only power 

information of the source signals will be used, as will be 

explained in Section II.D. 

In UCW, there are two speech sources (male subjects) 

present in all recordings. In most of the trials, the sources take 

turns to speak for about 10 seconds each and then proceed to 

talk at the same time. In two of the trials (UCW7 and UCW8), 

one source is moving and the other is static, both speaking at 

the same time most of time. In four trials (UCW1-4 = 

“UCW-a”), the robot is relatively far (about 7 meters) from the 

ceiling loudspeakers, while in five trials, the robot is relatively 

close (about 4 meters) to a ceiling loudspeaker (UCW5-9 = 

“UCW-b”), and in another four trials, the robot is right under a 

ceiling loudspeaker (UCW10-13 = “UCW-c”). Fig. 2 shows 

the locations of the robot in different trials in UCW. All trials 

have different configurations for the robot facing direction 

and/or source locations. 

Robot location

Loudspeaker location

UCW-a

UCW-b UCW-c

 
Fig. 2. A map of the UCW hallway, with locations of the robot and the ceiling 

loudspeakers. 

D. Computation of the ideal sound intervals from the power 

of the source signals 

For evaluation of the sound interval detection performance, 

ideal sound intervals were computed from the power of the 

source signals. 

Prior to compute the power of each source, a cross-channel 

spectral binary masking was conducted among the source 

signals in order to reduce the inter-channel leakage 

interferences, and get more reliable reference signals. In 

addition, the signal of the microphone in the center position in 

the array was used to remove the ambient music noise from all 

the source signals. Finally, the signal was also manually 

attenuated in the intervals where interference leakage 

persisted after the above processing. This resulted in much 

clearer source signals. 

The average power of the signal was then computed for 

each 100 ms, which corresponds to the block interval used in 

the MUSIC algorithm. A threshold was manually adjusted to 

discriminate the blocks with sound activity for each source 

signal. The intervals with sound activity separated by less than 

400 ms were merged to obtain the ideal sound intervals. 
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III. PROPOSED METHOD 

A. The broadband MUSIC spectrum 

Fig. 2 shows the block diagram of the algorithm for 

computing the broadband MUSIC spectrum. The algorithm 

structure is similar to a classical approach of the MUSIC 

algorithm: getting the Fourier transform (FFT) for 

computation of the multi-channel spectrum, computing the 

cross-spectrum correlation matrix, making the eigenvalue 

decomposition of the averaged correlation matrix over a time 

block, computing the (narrowband) MUSIC responses for 

each frequency bin using the eigenvectors corresponding to 

the noise subspace and the steering/position vectors prepared 

beforehand for the desired search space, and finally 

computing the broadband MUSIC response by averaging the 

narrowband responses over a frequency range.  

The broadband MUSIC responses are referred as MUSIC 

spectrum, while the sequence of the MUSIC spectrums along 

the time is referred as MUSIC spectrogram. 

In our previous work, some of the parameters related to the 

MUSIC response computation were analyzed in order to 

obtain real-time processing, while keeping the DOA (direction 

of arrival) estimation performance. These parameters related 

to the MUSIC computation are described in detail in the 

following sub-sections. 
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Fig. 2. The MUSIC-based sound localization algorithm, and related 

parameters. 

 

1. Search space for DOA (directions of arrival) 

The MUSIC algorithm was implemented to obtain not only 

the azimuth but also the elevation angle of the direction of 

arrival (DOA) of each source signal. Since the goal of this 

development is to enhance the human/robot interaction, we 

considered that it was not necessary to estimate the distance 

between the robot and the source(s) and that the DOA was the 

important piece of information. Nonetheless, the MUSIC 

algorithm can easily be extended to estimate also the distance 

between the array and the source, by adding the corresponding 

steering/position vectors. However, this would considerably 

increase the processing time. 

A spherical mesh with a step of 5 degrees was constructed 

for defining the directions to be searched by the MUSIC 

algorithm. The mesh was constructed by setting elevations in 

intervals of 5 degrees, and setting different number of azimuth 

points for each elevation. The number of azimuths is 

maximum for 0 degrees elevation (having 5 degrees azimuth 

intervals), and gradually reduces for higher elevations, in such 

a way that the arc between two points is kept as close as 

possible to the arc corresponding to 5 degrees azimuth in 0 

degrees elevation. This reduces the number of directions to be 

scanned by the MUSIC algorithm, reducing computation time. 

The directions with elevation angles lower than -30 degrees 

were also removed to speed up the computation, resulting in a 

total of 1216 directions.  

The origin of the coordinate frame is set to the intersection 

point of the rotational axis of the degrees of freedom of the 

Robovie’s head. This way, the output from the DOA 

estimation algorithm can be directly used to servo the head. 

2. Frame length and block length 

The frame length, which is related to the number of FFT 

points to be computed in the first stage, is an important 

parameter that can drastically reduce the computational costs 

of the MUSIC algorithm. Although FFT of 512 ~ 1024 points 

is commonly used (corresponding to 32 ~ 64 ms frame length 

at 16 kHz), we have proposed the use of smaller FFT sizes (64 

~ 128). This allows reducing the computation not only of the 

FFT stage, but also of the subsequent correlation matrix, 

eigenvalue decomposition, and MUSIC response 

computations. We have found that reducing the frame size to 4 

ms (or equivalently reducing the FFT size to 64) was effective 

to allow real-time processing without a big degradation in the 

estimation of the directions of arrival (DOA) of sound 

sources.  

In the next step of the MUSIC algorithm, a correlation 

matrix is averaged for the frames within a time block. The 

block length has to be long enough for getting good estimation 

of the averaged correlation matrix. On the other hand, it also 

should be short enough for getting good temporal resolution 

(considering that a sound source can move) and low latency. 

In the present work, we decided to use a time block length of 

100 ms. 

3. Frequency range of operation 

Although speech contains information over a broad 

frequency band (vowels in 100 – 4000 Hz and fricative 

consonants in frequencies above 4000 Hz), the frequency 

range of operation for DOA estimation has to be limited, given 

the geometric limitations of the array (shown in Fig. 1). 

The smallest distance between a pair of microphones is 3 

cm, so that on theory the highest frequency of operation to 

avoid spatial aliasing would be about 5.6 kHz (according to 

Rayleigh’s Law).  

Regarding the lowest frequency boundary, although speech 

contain important information in frequency bands lower than 
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1 kHz, the array geometry limitations do not allow good 

spatial resolution in these low frequency bands. In the present 

work we use the frequency range of 1 – 6 kHz, for avoiding the 

issues above. 

4. Number of sources (NOS) 

The number of sources is an important parameter necessary 

for getting a good estimate of the MUSIC spectrum. In theory, 

there is some relationship between the number of sources and 

the shapes of the eigenvalue profiles. However, in practice, a 

threshold between strong and weak eigenvalues is difficult to 

be determined. The environment noise has also a strong 

impact on the shapes of the eigenvalues, so that both 

magnitude and slope of the profiles are affected. 

Considering the difficulties in estimating NOS from the 

eigenvalues of the spatial correlation matrix, we have 

proposed the use of a fixed number of sources for the 

(narrowband) MUSIC response computation (“fixed NOS”). 

This idea is based on the assumptions that at an instant time, 

the predominance of different broadband sound sources varies 

depending on the frequency bins. Therefore, even if the NOS 

used to the narrowband MUSIC computation is limited to a 

fixed small number, the combination of frequency bins to 

compute the broadband MUSIC spectrum may produce more 

peaks than the fixed number. 

 

 

 

 
Fig. 3. Examples of MUSIC spectrograms by using fixed NOS = 2, for OFC1 

(where 4 sources are present in front of the robot), for UCW8 (where one of 

the sources is moving in front of the robot), and for UCW13 (where the robot 

is right under a loudspeaker). The elevation angles are displayed by different 

colors. (Please refer to the electronic document to see the colors.) 

 

In our previous work [14], it was shown that by using fixed 

NOS = 2 or 3, reasonable estimates of the MUSIC spectrum 

can be obtained. The problem of increasing the fixed NOS is 

that inexistent peaks would appear due to non-directional 

sound sources, if no directional sound source is present. 

Fig. 3 shows examples of MUSIC spectrograms obtained 

by using fixed NOS = 2, for OFC1 (where 4 sources are 

speaking in front of the robot), UCW8 (where one of the 

sources is speaking in front of the robot, while the other 

speaker is moving in front of the robot while speaking, and a 

directional music source is present in the first half of the trial), 

and UCW13 (where the robot is right under a loudspeaker). A 

suitable plotting of the MUSIC spectrogram is difficult 

because there are several dimensions: azimuth angle, 

elevation angle, MUSIC power and time. In the MUSIC 

spectrogram of Fig. 3, we show the azimuth angle in the y-axis, 

time in x-axis, different colors for different elevations, and 

different tonalities according to the MUSIC power. (The 

colors can be viewed in the electronic version.) Note that in 

the middle panel of Fig. 3, the music source in the first half 

appears in green, because the loudspeakers are in higher 

elevations compared to humans, while there are strong lines in 

pink/red in the bottom panel of Fig. 3, because there is a 

loudspeaker over the robot. 

B. Sound interval detection from the MUSIC spectrogram 

In a classical approach for determining the direction of 

arrival (DOA) of the sound sources, peak picking is realized 

on the MUSIC spatial spectrum. In the present work, we 

proposed a method for detecting sound source intervals, based 

on a MUSIC spectrogram and delta-spectrogram.  

Fig. 4 shows a block diagram of the proposed method for 

sound interval detection. 
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Fig. 4. The proposed sound interval detection based on MUSIC spectrogram 

and delta-spectrogram. 

 

First, a moving-average smoothing filter is passed through 

each direction (azimuth vs. elevation) of the raw MUSIC 

spectrogram, by a Hamming window of 5 taps, for reducing 

temporal distortions.  

Then, a delta-spectrogram is computed by taking, for each 

direction (azimuth vs. elevation), the minimum difference 

between the MUSIC power values of the current block and the 

neighbor directions in the previous block. 

Thresholds are set for estimation of onset and offset instants. 

First, thresholds are imposed to the positive and negative 

peaks of the MUSIC delta-spectrogram, to get raw estimates 

of onset and offset instants. To avoid over-estimation of the 

number of sources, we set a threshold for the magnitude of the 

MUSIC power, as proposed in our previous work. Further, the 

maximum number of onsets per block is constrained, 

assuming that the probability of multiple sources starting at 
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the same instant is low. This last constraint is in particular 

important to reduce insertion errors due to sidelobe effects.  

Also, to avoid misdetection of the offset instant, we forced 

offset if the MUSIC power becomes lower than the MUSIC 

power of the block previous to the onset instant (onset MUSIC 

power) plus a bias factor alpha. The following summarizes the 

thresholds involved in the onset/offset detection. 

 

 Onset: [MUSIC delta power > 1.0 dB] and [MUSIC 

power > 1.8 dB] and [Max. number of onsets per 

block <= 2] 

 Offset: [MUSIC delta power < -1.2 dB] or [MUSIC 

power < onset MUSIC power + alpha] 

 

Finally, the path with maximum MUSIC power is tracked in 

the MUSIC spectrogram from the onset to the offset instant. 

Segments separated by short pauses smaller than 4 blocks 

(400 ms), and with continuity in the direction are merged. 

IV. EXPERIMENTAL RESULTS 

A. The evaluation setup 

To measure the performance of the sound interval detection, 

we used two scalar values. The first represents the percentage 

of sound intervals that were successfully detected by the 

algorithm (“accuracy”). The second represents the number of 

additional intervals (insertions) that were detected, on average, 

per time block (“insertion rate”). 

As the sound intervals will be provided from sound 

directivity information, in the present work, the DOA 

accuracies will be used as equivalents of sound interval 

accuracies. 

To get the ideal DOA intervals of the sources, we used 

information about the sound activity for each source, obtained 

from the power of the source signals (Section II.D). Piecewise 

straight lines were fit to the contours of raw DOA estimates in 

the intervals where each source is active, for providing the 

ideal DOA. Video data were also used to check the instants 

where a source is moving. 

B. Evaluation of sound interval detection 

Fig. 5 shows the DOA estimation performances (accuracies 

and insertion rates) for office (OFC) and shopping mall 

(UCW-a,b,c) environments, for several parameter conditions 

related to the sound interval detection logic: with/without 

smoothing filter, with/without the threshold for forcing offset, 

with/without maximum number of onsets, and before/after 

tracking. The baseline using a simple MUSIC threshold 

(“MUSIC thresh”) is also shown. For the computation of the 

MUSIC spectrogram, the following parameters were used: 

NFFT = 64, frequency range = 1 – 6 kHz, and fixed NOS = 2. 

Although larger NFFT provide slightly better performances, 

we used 64, because real-time can be achieved even when 

running in a 2GHz Centrino CPU. 

The average DOA accuracies (or equivalently the sound 

interval detection rates) for speech sources are shown in the 

top panel of Fig. 5, and the DOA insertion rates are shown in 

the middle panel of Fig. 5, for each experimental condition in 

different environments (OFC and UCW). The results in UCW 

are divided according to the environment conditions, as 

described in Section II.C. 
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Fig. 5. DOA estimation performances (accuracies and insertion rates) for 

OFC and UCW environments. For all trials, NFFT = 64, frequency range = 1 

– 6 kHz, fixed NOS = 2, MUSIC delta-spectrogram Onset threshold = 1.0 dB, 

Offset threshold = -1.2 dB, and MUSIC power threshold = 2.0 dB.  

 

We can first observe that “without alpha” (forcing an offset 

according to the onset MUSIC power plus a bias factor alpha) 

gives the best DOA accuracies. However, it also gives the 

worst insertion rates. The DOA accuracies of “without 

smoothing”, “without number of onsets” and “before 

tracking” are very similar. However, a clear reduction in the 

insertion rate can be observed for “before tracking”, showing 

the effectiveness of both smoothing procedure and 

constraining the number of onsets per block. By comparing 

“before tracking” and “after tracking”, a slight improvement is 

observed in DOA accuracy in all environments (thanks to the 

filling of short pauses and speech segments with only low 

frequency components which could not be detected due to the 
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MUSIC frequency range restriction), while only a very small 

increase in DOA insertion rate is observed in UCW-b. Finally, 

by comparing “after tracking” and the baseline “music thresh”, 

it can be observed that “after tracking” shows higher 

accuracies and smaller insertion rates, indicating the 

effectiveness of the proposed method. 

Regarding the ambient music sources, it can be observed in 

the bottom panel of Fig. 5 that the DOA accuracies were low 

in UCW-a, since the robot was relatively far from the ceiling 

loudspeakers. DOA accuracies were almost 100 % in UCW-c, 

where the robot was right under one of the loudspeakers, so 

that the background music can be clearly considered as a 

directional source. DOA accuracies show intermediate 

detection rates for UCW-b, where the robot was in an 

intermediate position, relative to UCW-a and UCW-c 

conditions. For the final goal of detecting utterance intervals, 

music source intervals have to be discriminated from speech 

source intervals. However, this can be done by preparing 

speech and non-speech models (such as GMMs), which will 

be a topic for future work. 

Fig. 6 shows the DOA estimation performances (accuracies 

and insertion rates) for individual trials in office (OFC) and 

shopping mall (UCW) environments, for the “after tracking” 

parameter condition. 
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Fig. 6. DOA accuracies for each source and each trial in OFC and UCW. The 

parameter sets are the same for Fig. 5. 

 

Regarding performances for individual sources, it can be 

observed in Fig. 6 that the second and fourth sources in OFC2, 

and the first source in UCW9 show lower DOA accuracy. An 

explanation is that these sources come from the back side of 

the robot, so that both power and directivity are lower than the 

sources coming from the front side. 

V. CONCLUSIONS AND FUTURE WORKS 

Sound interval detection of multiple sources based on 

sound directivity was proposed by exploiting the dynamics of 

the 3D-space MUSIC spectrogram, and evaluated in our 

humanoid robot embedded in real noisy environments. 

Evaluation of the proposed method showed good detection 

accuracies and low insertion rates. 

The final goal of the present work is to detect speech 

intervals, while the technology here presented is to detect 

sound intervals. Although acoustic models for discriminating 

speech and non-speech intervals are one alternative, in robot 

applications, other modalities, such as vision, can be used to 

determine if the detected sound is speech or not. This will be 

scope of future work.  

We also plan the implementation of sound separation 

algorithms using the localization and sound interval detection 

results from the present work, in order to improve speech 

recognition. 

REFERENCES 

[1] L. R. Rabiner and M. R. Sambur, “An algorithm for determining the 

endpoints of isolated utterances,” The Bell System Technical Journal, 

vol. 54, no. 2, Feb. 1975, pp. 297–315. 

[2] A. Acero, “Robust HMM-based end-point detector”, in Proc. 

Eurospeech 93, 1993, pp. 1551-1554. 

[3] Z. Zhang and S. Furui, “Noisy speech recognition based on robust 

end-point detection and model adaptation,” in Proc. ICASSP2005, Vol 

I, 2005, pp. 441-444. 

[4] C.T. Ishi, S. Matsuda, T. Kanda, T. Jitsuhiro, H. Ishiguro, S. Nakamura, 

N. Hagita, “A robust speech recognition system for communication 

robots in noisy environments,” IEEE Transactions on Robotics, Vol. 

24, No. 3, June 2008, 759-763. 

[5] F. Asano, M. Goto, K. Itou, and H. Asoh, “Real-time sound source 

localization and separation system and its application on automatic 

speech recognition,” in Eurospeech 2001, Aalborg, Denmark, 2001, pp. 

1013–1016. 

[6] K. Nakadai, H. Nakajima, M. Murase, H.G. Okuno, Y. Hasegawa and 

H. Tsujino, "Real-time tracking of multiple sound sources by 

integration of in-room and robot-embedded microphone arrays," in 

Proc. of the 2006 IEEE/RSJ Intl. Conf. on Intelligent Robots and 

Systems, Beijing, China, 2006, pp. 852–859. 

[7] S. Argentieri and P. Danès, "Broadband variations of the MUSIC 

high-resolution method for sound source localization in Robotics," in 

Proc. of the 2007 IEEE/RSJ, Intl. Conf. on Intelligent Robots and 

Systems, San Diego, CA, USA, 2007, pp. 2009–2014. 

[8] M. Heckmann, T. Rodermann, F. Joublin, C. Goerick, B. Schölling, 

"Auditory inspired binaural robust sound source localization in echoic 

and noisy environments," in Proc. of the 2006 IEEE/RSJ Intl. Conf. on 

Intelligent Robots and Systems. Beijing, China, 2006, pp.368–373. 

[9] T. Rodemann, M. Heckmann, F. Joublin, C. Goerick, B. Schölling, 

"Real-time sound localization with a binaural head-system using a 

biologically-inspired cue-triple mapping," in Proc. of the 2006 

IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, Beijing, China, 

2006, pp.860–865. 

[10] J. C. Murray, S. Wermter, H. R. Erwin, "Bioinspired auditory sound 

localization for improving the signal to noise ratio of socially 

interactive robots," in Proc. of the 2006 IEEE/RSJ Intl. Conf. on 

Intelligent Robots and Systems, Beijing, China, 2006, pp. 1206–1211. 

[11] Y. Sasaki, S. Kagami, H. Mizoguchi, "Multiple sound source mapping 

for a mobile robot by self-motion triangulation," in Proc. of the 2006 

IEEE/RSJ Intl. Conf. on Intelligent Robots and System, Beijing, China, 

2006, pp. 380–385. 

[12] J.-M. Valin, F. Michaud, and J. Rouat, "Robust 3D localization and 

tracking of sound sources using beamforming and particle filtering," 

IEEE ICASSP 2006, Toulouse, France, pp. IV 841–844. 

[13] B. Rudzyn, W. Kadous, C. Sammut, "Real time robot audition system 

incorporating both 3D sound source localization and voice 

characterization," 2007 IEEE Intl. Conf. on Robotics and Automation, 

Roma, Italy, 2007, pp. 4733–4738. 

[14] C. T. Ishi, O. Chatot, H. Ishiguro, N. Hagita, “Evaluation of a 

MUSIC-based real-time sound localization of multiple sound sources 

in real noisy environments,” in Proc. of the 2009 IEEE/RSJ Intl. Conf. 

on Intelligent Robots and System, St. Louis, USA, 2009, pp. 

2027–2032. 

[15] T. Kanda, D. F. Glas, M. Shiomi, H. Ishiguro, and N. Hagita, “Who will 

be the customer?: A social robot that anticipates people’s behavior from 

their trajectories,” Tenth International Conference on Ubiquitous 

Computing (UbiComp 2008), 2008. 

 

1987




