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Abstract— Fully autonomous vehicles are technologically fea-
sible with the current generation of hardware, as demonstrated
by recent robot car competitions. Dresner and Stone proposed
a new intersection control protocol called Autonomous Inter-
section Management (AIM) and showed that with autonomous
vehicles it is possible to make intersection control much
more efficient than the traditional control mechanisms such
as traffic signals and stop signs. The protocol, however, has
only been tested in simulation and has not been evaluated
with real autonomous vehicles. To realistically test the pro-
tocol, we implemented a mixed reality platform on which an
autonomous vehicle can interact with multiple virtual vehicles
in a simulation at a real intersection in real time. From this
platform we validated realistic parameters for our autonomous
vehicle to safely traverse an intersection in AIM. We present
several techniques to improve efficiency and show that the AIM
protocol can still outperform traffic signals and stop signs even
if the cars are not as precisely controllable as has been assumed
in previous studies.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) is a multidisci-
plinary field concerned with advancing modern transporta-
tion systems with information technology [1]. Most existing
work on ITS focusses on assisting human drivers to avoid
collision in intersections [2], [3]. But the DARPA Urban
Challenge in 2007 showed that fully autonomous vehicles
are technologically feasible [4]. We therefore believe that
the time is right to rethink our current transportation infras-
tructure, which is designed solely for human drivers.

To this end, Dresner and Stone proposed a multiagent
systems approach to autonomous intersection management,
and in particular described a First Come, First Served (FCFS)
policy for directing vehicles through an intersection [5].
This approach has been shown, in simulation, to yield
significant improvements in intersection performance over
conventional intersection control mechanisms such as traffic
signals and stop signs. Despite, or perhaps because of the
impressive performance, questions are often raised regarding
its applicability to real autonomous vehicles. In this paper
we take the first step to show that a real autonomous vehicle
can adhere to the FCFS protocol and efficiently traverse an
intersection.

Fully testing the protocol requires a fleet of autonomous
vehicles, which is too costly and is potentially unsafe given
the risk of collisions during testing. In this paper, we present
a mixed reality platform on which a single autonomous
vehicle can interact with virtual traffic in a simulation. This
platform can provide a high degree of realism for testing the
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performance of real autonomous vehicles at real intersections
under the FCFS policy.

Based on numerous tests on our mixed reality platform we
obtained more accurate details regarding the parameters the
intersection controller should use to guarantee safe traversal
of real autonomous vehicles in real intersections. In particular
we confirmed that the noise and imprecision of a real vehicle
is greater than that anticipated in previous simulations. To
account for these deficiencies, FCFS must enlarge the buffers
surrounding vehicles, in effect pretending that the vehicles
are larger than they really are, thus providing some degree
of slack to account for potential imprecisions in control.
However, this use of large buffer sizes can lead to significant
inefficiencies in FCFS. In this paper, we use Little’s Law to
explicate how the performance of an autonomous vehicle
relates to the overall intersection throughput, and identify
approaches to increase the throughput in order to compen-
sate for the deficiencies due to the enlarged buffers. Our
experiments show that even with increased buffers, FCFS
can still provide substantial performance improvements over
traffic signals and four-way stop signs.

II. AUTONOMOUS INTERSECTION
MANAGEMENT

The novel intersection management introduced by Dresner
and Stone is based on a reservation paradigm, in which
vehicles “call ahead” to reserve space-time in the intersec-
tion [5]. They assume that computer programs called driver
agents control the vehicles, while an arbiter agent called
an intersection manager is placed at each intersection. The
driver agents attempt to reserve a block of space-time in
the intersection. The intersection manager decides whether
to grant or reject requested reservations according to an
intersection control policy. In brief, the paradigm proceeds
as follows.
• An approaching vehicle announces its impending arrival

to the intersection manager. The vehicle indicates its size,
predicted arrival time, velocity, acceleration, and arrival
and departure lanes.
• The intersection manager simulates the vehicle’s path

through the intersection, checking for conflicts with the
paths of any previously processed vehicles.
• If there are no conflicts, the intersection manager issues a

reservation. It then becomes the vehicle’s responsibility to
arrive at, and travel through, the intersection as specified.
• The car may only enter the intersection once it has

successfully obtained a reservation.
Fig. 1 diagrams the interaction between driver agents and

an intersection manager. A key feature of this paradigm is
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that it relies only on vehicle-to-infrastructure (V2I) commu-
nication.1 In particular, the vehicles need not know anything
about each other beyond what is needed for local autonomous
control (e.g., to avoid running into the car in front). The
paradigm is also completely robust to communication dis-
ruptions: if a message is dropped, either by the intersection
manager or by the vehicle, delays may increase, but safety is
not compromised. Safety can also be guaranteed in scenarios
when both autonomous and human driven vehicles operate at
intersections. The intersection efficiency increases with the
ratio of autonomous vehicles to human driven vehicles in
such scenarios.

Fig. 1. Diagram of the intersection system.

The prototype intersection control policy divides the in-
tersection into a grid of reservation tiles, as shown in Fig. 2.
When a vehicle approaches the intersection, the intersection
manager uses the data in the reservation request regarding
the time and velocity of arrival, vehicle size, etc. to simulate
the intended journey across the intersection. At this stage
the intersection manager also introduces safety buffers that
further ensure a safe traversal of the intersection. AIM
currently consists of three buffer types: 1) the Static Buffer
represents a constant sized buffer around the vehicle, for
example 0.5m for GPS error; 2) the Internal Time Buffer
adds a buffer in the direction of travel that extends for x
seconds, thus allowing a vehicle to arrive x seconds early or
late; and 3) the Edge Time Buffer creates a gap of x seconds
at the edge of the intersection, thus preventing vehicles from
exiting too close to the previous vehicle. At each simulated
time step, the policy determines which reservation tiles will
be occupied by the vehicle (including safety buffers).

(a) Successful (b) Rejected

Fig. 2. (a) The vehicle’s space-time request has no conflicts at time t. (b)
The black vehicle’s request is rejected because at time t of its simulated
trajectory, the vehicle requires a tile already reserved by another vehicle.
The shaded area represents the static buffer of the vehicle.

1A V2V version with no infrastructure has been developed for low-traffic
intersections [5].

If at any time during the trajectory simulation the request-
ing vehicle occupies a reservation tile that is already reserved
by another vehicle, the policy rejects the driver’s reservation
request, and the intersection manager communicates this to
the driver agent. Otherwise, the policy accepts the reservation
and reserves the appropriate tiles. The intersection manager
then sends a confirmation to the driver. If the reservation is
denied, it is the vehicle’s responsibility to maintain a speed
such that it can stop before the intersection. Meanwhile, it
can request a different reservation.

Empirical results in simulation demonstrate that the pro-
posed reservation system can dramatically improve the inter-
section efficiency when compared to traditional intersection
control mechanisms. To quantify efficiency, Dresner and
Stone introduce delay, defined as the amount of travel time
incurred by the vehicle as the result of passing through the
intersection. According to their experiments, the reservation
system performs very well, nearly matching the performance
of the optimal policy which represents a lower bound on de-
lay should there be no other cars on the road (Fig. 14 in [5]).
Overall, by allowing for much finer-grained coordination, the
simulation-based reservation system can dramatically reduce
per-car delay by two orders of magnitude in comparison to
traffic signals and stop signs.

III. REALITY CHECK: AIM IN PRACTICE

Simulations inevitably approximate critical aspects of re-
ality. Real vehicles may not be as precisely controllable as
the vehicles in simulations, nor may GPS provide as reliable
location estimates. In this section, we introduce the concept
of mixed reality simulation that enables the testing of a
single real autonomous vehicle as it interacts with many
virtual ones. Thus we dramatically reduce the cost and risk
of testing, while still grounding the system in reality.

A. Mixed Reality Platform

Our mixed reality platform is built on top of Marvin—our
autonomous vehicle [6] (Fig. 3(a))—and the AIM simulator
(Fig. 3(b)). The key aspect is the addition of proxy vehicles
to the AIM software. Each proxy vehicle acts as a gateway
between a real autonomous vehicle, such as Marvin, and the
simulated environment.

(a) Marvin (b) The AIM simulator

Fig. 3. The full sized autonomous vehicle and the AIM simulator in our
mixed reality platform. The green rectangle in the middle of the intersection
is a proxy vehicle representing the real world location of the autonomous
vehicle. The white rectangles are virtual vehicles with reservations, while
the yellow rectangles are virtual vehicles without reservations.
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From the viewpoint of the intersection manager, the proxy
vehicle is identical to other virtual vehicles; the driver agent
on Marvin communicates with the intersection manager by
sending and receiving AIM messages via UDP. The motion
of the proxy vehicle, however, is controlled by Marvin, which
regularly updates the location, the direction, and the velocity
of the proxy vehicle via UDP packets containing the real-
time GPS information of the actual vehicle.

In our setup, we ran the AIM simulator adjacent to the
driver agent of Marvin on a computer located in Marvin. At
the beginning, the simulator generated potentially more than
100 virtual vehicles to create steady traffic in the simulated
world. Then the driver agent connected to the simulator and
the simulator created a proxy vehicle whose physical state
(the position, the direction, etc) was the same as Marvin’s.
As described above, the proxy vehicle interacted with other
virtual vehicles on behalf of Marvin. As Marvin approached
an intersection (and thus so did the proxy vehicle on the
simulator’s map), the driver agent sent a request message
over a specified UDP port to the proxy vehicle, which
then forwarded the message to the intersection manager in
the simulator. The intersection manager either accepted or
rejected the reservation request based on the virtual traffic
at the intersection. Once a reservation was granted, the
proxy vehicle forwarded the confirm message to Marvin, and
Marvin progressed through the intersection in both the real-
world and the simulated world accordingly. An example of
this experiment can be seen in the accompanying video.

B. Adjusting Simulation Parameters

The purpose of the mixed reality platform is to 1) test the
performance of AIM with real autonomous vehicles in real
world settings, and 2) identify aspects of the simulation that
failed to capture the true behavior of the real autonomous
vehicle. In this section, we present our findings and discuss
how we adjusted the simulation parameters to compensate
for the modeling errors for safe traversal in intersections.

Our tests were undertaken on a road with a legal speed
limit of 20 mph (8.94 m/s), for the safety of others the
maximum speed (Max Speed) of both Marvin and the virtual
vehicles were set to 7.5 m/s. The AIM simulator requires us
to define the operating characteristics of Marvin such as its
size and its maximum acceleration in order to compute its
trajectory in the intersection. Although Marvin is technically
capable of accelerating at 2.5 m/s2, the acceleration in
practice rarely exceeds 0.5 m/s2 due to driver discomfort
and the controller’s safety measures. Similarly, Marvin may
drift marginally below the speed limit for safety reasons and
to facilitate smoother braking when approaching a stop.

Apart from the operating characteristics of Marvin, we
need to choose the values for three additional parameters:
Static Buffer Size, Internal Time Buffer and Edge Time Buffer.
These parameters are used in AIM to factor in the GPS
errors and the vehicle controller’s errors due to sensor noise
and road conditions. We find that the default values of these
parameters (0.25, 0.0 and 0.5, respectively) in the simulator
are too small for Marvin since the errors in the real world

are much larger than the errors in simulation. Therefore, we
needed to figure out how large the buffer sizes should be
such that Marvin can stay inside the buffer during its entire
traversal. After a series of empirical test, we settled on the
following numbers: Static Buffer Size = 1 m, Internal Time
Buffer = 2 seconds and Edge Time Buffer = 4 seconds.

To better understand the impact of the parameter modifi-
cations, we ran simulations to measure the average delay
across a range of traffic densities. In Fig. 4, the green
dots (2nd line from the bottom) are the data points for the
default parameters: Max Speed = 25 m/s, Max Acceleration
= 4 m/s2, Static Buffer Size= 0.25 m, Internal Time Buffer
= 0 s, and Edge Time Buffer = 0.5 s. The red dots (highest
line) are the data points for the modified parameters: Max
Speed = 7.5 m/s, Max Acceleration = 0.5 m/s2, Static Buffer
Size= 1 m, Internal Time Buffer = 2 s, and Edge Time Buffer
= 4 s. As expected, either having a more conservative esti-
mation of vehicles’ speed limit and maximum acceleration
or increasing any buffer sizes indeed increase the average
delay of a vehicle. When the traffic rate is larger than 200
vehicles per hour per lane, traffic congestion occurs and the
average delay increases tremendously.

Fig. 4. The effect of modifying simulation parameters. The green dots (2nd
line from bottom) are the data points collected using the default simulation
parameters that are used in previous studies. The red data points (top line)
are generated using the parameters required by Marvin to safely traverse the
intersection according to our empirical test in the mixed reality platform. The
other data points demonstrate the effect of substituting the default parameters
with the required parameters one at a time. For example, ’Reduced Max
Acceleration’ (2nd line from top) uses all parameters in previous studies
except Max Acceleration, which is changed from 4.0 m/s2 to 0.5 m/s2.

IV. COMPENSATING FOR LARGE BUFFERS

The primary approach for coping with any noise present
in the vehicle’s system that can cause a significant level
of uncertainty and result in position and velocity errors is
to increase the buffer sizes so that vehicles do not collide
even when they deviate from their expected paths. However,
increasing the buffer sizes also decreases the throughput of
the intersection, and may cause traffic congestion. In this
section we present two techniques to increase the throughput
of an intersection and compensate for the effects of large
buffer sizes.
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A. Static Buffer Sizes vs. Throughput

To understand how the buffer size affects the maximum
throughput characteristics of intersections, we borrow some
tools from queueing theory. An important result in queueing
theory is Little’s Law [7], which states that in a queueing
system the average arrival rate of customers, λ , is equal to
the average number of customers, T , in the system divided
by the average time, W , a customer spends in the system. In
the context of intersection management, Little’s Law can be
written as L = λW , where
• L is the average number of vehicles in the intersection;
• λ is the average arrival rate of the vehicles at the

intersection; and
• W is the average time a vehicle spends in the intersection.

Note that the arrival rate is equal to the throughput of the
system since no vehicle stalls inside an intersection.

Little’s Law shows that the maximum throughput (i.e., the
upper bound of λ ) an intersection can sustain is equal to the
upper bound of L divided by the lower bound of W , where
the upper bound of L is the maximum number of vehicles
that can coexist in an intersection, and the lower bound of
W is the minimum time a vehicle spends in the intersection.
Thus, Little’s Law shows that there are two ways to increase
the maximum throughput: 1) increase the average number
of vehicles in an intersection at any moment of time, and 2)
decrease the average time a vehicle spends in an intersection.

A trivial upper bound on L is the area of the intersection
divided by the average static buffer size of the vehicles.
But this bound is rather loose and in practice unachievable.
Nonetheless, it provides us some hints about the dependence
between the maximum throughput and the average static
buffer size of the vehicles. In general, an increase in static
buffer size has two effects: 1) the maximum number of
vehicles in each trajectory will decrease; and 2) the number
of nonintersecting trajectories decreases, since a large static
buffer effectively increases the width of the trajectories,
causing trajectories to overlap one another. In both cases,
the average number of vehicles decreases as the static buffer
size increases. According to Little’s Law, this can reduce
the throughput of an intersection. To see whether it is the
case, we ran an experiment using our traffic simulator with
an implementation of FCFS. In the experiment, we set the
traffic level of each lane to 576 vehicles per hour, the speed
limit of the roads to 25 m/s, the maximum acceleration of the
vehicles to 4 m/s2, the internal time buffer to zero seconds
and the edge time buffer to 0.25 s. We then varied the size
of the static buffers between 0 and 6 meters to observe how
it affects the average delay and the throughput. Fig. 5 shows
the result of these experiments. From this figure, we can see
that the average delay of a vehicle does increase as the static
buffer size increases. Interestingly, when the static buffer size
is larger than 2 meters, the average delay suddenly increases
by a factor of two. This transition point is due to the fact
that a static buffer larger than 2 meters causes the width
of trajectories to be larger than the width of a lane, and
this reduces the number of the nonintersecting trajectories by

approximately half. In general, the average delay increases
linearly with the static buffer size, except at this transition
point. The throughput (i.e., the arrival rate of the vehicles
at the intersection), however, decreases moderately, because
most of the vehicles eventually enter the intersection even
though they have longer delays.

Fig. 5. Static buffer size versus average delay and arrival rate.

B. Reducing Traversal Time by Increasing Acceleration

We have shown that the static buffer size has a great impact
on the average delay and the throughput of an intersection.
But the size of an intersection is a hard limit and the static
buffer sizes must reflect the vehicle’s precision of control—
there is little an intersection manager can do to squeeze more
vehicles into the intersection.

Fortunately, Little’s Law shows that there is another way
to increase the throughput—reducing the average time a
vehicle takes to traverse an intersection. In other words, a
vehicle should maintain a high speed during the traversal
of an intersection in order to shorten its traversal time.
A vehicle’s velocity in an intersection depends on two
factors: 1) the initial velocity when the vehicle enters the
intersection, and 2) the acceleration during the traversal. In
this section, we will examine how the acceleration of vehicles
in an intersection can affect the intersection’s throughput. In
Section IV-C, we will present a technique to prevent vehicles
from stopping before the intersection such that vehicles can
enter the intersection at a higher initial velocity.

We conducted an experiment using our simulator to see
the change in average delay and throughput as the maximum
acceleration of the vehicle increases. In the experiment, we
again set the traffic level of each lane to 576 vehicles per
hour, the speed limit of the roads to 25 m/s, the static
buffer size to 0.25 m, the internal time buffer to zero
seconds and the edge time buffer to 0.25 s. The maximum
acceleration of the vehicles is then varied from 0 to 6 m/s2,
with the results shown in Fig. 6. We can see that as the
maximum acceleration increases the average delay drops to
zero quickly and the throughput increases to a level that is
identical to the incoming traffic level. To explain why it is
the case, let us consider the relationship between the lower
bound of the traversal time and the maximum acceleration.
Let v0 be the arrival (initial) velocity of the vehicle when
it enters an intersection, d be the length of its trajectory
in the intersection, v1 be the velocity when the vehicle
leaves the intersection, W be the time the vehicle spends
in the intersection, and a be the acceleration, assuming that
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the vehicle accelerates at a constant rate during the entire
traversal. If v0 is almost equal to the maximum velocity of
the vehicle and the speed limit of the road, the acceleration
has little effect on the traversal time W ; otherwise, we have
W =

√
v2

0+2ad−v0
a by solving the following two equations:

v1 = v0 +aW and d =W (v1 +v0)/2. If v0 is 0, then W =
√

2d√
a ,

and the throughput λ , which is inversely proportional to W ,
is proportional to

√
a. If v0 is not zero, we can check that

λ is approximately proportional to
√

a. This explains the
shape of the line in Fig. 6(b). If the traffic level is smaller
than the maximum throughput an intersection can sustain,
almost all vehicles can pass through the intersection without
stopping, and this is indeed the case when the maximum
acceleration is larger than 2 m/s2 in Fig. 6(a). In short, the
maximum throughput is approximately proportional to the
square root of the maximum acceleration of vehicles, and we
can increase the throughput by increasing the acceleration.

Fig. 6. Maximum acceleration versus average delay and arrival rate.

C. Preventing Vehicles from Canceling their Reservations

One of the keys to entering an intersection at a high speed
is to not stop before the intersection. FCFS, by itself, reduces
the number of vehicles that stop at an intersection, which is
one of the main reasons FCFS is more efficient than traffic
signals and stop signs [5]. While FCFS has done a good job
in this regard, there is still room for improvement on the
autonomous vehicles’ side: the driver agents can also help
prevent themselves from stopping before an intersection by
requesting reservations that they can keep.

There are two scenarios in which a vehicle has to stop
before an intersection in FCFS. First, the vehicle cannot
obtain a reservation from the intersection manager and is
forced to stop before an intersection. This happens when
the traffic level is heavy and most of the future reservation
tiles have been reserved by other vehicles in the system.
Second, the vehicle successfully obtains a reservation but
later determines that it will not arrive at the intersection at
the time and/or velocity specified in the reservation. In this
scenario the vehicle has to cancel the reservation and those
reservation tiles may be wasted if they cannot be reassigned.

Poor estimation of arrival times and arrival velocities can
lead to the cancellation of reservations. In previous work, the
estimation of arrival times and arrival velocities is based on
a heuristic we called the optimistic/pessimistic heuristic, that
derives the arrival time and arrival velocity based on a predic-
tion about whether the vehicle can arrive at the intersection

without the intervention of other vehicles [8]. However, this
heuristic does not guarantee that the vehicle can arrive at
the intersection at the estimated arrival time or the estimated
arrival velocity; in fact, our experiments showed that vehicles
were often unable to reach the intersection at the correct
time, forcing them to cancel their reservations after holding
the reservations for quite some time.

To avoid this problem we propose a new approach to esti-
mating the arrival time and arrival velocity. In our approach
when a driver agent estimates its arrival time and arrival ve-
locity, it also generates a sequence of control signals. These
control signals, if followed correctly, ensure that the vehicle
will arrive at the estimated arrival time and at the estimated
arrival velocity. We formulate this estimation problem as the
following multiobjective optimization problem: among all
possible sequences of control signals that would allow the
vehicle to enter an intersection, find one such that the arrival
time is the smallest and the arrival velocity is the largest.

For an acceleration-based controller, the sequence of con-
trol signals is a time sequence of accelerations stating the
acceleration the vehicle should take at every time step.
We call a time sequence of accelerations an acceleration
schedule. Like many multiobjective optimization problems,
there is no single solution that dominates all other solutions
in terms of both arrival time and arrival velocity. Here we
choose arrival velocity as the primary objective, based on
the analysis in Section IV-B. Our optimization procedure
involves two steps: first, determine the highest possible
arrival velocity the vehicle can achieve, and second, among
all the acceleration schedules that yield the highest possible
arrival velocity, find the one whose arrival time is the earliest.

We illustrate how the estimation procedure works using a
time-velocity diagram as shown in Fig. 7. In this figure, v1 is
the current velocity of the vehicle, t1 is the current time, D
is the distance between the current position of the vehicle
and the intersection, vmax is the speed limit of the road,
and vmax

2 is the speed limit of the trajectory for the vehicle
to safely traverse the intersection. Note that vmax

2 is usually
significantly smaller than vmax for turning trajectories so as to
limit the centripetal force on the passengers. In addition, we
define amax and amin to be the maximum acceleration and the
maximum deceleration (minimum acceleration), respectively.
We can see that any function v(·) in the time-velocity
diagram that satisfies the following five constraints is a
feasible velocity schedule for velocity-based controllers.

1) v(t1) = v1;
2)

∫ tend
t1 v(t)dt = D, where tend is the arrival time (i.e., the

distance traveled must be D);
3) v(tend) ≤ vmax

2 (i.e., the arrival velocity cannot exceed
the speed limit of the trajectory);

4) 0≤ v(t)≤ vmax for t1 ≤ t ≤ tend (i.e., the velocity cannot
exceed the speed limit of the road or be negative at any
point in time); and

5) amin ≤ d
dt v(t)≤ amax for 0≤ t ≤ tend (i.e., the accelera-

tion at any point in time must be within the limitations).
We call v(·) a velocity schedule, which can be directly used
by a velocity-based controller. A velocity schedule is feasible
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if it satisfies the above constraints. Our objective is to find a
feasible velocity schedule v(·) such that v(tend) is as high as
possible while tend is as small as possible. For acceleration-
based controllers, we can compute the corresponding feasible
acceleration schedule by the derivative of v(·) (i.e., d

dt v(t)).

(a) Case 1: Area1 +Area3 ≤ D (b) Case 2: Area1 +Area3 > D

Fig. 7. The time-velocity diagrams for the estimation of the arrival time
and the arrival velocity.

We propose an optimization procedure to find v(·) with
the highest possible v(tend) and smallest tend . First, compute
the area of two trapezoids Area1 and Area3 as shown in
Fig. 7(a). To compute Area1, find a point (t2,vmax) such
that (t2,vmax) is an interception of the line extending from
(t1,v1) with slope amax and the horizontal line v = vmax. We
compute Area3 by choosing an arrival time t ′end and then find
an intercepting point (t ′3,v

max) between the line v = vmax and
the line passing through the point (t ′end ,v

max
2 ) with slope amin.

If Area1 + Area3 ≤ D, the vehicle can accelerate to vmax,
maintain that speed for a certain period of time, then de-
celerate to vmax

2 , and finally reach the intersection (Case
1 in Fig. 7). Then Area2 = D − Area1 − Area3 is non-
negative. Let d be Area2

vmax . Then we can determine the actual
value of t ′3 and t ′end by t3 = t2 + d and tend = t3 + 2×Area3

vmax+vmax
2

.
From this the optimization procedure can find a piecewise
linear function for v(·) such that v(·) is a feasible velocity
schedule. The optimization procedure returns the acceleration
schedule 〈(t1,amax),(t2,0),(t3,amin)〉. If Area1 + Area3 > D,
the vehicle cannot accelerate to vmax because D is too small.
But the vehicle can still accelerate to a velocity vtop that is
less than the speed limit vmax and immediately decelerate to
vmax

2 if vtop exists (Case 2 in Fig. 7). However, if vtop does not
exist and v1 > vmax

2 , there is no feasible acceleration schedule
since the vehicle is too close to the intersection.

We implemented the procedure and conducted an exper-
iment to compare FCFS with traffic signals and stop signs
using the realistic set of simulation parameters presented in
Section III-B. Fig. 8 shows that even though the large buffer
sizes and conservative vehicle parameters heavily reduce
FCFS’s performance, FCFS still does better than traffic
signals and four-way stop signs.

V. SUMMARY AND CONCLUSION

In this paper we evaluated the AIM system in a mixed
reality scenario, identified assumptions in the simulation that
need relaxing, and determined FCFS parameters that enable
an autonomous vehicle to safely traverse an intersection.

Fig. 8. Comparison of FCFS with traffic signals and four-way stop signs,
using the larger buffer sizes and conservative vehicle parameters.

We explicated the relationship between buffer size and the
throughput of an intersection via Little’s Law, and proposed
that increasing the vehicles acceleration and improving the
accuracy of the estimation for the arrival time and arrival
velocity will help throughput of the intersection. These find-
ings allowed us to implement specific improvements to our
autonomous vehicle with the result of achieving better, and
fully realistic, FCFS performance. This research represents a
vital step towards the longterm goal of validating and testing
the AIM system with multiple fully autonomous cars in a
dense urban setting.
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