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Abstract— This paper discusses the use of a cooperative
multiple robot system as applied to distributed tracking and
sampling of a boundary edge. Within this system the boundary
edge is partitioned into subsegments, each allocated to a
particular robot such that workload is balanced across the
robots. Also, to minimize the time between sampling local areas
of the boundary edge, it may be desirable to minimize the
difference between each robots progression (i.e. phase) along
its allocated sub segment of the edge. The paper introduces
a new distributed controller that handles both workload and
phase balancing. Simulation results are used to illustrate the
effectiveness of the controller in an Autonomous Underwater
Vehicle (AUV) under ice edge sampling application. Successful
results from experimentation with three iRobot Creates are also
presented.

I. INTRODUCTION
Robots are increasingly being used to perform a large

variety of tasks. Commercial applications give robots the
ability to assist the disabled, clean homes, and aid in the
manufacturing and processing of products. Military applica-
tions give robots additional purpose. They can scour fields
for mines, search for snipers in urban combat environments,
and even maintain full battlefield awareness for soldiers.
They also have great potential in scientific exploration.
They have the capability to withstand harsh and unforgiving
environments thereby giving them the ability to perform tasks
humans cannot perform.

In single robot systems, there is a higher likelihood of
mission failure. If the single robot fails, the mission fails.
Further, a single robot can only cover so much area in a
given time frame. Multi-robot systems typically do not suffer
from such possibility of a single point failure. Multi-robot
systems also allow for accomplishing tasks of larger size and
complexity when compared with single robot systems.

This paper concerns the task of tracking and sampling the
(possibly dynamic) boundary of some entity with multiple
robots. This is useful for scientific, military, and even com-
mercial applications. For example, boundary tracking can
be used to track a crowd of people, survey an oil spill, or
detect the edge of a harmful algae bloom with Autonomous
Underwater Vehicles (AUVs).
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Fig. 1. A candidate coordinate system for distributed control of multiple
robots on a boundary edge. In this example, multiple AUVs are distributed
along an edge of ice rafts.

A goal of this research is to design a distributed controller
in which multiple robots track and follow a continuous
boundary edge, while balancing both the phase and work-
load between vehicles. Controlling the workload will allow
the coverage along the boundary to be partitioned equally
between the multiple robots. Meanwhile, the phase controller
will ensure the robots are at the same location within their
partition of the boundary. The robots are assumed to have
nonholonomic kinematic constraints and have maximum
velocity constraints.

In Section II, a background of multiple robot systems and
boundary tracking is discussed. Section III defines specifics
of the problem at hand. Section IV is an overview of the
controller method used for the cooperative multiple robot
system. In Section V, simulation and real world experi-
mentation implementation and results are discussed. Finally,
Section VI gives a conclusion of the information discussed
in this paper as well as future work on the topic.

II. BACKGROUND

Several traditional robot navigation strategies have been
applied to boundary tracking. To follow boundaries while
avoiding obstacles, work in [1] used Artificial Potential
Fields. Potential field systems can be used to guide a robot
toward a target while avoiding obstacles. Though there is a
risk of becoming caught in a local minima, measures can be
made to reduce the risk.

Work in [7] describes a method of implementing a global
path planner with local sensor data. Instant goals are used to
set the path that the robot will follow along with a boundary
following algorithm to maintain global boundary following
and prevent local minima due to obstacles. This method may
detract a robot from observing important elements during
observation as an attempt to follow around obstacles.
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In [3], the distance of the robot from a discovered bound-
ary becomes minimized as it moves back and forth across
a boundary. Multiple robots are used to collect and analyze
information to follow the boundary closely in a convoy. The
research in [3] did result in false positives due to noisy sensor
readings. The focus of this paper was to make all robots
traverse the entire area getting as close to the boundary as
possible. Another method for coordinating the robots would
be to divide the boundary area to be covered.

In [2], a collaborative path planning algorithm assigns one
robot as a coordinator and all of the robots comprise a team.
The coordinator guides the other robots toward a target. The
follower robots are designed to follow the coordinator robot
in order to give additional sensing of the environment to the
follower robot. Making a single robot the coordinator can
lend itself to issues caused by a single robots failure.

To fully cover an unknown area, simplices can partition
a 2D region to be covered by multiple robots [6]. The
simplices give a path that robots can take to cover the
entire unknown area. The path created does not take into
account spatiotemporal sampling needs. Further, partitioning
the area into separate paths for multiple robots to follow
could improve efficiency.

Using an auction system [5], robots are able to travel to
all task points faster than just alternating the assignment
of points. Though this motion planner can be utilized to
patrol a boundary area, localized dynamic events may be
missed when performing scientific missions requiring such
observation.

The UUV-gas algorithm [8] can be used to perform
boundary tracking comprised of circular motion. The focus
of this multiple vehicle cooperative tracking is to prevent
vehicle collision while having each vehicle following the
same boundary. The circular motion in this algorithm is
designed to allow the robot to travel only a set distance
within the boundary region and outside the boundary region.
Using circular motion only could prevent necessary coverage
within the boundary region dependent on the application.

In [4], phase balancing is used to maintain distance
between a fleet of AUV gliders along a set path. Similar
phase balancing can be used for spatio-temporal sampling.
This system has all robots covering the entire boundary
edge, causing overlap of the same location multiple times.
If this is combined with workload balancing, the multi-robot
system can efficiently partition the coverage of a boundary
area along with improving spatio-temporal sampling of the
boundary edge.

III. PROBLEM DEFINITION

Consider a continuous edge segment E defined by two end
points s0 and sn defined within a coordinate frame where the
SG axis that follows the edge. The problem is to partition
E into n sub-segments, each of which is allocated to one
of n robots that must track the sub-segment. Hence, the ith

robot is designated to sample an interval ∆si = si+1 − si
along the boundary edge between si and si+1. The n sub-
segments may be of different lengths corresponding to the

workload associated with each. That is, it may desirable for
some robots to have shorter sub-segments (or vice-versa) if
the application requires slower tracking and hence slower
progression along the edge. The boundary edge itself must
be crossed to be detected. (e.g. detecting the edge of an oil
spill with an AUV may require the AUV to fly into and out
of the oil).

To permit repeated sampling measurements over time, the
ith robot will travel from si to si+1, and back to si. This
motion will constitute one cycle, where the location of the
robot within this cycle is referred to as the phase φi and
is measured in radians. The robot’s phase φi relates to the
position srob,i along the SG axis by:

φi =

{
π
srob,i−si

∆si
if ṡrob,i > 0

π
si+1−srob,i

∆si
+ π else

}
(1)

In tracking E, it is desirable to balance both Workload
and Phase.

A. Workload

In this paper, the workload is defined as the area covered
by the robot as it traverses the edge. This area will be a
function of the distance the robot travels perpendicular to
the boundary edge. For example, consider an AUV traversing
further under an ice sheet in response to the presence of ice
algae growth. Sampling and observing such algae is impor-
tant to biologists wishing to study the Arctic ecosystem and
the effects of global climate change on such ice ecosystems.

Hence, to balance the workload, the error to minimize is
the difference between each robot’s area covered Ψi:

eΨ,i = Ψi+1 − Ψi

=
∫ si+2

si+1
ddes(s)ds−

∫ si+1

si
ddes(s)ds

≈ da,i+1∆si+1 − da,i∆si

(2)

In eq. 2, the area covered by a robot is approximated as
a rectangle and calculated as the product of average depth
da,i and ∆si. While the ddes is a function of the robot
position srob,i along the edge, the boundary values si can
be controlled by the robot itself.

B. Phase

The second goal of this controller is to the improve the
spatio-temporal sampling by minimizing the phase difference
between AUVs. This will reduce the likelihood of missing
a localized dynamic event. For example, security robots
surveying a fenceline should stay in phase to limit the size
of the gap between robots created when they move apart.
The associated error to be minimized is:

eφ,i = φi+1 − φi (3)
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IV. CONTROLLER DESIGN

Since the boundary values si can be controlled by the
robots themselves, consider the dynamics of the boundary
values to be modeled as in eq. 4, with a proposed control
input Us,t in eq. 6.

St+1 = St + Us,t (4)

where

St = [s0 s1 ... sn]t (5)

Us,t = (0 Kses,0 ... Kses,n−2 0)
T (6)

To understand the error dynamics, consider a three AUV
system in which n = 3. Considering eigen values of the
transition matrix in eq. 7, the error dynamics can be proven
stable for Ks > 0.

Es,t+1

=

(
es,0
es,1

)
t+1

=

(
da,0 −da,0 − da,1 da,1 0

0 da,1 −da,1 − da,2 da,2

)
St+1

=

(
1 − (da,0 + da,1)Ks da,1Ks

da,1Ks 1 − (da,1 + da,2)Ks

)
Es,t

(7)
While the controller operates using proportional feedback

to control boundary coverage (workload balance), a feedback
linearization controller is used for robot location (phase
balance). The following phase dynamics were used:

Φt+1 = Φt + δΦs,i,t + Uφ,t (8)

where

Φt = [φ0 φ1 ... φn−1]t (9)

As shown in eq 10, the proposed control input UΦ,t for
the tth time step consists of several terms, the first of which
incorporates the desired phase velocity φ̇des at which all
robot’s should maintain, once steady state is reached. Adding
the second term −δφs,i implements feedback linearization to
counter the change in phase caused by workload balancing,
(i.e. change in si. The final term Kφeφ,i−Kφeφ,i−1 is used
to minimize phase error.

Uφ,t =


φ̇des∆t− δφs,0 +Kφeφ,0
φ̇des∆t− δφs,1 +Kφeφ,1 −Kφeφ,0
...

φ̇des∆t− δφs,n−2 +Kφeφ,n−2 −Kφeφ,n−3

φ̇des∆t− δφs,n−1 −Kφeφ,n−2


t

(10)
where

δφs,i =
srob,i,t−1 − si,t

∆i,t
− srob,i,t−1 − si,t−1

∆i,t−1
(11)

The resulting error dynamics are shown below. For clarity,
and without losing generalization, only the case with n = 3
is shown. This system is guaranteed stable if eigen values of
the transition matrix are less than 1, requiring the stability
condition Kφ < 2/3.

EΦ,t+1

=

(
eφ,0
eφ,1

)
t+1

=

(
−1 1 0

0 −1 1

)
Φt+1

=

(
1 − 2Kφ Kφ

Kφ 1 − 2Kφ

)
EΦ,t

(12)

While the phase cannot be controlled directly, it can
be controlled indirectly through the robot’s forward and
rotational velocities. For example, inputting the controller
into equation 8 can yield a desired phase. This phase can
be tracked using a linear velocity controller in which the
difference between the desired phase and the actual phase of
the vehicle are minimized (13).

vi = Kv(φdes,i − φi) (13)

As expected, the Kv term is the proportional control gain.

V. RESULTS

The distributed control system was implemented within
MATLAB, and tested with a MATLAB simulator function
as well as with actual robots (i.e. iRobot Creates). In both
cases, experiments were designed to represent a system of
multiple Autonomous Underwater Vehicles (AUVs) tracking
and sampling the underside of an ice raft edge, where ice
algae commonly grows.

To traverse the boundary edge, each robot uses a repeated
series of motions that result in a lawnmower pattern that
follows the edge. This series of motions includes 1) the
robot moving forward until detecting the entering ice edge
using upward facing range sensors, 2) driving forward under
the ice as long as the presence of algae is still detected,
3) completing a 180 degree turn along a circular arc, 4)
driving forward until leaving the ice edge is detected, and
5) completing another 180 degree turn along a circular arc.
Throughout these motions, each robot adjusts its forward and
rotational velocity to track a desired phase (see equation 13).
To note, if the robot has reached the limit of the edge segment
defined by si and si+1, it will change its boundary edge
traversal direction.

A. Simulator Implementation

Three different scenarios were simulated, each with a dif-
ferent algae population. The first scenario used has no algae.
In this scenario, each robot will travel an equal distance
underneath the ice and return out. Here the boundaries should
remain equal and all robots should remain in phase. Figure 2a
shows the simulated environment. The white area represents
the ice and the blue area is the water surrounding the ice
raft.
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The next scenario has a large amount of algae across half
of the ice raft, and no algae across the other half. For this
simulation, one robot will be completely submerged in the
algae-side as well as half of another robot’s boundary. The
last robot will only have the axis to patrol. In this case, the
boundaries along the patrolling axis should be significantly
shorter for one robot, longer for the second robot, and longest
for the robot without algae to observe. The algae in (Fig. 2b)
is illustrated by the green areas.

Finally, the third scenario involves algae growing to ran-
dom lengths from the ice edge, (Fig. 2c). To test the phase
balancing aspect of this experiment, the robots were first
placed in phase with one another. Then, the next three test
cases involved initially placing one of the robots 72 degrees
out of phase from the other robots. The goal is then for the
robots to return to a state of equilibrium with each other
while balancing the workload between them.

B. Simulator Results

In the first simulated test scenario, the three robots were
initially in phase with each other and followed the boundary
of a simulated ice edge with no algae. In Fig. 3, the error in
phase and workload is illustrated. In order to compare this
nominal error, the actual phase of each robot is displayed in
the figure.

It can be seen in Fig. 3 that the phase remains constantly
tracked. Also, the workload does adjust slightly and the error
approaches zero.

The other simulations gave similar results. The steady state
error for the phase can be found in Table I. The steady state
error differs between scenarios, but it always decreases over
time. This method lends itself to a worst case average of
4.1% steady state error.

TABLE I
PHASE STEADY STATE ERROR (radians)

All Robots Robot 1 Robot 2 Robot 3
Ice Initially Initially Initially Initially
Edge In Out of Out of Out of

Phase Phase Phase Phase
No Algae 0.073 0.093 0.073 0.073
Half Algae 0.169 0.189 0.206 0.207
Random Algae 0.222 0.240 0.257 0.238

The steady state error for the workload is in Table II. The
steady state error does not increase significantly between no
algae and half algae scenarios. However, the random algae
scenario shows a significant increase compared to the other
scenarios. Despite this increase, steady state error is limited
to only 0.4% of the total area covered by algae (10 m2).

C. Robot Implementation

Real-world testing is vital to observe the ability of actual
robots to carry out the desired task. Three iRobot Create
robots were used to test the functionality of the multiple
robot system. These robots use an upward facing infrared
sensor (with scalar output) to determine the presence of
an ”ice raft. Actual AUVs have acoustic range sensors that

(a)

(b)

(c)

Fig. 2. The Simulator GUI: A top down view of three robots (circles)
navigating water (light blue) and under ice (white). Asterisks (blue) indicate
edge detections, squares (pink) indicate edge end points, and plus marks
(red) indicate current desired locations of robots. Horizontal dashed lines
indicate each robot’s sub-segment end points. The algae (green) covers part
of the under ice edge in some scenarios. In (a), there is no algae on ice
edge. In (b), algae is covering half of ice edge. Scenario simulation (c) has
a random coverage of algae.
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(a)

(b)

Fig. 3. Simulation results for the case with no algae under the ice and
the three robots starting in phase. The phase error is plotted in (a) and the
workload error is plotted in (b).

TABLE II
WORKLOAD STEADY STATE ERROR (m2)

All Robots Robot 1 Robot 2 Robot 3
Ice Initially Initially Initially Initially
Edge In Out of Out of Out of

Phase Phase Phase Phase
No Algae 0.010 0.013 0.015 0.012
Half Algae 0.015 0.015 0.016 0.019
Random Algae 0.037 0.036 0.043 0.043

can detect the presence of ice above in a similar fashion.
The ice is simulated using foam boards hanging above the
ground. Due to laboratory space constraints, it was not
possible to simulate the algae underneath the ice edge for
actual robot implementation. Despite the lack of simulated
algae, workload balancing can still be seen in the robot
implementation due to errors from robot localization.

The Create robots utilize the same MATLAB controller
application as the simulator. The robots communicate with
a computer running the MATLAB program via bluetooth
wireless communication. The robots receive wheel velocities
from the computer and return odometry and IR measure-

Fig. 4. The hardware setup: Three iRobot Creates navigated underneath
an overhanging foam block used to simulate an ice raft.

ments. The main computer may act as a centralized system,
however, the program architecture is decentralized.

The robots are initially placed 1m from the foam board’s
edge, and are aligned with each other at varying distances
parallel to the SG axis. Four different experiments were
performed utilizing the same algae populations as in simula-
tions. The first experiment begins with robots first reaching
the foam’s edge in phase with each other. The next experi-
ment is initialized with the first robot 72 degrees out of phase
with the other two robots. Another experiment begins with
the middle robot 72 degrees out of phase with the other two
robots. The final experiment sets the third robot 72 degrees
out of phase with the other two robots. The results from this
data should illustrate that the robots can recover from being
out of phase quickly while sampling the underside of the
overhanging foam block and evenly disperse the workload
between them.

D. Experimental Results

Three iRobot Creates were tested to track the boundary
of a 4m long foam board without any simulated algae.
Figure 5 displays the resulting boundary following with robot
trajectories.

In Fig. 6, the error in phase and workload is displayed.
In order to compare this nominal error, the actual phase of
each robot is displayed in the figure.

It can be seen in Fig. 6 that the phase remains constantly
tracked. Also, the workload does adjust slightly and the error
reduces to zero just after one cycle of the robot between its
boundaries.

Other cases produced similar results. Table III displays the
steady state error for the phase in all cases. In the worst case
the steady state error remains below 2.5%.

The steady state error for the workload is also seen in
Table III. The steady state error for the workload remains
constant. This makes sense since the workload should not
have to change across the various cases.
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Fig. 5. Top down view of trajectories of iRobot Creates in following the
simulated ice raft (i.e. the overhanging foam block.) Different colored paths
are associated withe different robots, (i.e. green, pink, black). Blue asterisks
indicate detected boundary edge crossings. Horizontal dashed lines indicate
end points of each robots segment on the boundary edge. Actual foam block
edge lies at x=19.75m. Units are in meters.

TABLE III
EXPERIMENT STEADY STATE ERROR

All Robots Robot 1 Robot 2 Robot 3
Steady State Initially Initially Initially Initially
Error In Out of Out of Out of

Phase Phase Phase Phase
Phase 0.129 0.1474 0.1381 0.152
(radians)
Workload 0.014 0.018 0.016 0.015
(m2)

VI. CONCLUSION AND FUTURE WORK
This work presents a distributed boundary edge tracking

controller for multi-robot systems. The controller balances
workload and phase. It balances workload with a proportional
controller that adjusts the boundaries that each robot works
within in order to appropriately disperse the total coverage
area between each robot. It balances the phase using a feed-
back linearization controller that allows robots to match their
edge traversal progression within their individual boundaries.

The controller is provably stable to drive differences
between robot workloads and phase differences to zero. It is
also scalable since robots only need state information from
nearest neighbors, and not the entire group. This was also
demonstrated with simulations and real robot experiments.
Future work for this project will ideally involve placing these
controllers on Autonomous Underwater Vehicles (AUVs)
deployed in Arctic expeditions where ice is abundant.
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