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Abstract— The interpretation of uncertain sensor streams for
localization is usually considered in the context of a robot.
Increasingly, however, portable consumer electronic devices,
such as smartphones, are equipped with sensors including WiFi
radios, cameras, and inertial measurement units (IMUs). Many
tasks typically associated with robots, such as localization,
would be valuable to perform on such devices. In this paper, we
present an approach for indoor localization exclusively using the
low-cost sensors typically found on smartphones. Environment
modification is not needed. We rigorously evaluate our method
using ground truth acquired using a laser range scanner. Our
evaluation includes overall accuracy and a comparison of the
contribution of individual sensors. We find experimentally that
fusion of multiple sensor modalities is necessary for optimal
performance and demonstrate sub-meter localization accuracy.

I. INTRODUCTION

Precise localization is a key component of a variety of

applications, such as navigation, asset tracking, and even

advertising. The localization problem has attracted intense

research in the mobile robotics community for decades.

Robust navigation systems are now widely available and are

often based around Bayes filter variants which observe the

world through laser range-finders and robot odometry [1].

However, most fielded localization systems involve high-

precision, expensive sensors such as laser range sensors,

high-quality inertial units, or extensive infrastructure.

In this paper, we address a different problem: indoor

localization using the sensor suite currently available in

smartphones. Typified by the Apple iPhone and Android

devices, smartphones often contain a WiFi radio, camera,

accelerometer, and magnetometer, in addition to the GSM or

CDMA radio used to handle voice calls. This sensor suite

is quite different from the canonical laser range finder and

odometer found in most robot localization tasks, and presents

a different (though related) set of challenges.

The system includes two components: a mapping platform

and a mobile localization platform. The mapping platform

is a typical modern robot shown in Figure 1. This robot au-

tonomously acquires maps of indoor environments and aligns

them with off-the-shelf SLAM algorithms. The principal

contribution of this paper is the mobile localization system,

which autonomously localizes itself to the maps using only

consumer-grade sensors typical of what can be found on

a handheld device such as a smartphone. In particular, the

sensors we use are WiFi signal-strength measurements, low-

resolution camera images, and an inexpensive accelerometer.
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Fig. 1. To build models for low-cost localization, we first drive a robot
through the environment to build a LIDAR point-cloud map using SLAM.
Next, a pedestrian equipped with backpack-mounted LIDAR walks through
the environment to acquire sensor models, carrying the consumer-grade
device of interest. The 3-d map and sensor models can be acquired once
and then used for localization on standalone consumer-grade devices.

Our method requires no additional environment instrumenta-

tion or modification beyond standard, widely-deployed WiFi

infrastructure. In practice, the mapping platform is used once

for each environment (e.g., a shopping center or airport). The

resulting map may then be used by many roaming devices,

bringing high-quality localization to these low-cost sensor

platforms.

We test our implementation by evaluating its accuracy

against ground truth results acquired using the backpack-

mounted sensing system shown in Figure 1. We find that

our method provides sub-meter precision with consumer-

grade sensors and without environment modification or in-

strumentation. We demonstrate that WiFi is excellent for

quick global convergence, but a camera performs better for

precise position tracking. Sensor fusion gives the best of

both. Realistic test scenarios are considered. In particular,

the map and localization data are collected at different times

of day on different days, after the environment was allowed

to undergo typical daily changes. The system offers potential

for location-aware, consumer-oriented services such as social

networking, direct ad delivery, or convenient payment.
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II. RELATED WORK

The literature on localizing a robot (or other rigid sensor

platform) against a map is long and rich. [1] provides a

comprehensive literature review which we summarize and

extend. The idea goes back at least as far as the robot

Odysseus [2], which compared sensor measurements in a

local grid to a global map and competed at the National

Conference on Artificial Intelligence (AAAI) in 1992. A

continuum of algorithms exist across a variety of sensor and

map configurations. [3] uses sonar to detect coarse landmarks

in maps and localize with an extended Kalman filter (EKF).

Later, grid-based methods were developed. In contrast to

EKFs, these methods represent the posterior as a histogram

and are not constrained to Gaussian noise assumptions. Grid-

based methods usually rely on landmarks, however. Grid-

based localization was used successfully in sewer pipes [4],

in a museum [5], and in an office environment [6]. [7] used

learning to determine the best landmarks for reliable local-

ization. Most recently, Monte Carlo Localization (MCL) [8]

was developed, replacing landmarks with raw measurements

and the histogram posterior with particles. In a hybrid of

ideas between MCL and grid-based methods, [9] introduces

MCL with features. Several papers have utilized MCL with

cameras including [10], [11], [12], [13], [14]. Others have

localized by direct image matching, without using a proba-

bilistic filter or motion model [15], [16]. Localization with

signal-strength mechanisms such as WiFi have been studied

in the literature as well [17], [18], [19], [20], [21], including

systems that bootstrap automatically without an explicit map-

making step [22], [23]. Much additional work also exists that

we must omit due to space, including work using Bluetooth.

There are several key differences between this work and

the previous literature. First, we limit the sensor suite to those

available on a typical smartphone. In contrast, much of the

previous literature involves sensors that are not practical for

such a device, including laser range finders, wheel encoders,

and expensive inertial measurement units (IMUs). Our work

uses only a consumer-grade IMU, camera, and WiFi radio.

Second, while work does exist on low-cost sensors such

as WiFi or cameras, these sensors are usually studied in-

dividually. We focus on probabilistic sensor fusion. As long

as the sources of measurement uncertainty such as noise,

bias, and incorrect invariance are conditionally independent

probabilistically, combining multiple sensors will have a

positive impact on performance. This is true even if the

sensors are inexpensive. We demonstrate that while WiFi

offers fast global convergence, cameras provide more precise

tracking. Sensor fusion allows us to achieve the best of

both, in contrast with prior work. Third, we construct an

explicit ground-truth data set for comparison. To acquire

ground-truth, we use a robot with a laser scanner, a high-end

IMU, and wheel odometry. Running SLAM [1] on this data

set, ground-truth is constructed to sub-decimeter precision.

(This does not compromise our goals as the map can be

built once, offline, and then used for thousands of users

with inexpensive sensors, for example, in a shopping mall or

Fig. 2. 2-d map of the environment used in these experiments, as produced
by GMapping and the robot shown in Figure 1

airport.) This allows us to examine many useful properties

experimentally, such as absolute accuracy and the accuracy

of each sensor individually. Finally, many previous vision-

only localization, or image-registration, work involves one-

shot or ad-hoc methods for fusing multiple observations, or

operates on topological maps, e.g., [24]. In contrast, our work

uses a systematic probabilistic approach, the Bayes filter, to

fuse models of the sensors and the motion of the pedestrian

as more observations are incorporated into the estimate.

III. APPROACH

Our system is based around three levels of sensing and

inference. The first two are used for offline map-building,

and the third is used for online localization. These stages

are described in detail in the following sections.

A. Robotic SLAM

The first tier of our system captures the 3-d structure

of the environment. This is performed by a robotic plat-

form equipped with three LIDAR scanners and a panoramic

camera, as shown in Figure 1. To build up a 2-D map

of the environment and correct the odometry of the robot,

a horizontal LIDAR is used with the GMapping SLAM

system, an efficient open-source implementation of grid-

based FastSLAM [25].

The GMapping system was used out-of-the-box to produce

the 2-d map shown in Figure 2. The robot path corresponding

to this map was then used to project the vertical and diagonal

LIDAR clouds into 3-d by backprojecting rays through the

rectified images into the LIDAR cloud. The robotic mapping

phase of our system is thus able to measure the 3-d structure

and texture of the environment. However, this alone is not

enough to permit localization via a smartphone sensor suite;

what is needed is a precise sensor model of how the low-

cost sensors behave in the environment of interest. This is

handled by the next phase of our system.

B. Obtaining Training Data

Non-parametric methods are a simple way to capture the

complex phenomena seen by the low-cost sensors. For exam-

ple, it would be difficult to parametrically model the various

radio-frequency (RF) propagation effects that occur with

WiFi signal power in an indoor environment. Issues such

as occlusion/shadowing from building structural elements,

interference between multiple access points, directionality of
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Fig. 3. A typical rendering of the particle filter used to localize the “ground
truth” pedestrian using rearward LIDAR. The green LIDAR scan is rendered
from the most likely particle in the filter.

the transmit and receive antennas, etc., result in a complex

power distribution pattern. Similarly, the camera of a smart-

phone captures an enormously complex stream of data. A

simple (indeed, perhaps the simplest) way to predict these

complex observations is to simply acquire many observations

from a large number of known positions in the environment.

Obtaining training data for these non-parametric tech-

niques is non-trivial: the location of the observation (WiFi

signal power or camera image) must be known for it to

be useful to subsequent localization algorithms. A major

potential application of low-cost localization is for indoor

pedestrian navigation, and the pedestrian’s body can have

an effect on the received signal strength (e.g., the person’s

body is directly between the receiving and transmitting

antennas). We thus created a system for accurately localizing

pedestrians, and used this to obtain training data for non-

parametric modeling of the spatial RF signal power.

To localize the pedestrian, we affixed a rearward-facing

laser range finder to a backpack, as shown in Figure 1. We

then employed a particle filter to fuse the laser observations

with a crude motion model of a pedestrian. We note that

this is more challenging than the canonical robot localization

task, since mobile robots typically have odometry which is

locally stable. Our pedestrian-localization system, in contrast,

only knows if a person is walking or not; we found that

low-cost MEMS accelerometers are far too noisy to simply

integrate to position estimates. Instead, we used a simple

sliding-window classifier on the spectrum of the acceleration

vector to detect when to apply a “walking” motion model. We

also found that low-cost magnetometers were not reliable in

our testing environment: a steel-framed building with many

computers, power cables, and other electronic equipment

capable of inducing local magnetic disturbances. While our

testing environment may have been particularly unfriendly,

we suspect that similar local magnetic perturbations would

confound attempts at relying heavily on magnetometer data

in many indoor environments.

As the accelerometer and magnetometer can only give a

coarse measurement of the path of a pedestrian, our LIDAR-

based pedestrian particle filter relies heavily on frequent

“gentle” resampling of the particle cloud. More specifically,

our measurement model had a far higher uniform component

than typical, and incorporated measurements from every laser

scan, in order to correctly track the pedestrian through turns.

Fig. 4. Exemplar image regions corresponding to the “visual words” used
during image matching. See text for details.

A typical rendering of the particles is shown in Figure 3.

C. Camera Sensor Model

The literature on place recognition using visual images

contains many proposed methods. For these experiments, we

selected three different approaches from the recent computer

vision literature: a “bag of words” method using SURF

descriptors of interest points [26] [27], a “bag of words”

method using HoG descriptors of a dense uniform grid [28],

and a color-histogram method [24]. We further augmented

the first two methods by adding a spatial pyramid [29]. We

will describe these methods in turn.

In the bag of words model, we first construct a dictionary

of “visual words”. This is done by extracting SURF [27]

descriptors from a large set of images captured by the

mapping platform cameras, then quantizing using K-means

clustering. The resulting 128-dimensional cluster centroids

are stored with indices 1 to k. Figure 4 shows image patches

whose descriptors are at the center of clusters computed

by K-means. Given an image, we can compute the “bag of

words” description in the following way: (i) Extract SURF

descriptors from the image, (ii) Map each descriptor to the

index of the nearest centroid in the dictionary, and (iii)

Construct a histogram with the frequency counts for each

index (i.e., the number of descriptors that were mapped

to each index). Though the histogram discards all of the

geometric information about the locations of the descriptors

in the image, they have nevertheless been shown to function

effectively as compact descriptions of the image content.

Our HoG-based method used a similar approach. However,

instead of using descriptors of interest points, we sampled

the image on a dense grid. As a result, the number of

HoG descriptors extracted from each image was always the

same. To produce a similar data compression as the SURF-

based method, we chose to extract HoG descriptors from

32x32 blocks arranged on a 15x20 grid across the image.

This resulted in 300 HoG descriptors per image, which was

similar to the average number of SURF keypoints found in

the same images using the OpenCV SURF implementation.

As before, we used k-means to quantize the HoG descriptors,

and built histograms of the quantized descriptors for each

image.
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As previously mentioned, the “vanilla” bag of words

algorithm discards the spatial configuration of the descriptors

in the image plane. The “spatial pyramid” approach is one

proposed method to incorporate coarse spatial information,

and is fully developed in [29]. Briefly, this method repeat-

edly subdivides the image into quadrants, and constructs

histograms for each quadrant on each level. For example, the

two-level spatial pyramid would have one global histogram

for the whole image, and one histogram for each quadrant,

for a total of five histograms. Similarly, the three-level

pyramid has 1+4+16 = 21 histograms. This approach has

been shown to offer improved performance over the single-

histogram technique.

For a radically different approach, we also implemented

a color-histogram technique. This technique is conceptually

much simpler: the image is first converted to hue-saturation-

value (HSV) space, after which a histogram is constructed

of the hue values of all pixels in the image. The conversion

to HSV is done to provide some invariance to illumination

changes. The resulting representation is essentially a polar

histogram of the color wheel.

To use these image representations in a localization filter,

we need to produce an estimate of the probability that

an image representation z was produced from pose x. To

compute this probability using an approach analogous to that

of laser range-finders, we would need to project a textured

3-d model of the world into each particle’s camera frame,

and compute some sort of distance function. This would be

computationally difficult, even on a GPU. Instead, we com-

pute a coarse, yet experimentally justified, approximation:

we estimate p(z|x) through a nearest-neighbor lookup on

the training-set images yiimg
and poses yipose

in histogram

space, and augment a histogram distance metric with a

penalty for using images that are far from the candidate pose

x.

Intuitively, if the pose x is in the exact position as a pose in

the training set, and the corresponding image histograms are

identical, p(z|x) should be very high. Furthermore, p(z|x)
should fall off smoothly as the image and pose start to

differ from the training image histogram yihist
and training

image pose yipose
, so that query images taken near (but not

exactly on) the poses of the training images will still receive

a significant probability. Conversely, if the query image z

is significantly different from the map image yihist
, or the

candidate pose x is significantly different from the map

image pose yipose
, the probability should be very small.

We experimented with various probability distributions,

and found experimentally that the heavy tails of a Laplacian

distribution were better suited for this sensor than a Gaussian

distribution. The parameters λ1 and λ2 allow for indepen-

dent scaling between the histogram distance and the pose

distance. We also penalized for yaw deviation, as the query

image and the training image should be pointed in nearly

the same direction for comparison to be meaningful. The

combined model first finds the nearest neighbor, using the

aforementioned weighted distance metric, and then models

that distance as a zero-mean Laplacian distribution:

−40 −30 −20 −10 0 10 20
0

20

40

60

80

100

120

RSSI difference from means

F
re

q
u

e
n

c
y
 (

2
−

s
e

c
o

n
d

 m
e

a
s
. 

in
te

rv
a

ls
) 25 Stationary observations of 34 transmitters

Fig. 5. Empirical justification of the Gaussian + uniform model of the WiFi
power measurements. The plot shows the frequency of power measurement
deviations from their respective means. This dataset was gathered while
sitting stationary for 60 seconds, and includes 34 transmitters, most of which
were observed 25 times.

p(z|x) ∝ exp
−miniλ1

∥

∥z− yiimg

∥

∥

1
+ λ2

∥

∥x− yipose

∥

∥

2

σ
(1)

Large changes in ambient illumination will cause low-

cost cameras to have numerous artifacts, such as higher

noise as the camera gain is raised in dim lighting. This,

in turn, will cause a different number of interest points to

be found in the image, resulting in a vertical shifts of the

histogram. To provide some measure of invariance to global

illumination for the SURF-based method, we normalize the

image histograms before computing their distance.

D. WiFi Sensor Model

WiFi signal power measurements do not suffer from

the correspondence-matching problem often associated with

robotic sensors. Signal power measurements from scanning

WiFi radios are returned with the transmitter’s MAC address,

a 48-bit number unique to the hardware device (barring

pathological spoofing cases). Thus, even though the power

measurement is noisy, WiFi observations can provide excel-

lent context for global localization.

To simplify the probabilistic treatment, we assume condi-

tional independence of the WiFi signals. This assumption is

impossible to justify without access to the firmware of the

WiFi radio, and we suspect that the assumption does not hold

up (for example, if two WiFi radios are broadcasting on the

same channel, a nearby radio may mask the presence of a

more distant radio). However, we found experimentally that

assuming conditional independence provides a useful likeli-

hood function, and has the added benefit of computational

simplicity.

To model the WiFi noise, we used a Gaussian distribution

summed with a uniform distribution. This is empirically

justified by the stationary observations shown in Figure 5,

which were gathered from 34 transmitters over 60 seconds.

There is a Gaussian-like bump around the expected mean,

and a small number of large deviations on both sides. More
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Fig. 6. Pre-computed nearest-neighbor prediction of the WiFi signal
strength of a particular MAC address at any point in the environment. The
walls of the environment are overlaid for clarity.

Fig. 7. Visualization of the unified vision + WiFi localization system.
Upper-left shows the particle cloud, which is overshadowed by the centroid
of the particle distribution (yellow) and the ground-truth position (cyan
crosshairs). Right shows the current camera image, with SURF keypoints
circled. Lower-left shows the joint likelihood of the WiFi observations. Ex-
treme lower-left visualizes the histogram of the bag-of-words representation
image.

formally, for a set of signal power measurements zi and a

robot pose x

p(z|x) ∝
∏

i

exp

(

−‖zi − hi(x)‖
2

2

σ2

)

(2)

where hi(x) is the predicted power measurement for trans-

mitter i at pose x. To make this prediction, we simply employ

nearest-neighbor over the training set: since each observation

in the training set occurred at a known location (thanks to

the laser scanner employed at training time), we build up a

pre-computed map of the nearest-neighbor prediction of the

WiFi signal power levels. A sample nearest-neighbor map

is shown in Figure 6. We compute a nearest-neighbor map

for each MAC address (transmitter) seen in the training set.

With these maps, the computation of p(z|x) is linear in the

number of MAC addresses in z.

E. Localization

Once the sensor models are acquired, we incorporate them

in a particle filter to introduce temporal constraints on the

belief state and to fuse the models in a systematic fashion.

The particle filter is Monte Carlo Localization (MCL) as

described in [8]. The update step of the particle filter requires

a motion model. Because magnetometers are unreliable in

indoor environments such as the steel-framed building used
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Fig. 8. Pedestrian motion model, shown after a one-second integration.
Without odometry, the particle filter must generate sufficient diversity in its
hypotheses to handle corners.

in these experiments, we were unable to directly observe

heading changes of the pedestrian. Instead, we used the

motion model of the particle filter to continually hypothesize

motions of the pedestrian.

Our pedestrian motion model was empirically developed to

match the trajectories observed by the laser-equipped ground-

truth pedestrian. The motion model assumes that pedestrians

usually travel in the direction they are facing, and this di-

rection usually does not change. We model this by sampling

the future heading from a Gaussian distribution N1 centered

on the current heading. The velocity of the pedestrian is

sampled from a Gaussian distribution N2 with a mean of

1.2 meters/second, which was empirically found using the

LIDAR-based pedestrian localizer. These distributions are

summed with a 2-d zero-mean Gaussians N3 to encourage

diversity in the particle filter. More formally, to sample from

the motion model,

v′ = Rθ

[

N2 (µvel, σ1)
0

]

(3)





x′

y′

θ′



 =





x

y

θ



+





N3 (0, σ2) + v′

N1 (0, σ3)



 (4)

The parameters to this model were tuned in the LIDAR-

based localization scenario, where the time between each

laser scan was 27 milliseconds. To scale up to the larger

intervals seen in the WiFi- and camera-based filters, particles

were simply propagated through the previous equations the

appropriate number of times. Running the model for one

second produces the particle distribution shown in Figure 8

(dimensions in meters).

Our motion model also encodes the fact that the target

cannot go through walls. As a result, when the target

platform passes an intersection of corridors, particles are

rapidly generated to implicitly cover the possibility that the

pedestrian has turned.
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Fig. 12. Global localization performance. The localization systems were started with a uniform prior at 200 different starting points in the test set. Errors
against ground-truth were averaged at each timestep to show the expected convergence properties of each system. All methods show improvement as more
observations are incorporated. The combination of WiFi and the best visual algorithm (3-level spatial pyramid of SURF descriptors) produces the best
performance.

dense HoG method does significantly worse, and the color

histogram method performs poorly. The quantitative results

are shown in Table I.

The second benchmark measures the speed of global

localization by averaging the localization error as a function

of the time since the localizer was started. These results were

computed by starting the localization systems on the test data

at 200 regularly-spaced starting points. A graphical plot is

shown in Figure 12.

This benchmark reveals an interesting duality of the sensor

suite: the WiFi system, thanks to having an intrinsic solution

to the correspondence problem, can quickly achieve a mean

error of 3-4 meters. However, due to the many sources of

noise in the WiFi signal power measurement, the WiFi-only

system cannot obtain meter-level performance. In contrast,

the best visual methods (2- and 3-level SURF spatial pyra-

mid) are able to obtain excellent tracking results, but take

much longer to converge due to the repetitive nature of

some regions of the test environment (e.g., long corridors),

or inherent ambiguity of some starting positions (e.g., facing

the end of a corridor).

Probabilistic fusion of the best visual method (3-level

SURF spatial pyramid) and the WiFi measurements produces

a system that combines the strengths of both modalities:

quick global convergence to an approximate position fix,

followed by precise tracking. The particle filter performs the

sensor fusion automatically, using the sensor models and the

motion model.

V. DISCUSSION

We have evaluated our system’s performance over sig-

nificant periods, showing it offers sub-meter precision in

typical environments on average (Fig. 11, Table I). Our

experiments also indicate that WiFi offers fast global con-

vergence to better than 4 meters, but that computer vision

offers greater tracking accuracy over long periods (Fig. 12,

Table I). Combining the methods offers the best of each:

fast convergence and excellent tracking precision (Fig. 12).

We conclude sensor fusion is essential to achieve the highest

indoor localization precision with the sensor suite of a typical

smartphone.

We note in Table I that the mean accuracy of the the

SURF visual method alone exceeds that of SURF and WiFi

together. This is not surprising since WiFi is less accurate

and thus will slightly decrease overall precision. However,

as stated above, the sensor-fused system is still superior in

the envisioned typical usage of pedestrian navigation, due

to its much faster convergence. Future work could explore

a measurement model that trusts the WiFi less after initial

convergence in order to improve precision, reintegrating the

WiFi if loss of global localization is detected (e.g., the

kidnapped robot problem [1]). It is unclear if that would
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noticeably improve practical performance in typical usage.

Any map-based localization system is prone to failure if

the environment changes significantly from the time of map-

making to the time of localization. However, our algorithm

has several built-in methods of being robust to such changes

that lead to its successful performance. Due to the proba-

bilistic nature of our algorithm, map changes will be seen

as unlikely observations. This will dilute the certainty of our

localization, but will not cause localization failure. Consider,

for example, the not infrequent case of a WiFi access point

going offline for repair. In areas where there are many other

sources of localization information (eg: rich visual features or

other WiFi access points) there may be minimal degradation

in the algorithm’s performance. In the unlikely event that

the failed access point was the only information source

available, the particles will spread out and the filter will

become more uncertain. (Similar to coastal navigation [30],

the user can be warned if localization failure is imminent

and can be directed to an area where successful localization

is more likely. We do not implement that here.) Also, our

best visual system uses SURF descriptors in a bag-of-words

model. SURF descriptors themselves are invariant to changes

in scale and rotation, which offers robustness to minor

environmental changes (e.g., picture slightly rotated, door

slightly opened, etc.). The bag-of-words model itself does

not enforce a constraints on feature arrangement, resulting

in a more robust (though less discriminative) representation

of the image. Thus, again, the method is robust to minor

environmental changes such as minor motion of chairs or

other rigid objects.

VI. CONCLUSIONS AND FUTURE WORK

We presented a precision indoor localization system which

uses only sensors comparable to those in current (2010)

smartphones—several grades less expensive and less accurate

than what is typically found on a research robot. Our method

requires no environment instrumentation or modification. We

implemented and rigorously tested our algorithm, demon-

strating its effectiveness at sub-meter localization in a test

environment. Our results indicate sensor fusion is essential,

as WiFi is effective for fast global convergence whereas

computer vision is preferred for precision tracking.
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