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Abstract—In this paper, an algorithm to segment 3D points in
dense range maps generated from the fusion of a single optical
camera and a multiple emitter/detector laser range finder is pre-
sented. The camera image and laser range data are fused using
a Markov Random Field to estimate a 3D point corresponding to
each image pixel. The textured 3D dense point cloud is segmented
based on evidence of a boundary between regions of the textured
point cloud. Clusters are discriminated based on Euclidean
distance, pixel intensity and estimated surface normal using a
fast, deterministic and near linear time segmentation algorithm.
The algorithm is demonstrated on data collected with the Cornell
University DARPA Urban Challenge vehicle. Performance of the
proposed dense segmentation routine is evaluated in a complex
urban environment and compared to segmentation of the sparse
point cloud. Results demonstrate the effectiveness of the dense
segmentation algorithm to avoid over-segmentation better than
incorporating color and surface normal data in the sparse point
cloud.

I. INTRODUCTION

Large scale autonomous vehicles operating in human-

populated areas are required to accurately perceive their en-

vironment to make safe and robust decisions. One challenge

in perception is the accurate identification of objects in the

environment. Identification of objects requires accuracy and

robustness to maintain target track, avoid collisions, minimize

phantom objects, and predict future intent of objects [1].

The autonomous vehicle must rely on its onboard sensors to

perceive the environment and data processing techniques to

identify objects of interest.

The available sensors on many autonomous vehicles include

laser range finders and high precision optical cameras. Most

autonomous vehicles segment sensor data because of the large

amount of data, but have done so independently with each

sensor [2]. Miller et al. [3] describe the existing algorithm for

performing laser range finder point clustering on the Cornell

University DARPA Urban Challenge Vehicle. In particular, the

algorithm creates ground models from lidar data to identify

drivable paths and reason about objects in the environment

[3]. This algorithm fails to utilize the richness of information

available from optical sensors. For example, a common mis-

take occurs when the vehicle determines the road is blocked,

when in fact the car is moving along a road with a large
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change in pitch. One solution to these problems is data fusion,

which has been shown to increase robustness for urban based

perception [3]. Here, it is proposed to fuse lidar and vision

to create a dense range map with more information than one

sensor alone. This dense range map is segmented and can

be used for ground detection or as a pre-processing step for

object tracking. This paper is concerned with segmentation of

point clouds that have not undergone any temporal filtering at

a higher level to ensure uncorrelated measurements that are

passed to higher level functions such as stable cluster tracking

[2].

Diebel and Thrun [4] model the correlations between the

camera image and laser range data using a Markov Random

Field (MRF). Gould et al. [5] relax the fronto-parallel planes

assumption in Diebel and also use a Huber cost instead of

the l2 cost; better results are claimed because of the first-

order model. Harrison and Newman [6] add an extrapolation

capability to Diebel’s MRF approach and were the first to

find the MRF maximum a posteriori (MAP) estimate with a

direct method (using Matlab R©) instead of an iterative method.

Andreasson et al. [7] identify five methods for interpolation

of 3D laser scans on pixel density that are outside the MRF

framework and introduce a confidence measure. However,

mixed performance results of the different methods are seen

when comparing to Diebel’s MRF. The algorithm presented

here uses Diebel’s original MRF formulation to produce a tex-

tured 3D dense point cloud, but uses an efficient direct solver

to move towards real-time performance. In this work, real-time

performance is the goal because the entire frame of laser data

overlapping the image is captured in near simultaneity with

a multiple emitter/detector laser range finder, enabling dense

ranging in dynamic scenes.

After the lidar and camera data is fused, the next step

is segmentation of the textured 3D dense point cloud. A

segmentation algorithm that is deterministic, runs efficiently,

and incorporates information about the 3D geometry and pixel

intensity is desired. Besl and Jain [8] introduce segmentation

of point clouds using variable order functions to model the

surface and an iterative refinement of groups, but the algo-

rithm presented here use a non-iterative and non-parametric

segmentation technique. Gachter et al. [9] present an algorithm

for extracting planes by first extracting lines segments in an

indoor environment. However, the algorithm presented here

does not make assumptions about the environment. Rusu et

al. [10] demonstrate segmentation of lidar returned in an indoor

environment based on surface normal and curvature estimates,
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but the algorithm also relies on the structure of the indoor

environment and sequentially registered 3D point clouds.

Klasing et al. [11] present a deterministic radially bounded seg-

mentation scheme. For performance comparison, the algorithm

in [11] is evaluated on the data collected in this study and the

algorithm is modified to incorporate information about pixel

intensity and estimated surface normal. Lim and Suter [12] use

Conditional Random Fields (CRF) to segment point clouds

of terrestrial features, but the computations require accurate

registration of sequential scans and several hours of run-time.

Felzenszwalb and Huttenlocher [13] introduce a fast greedy

predicate based segmentation algorithm for computer vision.

The algorithm is extended to arbitrary points clouds, instead

of images. The algorithm in [13] is used here because of its

fast, nearly linear run-time, deterministic segmentation, global

guarantees on segment size, and ease of incorporating pixel

intensity and 3D geometry into the segmenter predicate.

The novelty of this paper is the ability to efficiently and

accurately segment dense range maps produced by the fusion

of camera and range data in a complex urban environment in

near real-time. The algorithm is demonstrated on experimental

data recorded from the Cornell University DARPA Urban

Challenge vehicle. Section II describes the fusion of the cam-

era and laser range finder data, segmentation of the textured

dense point cloud and an efficient implementation. Section III

shows the algorithm applied to experimental data collected

in an urban environment from a moving platform. Finally,

Section IV summarizes with conclusions demonstrating the

success of the algorithm to segment dense point clouds in a

complex urban environment.

II. SEGMENTATION OF DENSE RANGE MAPS

The 3D textured point cloud segmentation algorithm begins

by fusing camera images with a multiple emitter/detector

laser range finder. Multiple emitter/detectors enable the near

simultaneous capture of an entire sparse 3D point cloud that

overlays the camera image (Figure 1). The camera and laser

range finder data are fused to produce a textured dense point

cloud. A graph G(V,E) is formed from the dense point cloud

where the vertices (V) are the 3D points and edges (E) connect

vertices. An edge cost function is computed for all edges in

the graph. The segmentation algorithm proceeds linearly over

the edges and joins vertices into segments if the edge cost falls

below an adaptive threshold. The final segments are available

for object tracking or other high-level processing.

Fig. 1. Color camera image shows four pedestrians and another vehicle on
a bridge near Cornell University’s campus.

A. Fusion of Camera and Laser Range Finder Data

The fusion of camera and laser range finder data is accom-

plished by using an MRF to model the correlations between

changes in the pixel intensity and depth changes in the

corresponding laser range finder [4]. The MRF defined to

interpolate the sparse laser range finder data at the image pixel

resolution is:

p(y|x,z) =
1

Z
exp

{

−
1

2
(Φ+Ψ)

}
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∥

∥
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where y is the desired interpolated 3D point cloud, x is the

image intensity data, and z is the sparse laser range finder

returns. Additionally, k and c are tuning constants, the set L

corresponds to the pixels that have aligned laser range data,

and Ni corresponds to the cardinal neighbors of pixel i in the

image.

The first step in interpolating the laser range finder data

(range r, yaw θ , and pitch φ ) is to align the sparse laser range

finder data to the image:

~vi =C(x,y, f ) ·T (~p) · f (r,θ ,φ) (2)

u =
⌊

~vix/~viz

⌋

v =
⌊

~viy/~viz

⌋

where f (·) is the transform from spherical to Cartesian space,

T (~p) is the transformation matrix from the laser range finder

to camera coordinates, parameterized by a translation and

rotation in ~p, C(x,y, f ) is the 3D to 2D camera projection

matrix and u and v are the corresponding width and height

image pixels, as shown in Figure 2. The calibration of the

camera to laser range finder transformation was performed by

placing colored IR reflective markers at various points in a

stationary image and recording laser range finder points and

determining the transformation that aligned the high-intensity

IR returns with the color markers in the image.

Fig. 2. Aligned sparse laser range finder data (falsely colored points) on an
image of an urban scene.

The desired 3D point cloud y in (1) is found by determining

the maximum a posteriori estimate of p(y|x,z), which is equiv-

alent to minimizing the negative exponential cost function
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J(y) = 0.5(Φ+Ψ). The minimization of J(y) is cast as an

unconstrained quadratic program f (y) = 1
2
yT Ay− bT y, where

A= (Aφ +Aψ)∈ℜnpix×npix is a large sparse symmetric positive

definite matrix (npix is the number of pixels in the image)

with b = AT
ψ z. The solution y is found by solving the linear

system Ay = b. The large sparse linear system is solved via

a direct method using the Intel R©Math Kernel Library DSS

sparse matrix solver [14] that takes advantage of the banded

matrix structure to produce dense 3D point clouds efficiently.

The final dense textured 3D point cloud is shown in Figure 3

and is passed on to the segmenter.

Fig. 3. Interpolated dense 3D point cloud textured according to the original
image.

B. Segmentation of Textured Dense Point Cloud

A predicate based segmentation routine [13] is utilized to

segment the 3D points in the textured dense point cloud.

Unlike the algorithm in [13], the segmentation routine uses 3D

geometry, pixel intensity and estimated surface normal at each

point in the dense cloud to discern segments. The segmentation

algorithm operates on an undirected graph G(V,E), where

the vertices are the 3D points and the edges correspond to

connections between vertices. The algorithm is initialized by

computing the edge cost ωi j between neighbors i and j in

the graph, which is defined as a weighted combination of

Euclidean distance, pixel intensity difference and the estimated

surface normal divergence:

ωi j = ke ·
∥

∥~vi−~v j

∥

∥

2
+ ki ·

∥

∥xi− x j

∥

∥

2
+ kN · (1.0−~NT

i
~N j) (3)

where ~N is the estimated surface normal at the 3D point, and

ke, ki and kN are the relative weights of the Euclidean distance

between points, the pixel intensity difference and surface

normal distance. The relative weights are hand-tuned for this

implementation; the results presented below were insensitive

to small changes in weights, but could be determined via cross-

validation. Note that the lower edge weight implies that it is

easier to merge two clusters.

The algorithm is initialized with each vertex (3D point)

as a disjoint set and proceeds linearly along edges merging

vertices into a cluster if the edge weight is below the cluster

threshold ηi. The key to the algorithm is the update of the

cluster threshold as vertices are joined. This has the effect

that smaller clusters require greater evidence of a boundary to

avoid being merged. The benefits of this segmentation routine

are that it runs in near linear time to the number of pixels, is

deterministic, and guarantees clusters of a certain size based

on the tuning parameter σk listed in Algorithm 1.

Algorithm 1 Minimal Spanning Tree Segmentation [13]

1: Compute edge weights according to (3)

2: Initialize cluster thresholds: ηi = 1/σk,∀i ∈V

3: for all Edges in Graph G(V,E) do

4: Extract set A and B along the edge

5: if ROOT{A} != ROOT{B} then

6: if ωi j < ηi then

7: A← A
⋃

B

8: ηi = ηi +SIZE(A)/σk

9: end if

10: end if

11: end for

The primary difference between the approach in [11] and

Algorithm 1 is the traversal over the edges, instead of vertices,

and the adaptive threshold as a function of cluster size. There

are many possible choices of edges (E) between the vertices

(V ) on the graph G(V,E) when the vertices are 3D points in

space. One approach uses k−nearest neighbor, where edges are

created between the closest k vertices using any desired cost

function. Another approach is to choose vertices that lie within

a radial bound of each other, similar to [11]. The algorithm

presented here begins by creating a dense range map, where

a 3D point is estimated for each pixel in the underlying

image. As a result, it is possible to create edges between 3D

points corresponding to neighboring pixels in the image. It is

important to note that two vertices not connected with an edge

may end up in the same cluster through intermediate vertices

and two vertices connected with an edge will not necessarily

be in the same cluster.

C. Surface Normal Estimation

The surface normal is computed using Principle Component

Analysis (PCA)[15]. Similar to [15], the analysis presented

here found the PCA method performed better than the area

averaging method [15] to estimate the surface normal. The

surrounding points used to determine the surface normal can

be determined from the N-nearest neighbors, where nearest is

a Euclidean norm. The estimated surface normal is ambiguous

in terms of sign; to account for this ambiguity the dot-

product between estimated surface normals is repeated using

the negative estimated surface normal of one of the vectors

and the minimum result of the term multiplied by kN in (3)

is selected. For the sparse data set, if all nearest neighbors

lie on a single laser scan line, the surface normal estimate is

invalid. Therefore, these points have no valid surface normal

estimate and kN in (3) is set to zero. For the dense data set,

the neighboring points used to estimate the surface normal are

not from the same laser scan line, therefore all points have a

valid surface normal.
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III. EXPERIMENTAL RESULTS

A. Autonomous Vehicle Testbed

Experimental data was collected for evaluation of the tex-

tured dense 3D point cloud segmentation routine using Cornell

University’s DARPA Urban Challenge vehicle [3], shown in

Figure 4. The optical camera mounted along the center roofline

Basler A622f 

Camera

Velodyne HDL-64 L

Laser Range Finder

Fig. 4. Cornell University’s autonomous Chevrolet Tahoe, equipped with
a high precision optical camera and a multiple emitter/detector laser range
finder.

is a color Basler A622f with a 4.8mm lens and a 30-deg

horizontal and 30-deg vertical field of view. The Basler camera

produces 1280 x 1024 pixel images at 16Hz. The multiple

emitter/detector laser range finder located on top of the vehicle

is the Velodyne HDL-64E. The Velodyne scanner receives

64 vertical lines over 26.8 degrees of laser range finder data

over 360 degrees at 15 Hz with a maximum detection range

of 50 m. The scan rate of the laser range finder means all

the laser range data overlapping the image is collected in

5.56 msec, at an interval of 61 msec. The portion of the

image with overlapping laser range data is 1280 x 330 pixels,

corresponding to an estimation of 337,920 3D points in the

dense range map, which is more than 60 times greater than

the number of 3D points in the original laser range scan

overlapping the image.

B. Urban Environment Data Collection

The algorithm was run on data collected near Cornell

University in Ithaca, NY with the vehicle under human control

on a busy afternoon. The scenes observed include moving

cars, pedestrians, parked cars and standard urban features

such as buildings, newspaper stands, and street signs. The

initial sequence of analyzed scenes correspond to the vehicle

passing by pedestrians on the side of the road and another

vehicle while on a bridge (Figure 1). As a performance metric,

the object-level consistency error (OCE) introduced by Polak

et al. [16] is used to compare the segmented images with

hand-labeled truth. The OCE metric weights segmentation

performance as a function of the segment size. The OCE

heavily penalizes over-segmentation, so the global consistency

error (GCE) and local consistency error (LCE) introduced

by Martin et al. [17] are also shown. These metrics favor

segmentation that is intuitively reasonable. There are 13 frames

analyzed for segmentation performance, 9 proceeding and 3

following the frame in Figure 1. The textured dense 3D point

cloud segmentation routine described in Section II is run and

performance summarized. To demonstrate the importance of

densifying the sparse 3D point cloud, the radially-bounded

nearest neighbor (RBNN) algorithm from [11] and a modifi-

cation of the RBNN algorithm to incorporate pixel intensity

and estimated surface normals are used to segment the sparse

data and performance presented.

C. Segmentation with Sparse Range Data Only

The sparse laser range finder data from the Velodyne HDL-

64E sensor is shown in Figure 5 with false coloring and hand-

labeled segments to indicate the ideal segmentation of the

scene. The scene contains four pedestrians, two walking next

to each other and two near the bridge walls and another car

on the road surface. The difficulty in segmenting this scene

using the sparse range data alone is illustrated in Figures

6 and 7. The sparse range data is segmented using the

RBNN approach from [11]. The RBNN performs well with

a lower threshold (Figure 6) in identifying the pedestrians,

but has difficulty creating a coherent cluster for the road

surface because successive range scans are intersecting the

road surface at increasing distance. To correct this problem,

a potential solution is to increase the radial threshold, but the

smallest threshold that clusters the road leads to nearly the

entire range scan being segmented into a single cluster (Figure

7). The other problem is that the vehicle is in contact with the

road and this leads to difficulty in separating the vehicle from

the road surface.
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Fig. 5. Labeled truth data of the sparse laser range finder data.

D. Segmentation with Sparse Range Data Augmented with

Color and Surface Normal Estimates

To attempt to solve the problem of a large threshold causing

nearly a single cluster and a low threshold on the range

data causing over segmentation, a modification to the RBNN

algorithm is presented. The color of each sparse point and the

estimated surface normal at each point are used to construct

the cost metric in (3) for use as the radial bound in the

RBNN algorithm. The surface normals are estimated at each

point using the PCA technique [15] by joining the 8 nearest

neighbors. Figure 8 shows the result from including pixel
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Fig. 6. RBNN algorithm from [11] shows over segmentation of the road
surface due to increasing distance between scans intersecting the road.
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Fig. 7. In order to cluster the road surface, the RBNN algorithm from [11]
creates nearly a single large cluster.

intensity and estimated surface normal into the segmentation

of the sparse range data. The segmentation result shows the

car is maintained as a set of separate clusters from the road,

but that the road is not clustered into a coherent segment.

Augmenting the sparse range data with the pixel intensity and

surface normal estimates are not enough to achieve adequate

segmentation performance.
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Fig. 8. Including color and estimated surface normal with only the sparse
range data still creates over-segmented range scans, motivating the use of the
dense range map achieved through interpolation with the MRF.

E. Segmentation of the Textured Dense Range Map

Finally, the full textured dense point cloud performance

is shown using the algorithm described in Section II. The

hand-labeled segments for the dense point cloud are shown

in Figure 9. The final results of the segmentation of the dense

range map are shown in Figure 10. The ability to estimate

a 3D point at every pixel in the image provides contextual

information for the algorithm to make decisions on what to

segment. The road surface is a prime candidate to benefit from

the algorithm due to the near continuous estimate points along

the surface, thereby avoiding the need to handle increasingly

larger spaces between successive line scans. The pedestrian

along with left side of the image is joined with the wall

because the interpolated range samples reduce the distance

metric between the pedestrian samples and the wall.

Fig. 9. Labeled truth data of the dense laser range finder data shows
continuity between the vehicle and the road, which provides a challenge for
accurate segmentation.

Fig. 10. Final result of the newly proposed algorithm shows segmentation
of the dense range data achieves separation of the car and a coherent road
segment.

Table I shows the computed performance calculated from

hand-labeled truth data over 13 frames around the one pre-

sented in detail. The ideal performance for each of the

performance metrics is 0 for perfect segmentation and 1 for

the worst segmentation. As expected, the RBNN algorithm

with the low threshold is penalized in the OCE metric for

over-segmentation and has a higher score for the GCE and

LCE as well. The RBNN algorithm with the high threshold

segments nearly the entire scene into a single cluster. This

is also penalized in the OCE metric, but less penalized in

the GCE and LCE metrics, leading to a lower score. The

modified RBNN algorithm, which includes the color and

estimated surface normal, has worse performance than the

simpler RBNN algorithm because the scene is still heavily

over-segmented. The benefit of segmenting the full dense 3D

point cloud developed using Algorithm 1 is clear in the OCE,

GCE, and LCE metrics, because the point cloud is not over-

segmented nor clustered into a single segment. The largest

cluster in all the frames analyzed is the road, therefore, when

using the full dense 3D point cloud the accurate segmentation
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of the road leads to better performance in the OCE metric.

The performance benefit when utilizing the dense map instead

of the sparse map is apparent, because the sparse map is not

adequately segmented even when the color and surface normal

information is included.
TABLE I

SEGMENT PERFORMANCE FOR 13 TOTAL FRAMES AS COMPARED WITH

VARIOUS METRICS.

Algorithm OCE GCE LCE

RBNN-Low 0.79 0.30 0.27

RBNN-High 0.80 0.14 0.09

Modified RBNN 0.89 0.16 0.14

Full Dense 0.53 0.06 0.07

F. Algorithm Run-Time

The algorithm run-time is dependent on the size of the

camera image, because finding the MAP estimate to the MRF

(1) requires the solution of npix simultaneous equations and

the segmentation routine is linear in the number of pixels.

The algorithm is run on a desktop computer with a 2.7GHz

Intel R©CoreTMi7 processor which enables different portions of

the algorithm to be run as different threads each on separate

cores. The run-time is summarized in Table II and shows that

near real-time performance is achieved at full resolution with

an update rate of 0.5 Hz; however, the half resolution image

achieves a 2 Hz update rate. The 2 Hz update rate for this rich

information is equivalent to the lane-finding algorithm used on

the Cornell University DARPA Urban Challenge vehicle [3],

while providing much more operational usefulness.

TABLE II
DENSE POINT CLOUD SEGMENTATION ALGORITHM RUN-TIME AT FULL

RESOLUTION AND HALF RESOLUTION, ALONG WITH SPARSE DATA

SEGMENTATION ROUTINE RUN-TIME (MSEC).

Full Half
Modified Res. Res.

Process RBNN RBNN 337,920 84,480
pixels pixels

Align Range Data - 7 7 7

Solve MAP Estimate - - 385 100

Compute Normals - 120 1170 320

Segment Point Cloud 116 51 291 86

Total (msec) 116 178 1852 513

IV. CONCLUSION

An algorithm to segment textured dense 3D point clouds is

presented and demonstrated in a complex urban environment.

Textured dense point clouds are generated from interpolating

sparse laser range finder data constrained by an aligned optical

image. The dense point cloud is found using efficient matrix

solver routines that enable near real-time performance. The

segmentation is performed using an efficient and deterministic

algorithm that utilizes the pixel intensity and 3D point geom-

etry data. The algorithm is demonstrated in a complex urban

environment which shows the successful ability to segment

the road surface as a coherent cluster. The benefit of using

the dense range data for interpolation is demonstrated by

examining the segmentation performance with the sparse range

data alone and augmenting the sparse range data with pixel

intensity and surface normal estimates prior to segmentation.

Finally, fast run-time of the algorithm provides operational

usefulness for large-scale real-time autonomous vehicles.
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