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Abstract— Research in robot navigation usually concentrates
on implementing navigation algorithms that allow the robot to
navigate without human aid. In many real world situations,
it is desirable that the robot is able to understand natural
gestures from its user or partner and use this understanding
to guide its navigation. Some algorithms already exist for
learning natural gestures and/or their associated actions but
most of these systems does not allow the robot to automatically
generate the associated controller that allows it to actually
navigate in the real environment. Furthermore, a technique is
needed to combine the gestures/actions learned from interacting
with multiple users or partners. This paper resolves these two
issues and provides a complete system that allows the robot
to learn interaction protocols and act upon them using only
unsupervised learning techniques and enables it to combine the
protocols learned from multiple users/partners. The proposed
approach is general and can be applied to other interactive
tasks as well. This paper also provides a real world experiment
involving 18 subjects and 72 sessions that supports the ability of
the proposed system to learn the needed gestures and to improve
its knowledge of different gestures and their associations to
actions over time.

I. INTRODUCTION

Personal robots are expected to live within human society
in near future. These robots should be operated with un-
trained users who may even have some limited interaction
capabilities like the elderly and autistic children. Being able
to understand and act upon natural gestures is a major
advantage for such robots [1]. This ability can be utilized
in a programming by demonstration context to endue the
robot with more and more behavioral capabilities [2].

One example of a situation in which the ability to under-
stand natural gesture is important is the guided navigation
task. In this task the robot navigates in some environment
that it cannot sense accurately using information from a
human partner that is transferred via natural modalities like
gestures. In a previous study we have shown that in such
an environment, gestures are at least as effective as verbal
communication [3]. In some cases (e.g. when the workspace
is noisy) the verbal channel is not even available.

The most complex situation concerning this scenario is
when the robot needs not only to learn what to do when
receiving a gesture but to also learn the number and types
of gestures that are used by its partner as well as the
controllers that achieve the required movements based on
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these gestures. Solving these three problems simultaneously
(learning action and gesture spaces and their associations)
is a difficult problem and most available literature tries to
simplify the problem.

For example Calderon and Hu [4] introduced a system for
learning the reproduction of the path followed by the hand of
a human by observing the motion. The action segmentation
problem was ignored in this work as the whole movement
is considered as a single action. Most of the research in the
area of learning by demonstration have the same limitation
(e.g. [5] [6]) as noted in [7] and [8]. Learning actions
from a continuous stream of motion data was studied in
the recent years. Ogata et. al. [9] developed a long term,
incremental learning system using neural networks but for a
single task. Takano and Nakamura [10] developed a system
for automated segmentation, recognition and generation of
human motions based on Hidden Markov Models. The
number of primitives (commands/actions) have to be known
priori. Kadone and Nakamura [11] developed a system
for automated segmentation, memorization, recognition and
abstraction of human motions based on associative neural
networks. The main limitation of this system is that the
abstracted motion representation can only be used for sub-
sequent motion recognition, and cannot be used for motion
generation. Kulic et. al. [12] presented a system that can
incrementally learn body motion and generates a hierarchy
of HMMs that can be used subsequently for generation
and recognition. The main limitation of this system for our
approach is that it assumes that the actions are already
segmented into observations.

Mohammad et. al. [13] proposed a system that can simul-
taneously learn gestures, actions and their associations by
casting the problem as a constrained motif discovery problem
[14] and then providing novel algorithms to solve it. The
final output of the system was a probabilistic network of
the interaction protocol capable of predicting the behavior
of a human actor with 95.2% accuracy. The main limitation
of this work was that the learned system is unable to
actually actuate the robot as there was no mechanism to
learn the controllers required to do the learned actions.
Another problem was that there is no proposed method to
accumulate the gestures and actions learned from interacting
with multiple partners. A third problem was that the proposed
system was validated using small number of interactions.

This work resolves these limitation by providing a mech-
anism to construct the actual controller of the robot and a
simple algorithm for combining the probabilistic networks
learned from multiple partners. The paper also reports an
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Fig. 1. Overview of the guided navigation scenario showing the role of
the three agents, the sensors used and the overall view of processing steps.

evaluation experiment with 18 subjects involving 72 sessions
that confirms the ability of the system to learn guided navi-
gation from a single trial as well as its ability to accumulate
learned gestures and actions from multiple human partners.

The rest of this paper is organized as follows: The follow-
ing section introduces the guided navigation scenario and
describes the sensors used in the experiments. Section III
provides an overview of the complete system and briefly
describes the D&A algorithm proposed in [13] to learn an
offline version of the interaction protocol. Section IV details
the controller generation algorithm while section V details
the algorithm used to combine learned interaction protocols.
Section VI presents the evaluation experiment, section VII
discusses its results and section VIII describes some of the
limitations of the proposed approach. The paper is then
concluded.

II. GUIDED NAVIGATION SCENARIO

The guided navigation scenario used in this work involves
three agents. The operator agent is a human that uses free
hand gestures to instruct the actor agent (a robot in our case)
to follow some path, avoid some obstacle, etc. The third
agent is called the learner. The learner starts by watching
some actor–operator interactions using a motion capture
system and then uses unsupervised learning techniques to
model both operator’s gestures and actor’s actions. It then
builds a controller for each learned action and a detection
mechanism for each learned gesture. The learner’s goal is
to be able to act in actor’s position.

The inputs to the learning robot are two multidimensional
time series:

1) Gesture stream (G) representing the motion of the
guiding human. In this work we use wireless ac-
celerometers called B-PACK [15]. Two accelerometers
attached to the middle finger tips of the operator’s
two hands which results in a six dimensional gesture
stream.

2) Action Stream (A) representing the motion of the
guided human/robot. In this work we use a motion
capture system called PhaseSpace[16] to get this action
stream.

To calculate the action stream we first capture the position
of the actor and the operator using the PhaseSpace motion
capture system which can determine the 3D position of a set
of markers. Six markers where attached to the head of the
operator and six markers around the actor. This constitutes a
36 dimensional raw data stream. The 2D absolute positions
of the operator and actor in the floor was calculated from this
raw data by first estimating the center of each agent using
each available marker attached to it and averaging to reduce
the effect of noise and missing marker positions. This was
necessary because of the high rate of missing data from the
motion capture system.

The action stream A was calculated from these positions
by calculating the following:

• 2D distance and angle (ro,θo) between the actor and the
operator in the operator’s coordinate system.

• 2D position of the actor in the plan of motion (xa,ya)
in Cartesian coordinates.

• Orientation of the actor in the plan relative to the
direction of its starting point (θa).

These features constitute the 5-dimensional action stream
(A). These features were selected to cover both operator-
centric and robot-centric direction and orientation. Fig. 1
shows the sensors used and the calculation of action and
gesture streams. The goal of the learner in the guided
navigation scenario is to use only A and G with no prior
knowledge to learn how to act in the actor’s role and then
to actually replace the actor in future sessions.

If the numbers of gestures and actions as well as the
controllers to achieve these actions were already known,
the guided navigation problem becomes a simple association
problem. The main challenge that the proposed approach
is trying to face is solving this problem with no prior
knowledge of action and gesture numbers, durations or
meanings, no prior knowledge of the characteristics of the
action and gesture streams, and no known motor primitives
that can achieve the required actions. It should be noted
that both action and gesture streams are in the sensor space
of the learner. For this reason the learner needs also to
learn the mapping between the actions it perceives (in the
sensor space) and commands to its motors (speeds of two DC
motors in differential drive arrangement in our experiments)
to actually realize these actions.

The solution proposed in this paper requires only unsu-
pervised learning techniques, requires no input other than
the unmarked continuous action and gesture streams, and
does not rely on any characteristics of these streams that are
specific to the guided navigation case.

The main motivation behind this generality is to have
the proposed solution applicable to other tasks (e.g. picking
objects, arranging a table, etc) and communication modalities
(e.g. short verbal commands, spontaneous body movements,
etc).
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Fig. 2. Overview of the learning system. The D&A algorithm is a slightly
modified version of [13]

The main reason for using the relatively simple guided
navigation problem in this exploratory study is to focus on
the learning algorithm rather than the complex details of
the task to be learned and to confirm the applicability of
the proposed algorithm in a simple case before applying it
to more complex situations involving for example feedback
from the actor or more teammate oriented interactions. In the
future, the proposed approach will be applied and tested in
more complex interactions to confirm the generality of the
approach.

III. THE LEARNING SYSTEM

The learning robot watches a set of interactions collecting
G and A for each of them. It then analyzes the collected
corpus to build its own controllers for guided navigation as
will be explained in this section. The problem is decomposed
into four different problems. Firstly, the robot needs to
discover relevant action and gesture patterns in A and G
without prior knowledge of their types, lengths or occurrence
probabilities. This is called the discovery phase. Secondly,
the robot needs to associate discovered gestures with the
needed actions. This is called the association phase. Thirdly,
the robot needs to generate actual controllers that can achieve
the learned actions and associate them with the discovered
actions. This is called controller generation phase. Finally,
the robot combines the gestures and actions it learned from
multiple interactions in the accumulation phase. Mohammad
et al. [13] provided an algorithm for the first two phases.
This system will be called the D&A algorithm in this work.
In this work we utilize D&A and will explain it briefly
in this section. The following sections will detail controller
generation and accumulation phases.

Algorithm 1 depicts the D&A algorithm as utilized in this
paper. The first two steps are applied to every dimension in
A and G separately (nG and nA dimensions respectively).

Firstly, the points in the time series in which there is
high probability that the underlying process is changing
dynamics are discovered using the Robust Singular Spectrum
Transform (RSST) [14]. The nG +nA time-series represent-
ing the change scores are then combined using g-Causality

Algorithm 1 Simplified version of D&A Algorithm
1: Find change scores for gestures and actions using RSST.
2: Combine change scores to form occurrence constraints
Cg and Ca.

3: Use DGCMD algorithm to discover Gesture Models
Ghmm

i , Action Models Ahmm
j , Gesture Occurrences

Og (t), and Action Occurrences Oa (t).
4: Use correlations between Og (t) and Oa (t) and g-

Causality maximization to induce the final ABN

maximization. The main idea behind this procedure is to add
to the change score of every dimension the nearby change
scores corresponding to dimensions that are estimated to be
related causally to this dimension. These two steps generate
a new nG dimensions time series called CG

i and a new nA
dimensions time series called CA

i representing the change
score at every point for the gesture and actions streams.

The third step is to discover recurrent patterns around
these change points (called motifs) using the Distance Graph
Constrained Motif Discovery (DGCMD) algorithm presented
in [13] which utilizes CG

i and CA
i to reduce the search space

for recurrent patterns. The output of this step is a set of
gesture and action primitives represented in the gesture and
action dimensions using Hidden Markov Models as well as
the mean of every one of these primitives.

The final step in the D&A system is the association step in
which the system generates an Augmented Baysian Network
(ABN) representing the relation between gestures and actions
(interaction protocol). The ABN is a normal Baysian Net-
work with added two values to each link (connecting nodes
n1 and n2) called µn1−n2

(mean of the delay between n1
activation and n2 activation) and σ2

n1−n2
(variance of the

delay between their activations). These values are calculated
from the occurrences of learned gestures and actions. Previ-
ous studies in HRI have shown that it is important to adjust
the delay between human’s commands and robots responses
to achieve human-like believable behavior.

After completion of the D&A algorithm, the learned ac-
quires a single ABN represented by a Directed Acyclic Graph
(DAG) with two node types: ngi representing gestures and naj
representing actions. Links lgiaj

, exists if and only if gesture
i can invoke action j. Each link has the mean and variance
of the delay between the gesture and corresponding action
attached to it. Furthermore, each gesture and action node
contains an HMM representing the corresponding gesture or
action in G and A respectively. Each one of these HMMs
is represented by the tuple 〈πi, T, B〉 where πi represents
the initial state distribution, tij represents the transition
probability from state i to state j, and bj (k) represents the
emission probability of output k from state j. The mean of all
the motifs represented by each node/HMM is also included
inside the node. This mean will be used during controller
generation.

This representation of the interaction protocol allows the
learner to predict the behavior of the actor given the contin-
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Fig. 3. Learning the Increment function (F+
i ) that maps between the

current state (action stream) and motor commands during motor babbling.

uous G and A streams. The main disadvantage of the system
as proposed in this section is that the learner cannot actually
act in place of the actor because action nodes contain no
controllers to activate when the action node is activated. This
problem is dealt with in section IV. Another problem is that
the whole set of training data is needed to apply the D&A
algorithm (batch learning) which disallows the learner from
improving its knowledge of the protocol after the ABN was
created. Section V deals with this problem.

IV. CONTROLLER GENERATION

Controller generation is achieved in two sub-stages.
Firstly, reinforcement learning is used to allow the learner
to generate its basic motion primitives related to the action
stream dimensions. This is called the motion Babbling stage.
Now the mapping between the action stream dimensions and
robot’s motor space. Once these primitives are learned, the
robot starts to generate controllers as sequences of primitives
that generate the required pattern in the action dimensions.
This is the second sub-stage and is called Piecewise Linear
Controller Generation (PLCG).

A. Motor Babbling

During motor babbling, the robot builds a repertoire of
motor primitives related to the action dimensions that will
be used in D&A Algorithm. These primitives are constituted
from two functions for every dimension: one to increase and
the other to decrease that dimension with minimal impact on
the value of others. Section IV-B shows how these functions
can be used to simplify the development of controllers for
the learned actions. To reduce the risks on the learner robot
during this phase, a simulator was used. The robot starts
in a predefined initial state (specific values for A) and tries
random motion actions (commands to its motors C) keeping
track to the changes happening to each of its action dimen-
sions. This training data is then used to learn two functions
for every dimension called the increment and decrement
functions. These two functions take as input the current
action stream state and produce motor commands according
to the following rules: The increment function of dimension
i (hereafter F+

i ) increases the value of this dimension by
some rate (δi) while keeping the change in other dimensions
as small as possible. The decrement function (hereafter F−

i )
reduces the value of this dimension by some rate (δi) while
keeping the change in other dimensions as small as possible.

Thus F+
i and F−

i both solve the following constrained
optimization (minimization) problem with positive and neg-
ative δis:

Objective: ∑
j = 1 : na
i 6= j

(aj (n+ 1)− aj (n))
2 (1)

Constraints:

for1 ≤ i < na
|ai (n+ 1)− ai (n)| ≥ δ−i
|ai (n+ 1)− ai (n)| < δ+i

(2)

Control Variables:

C ≡
[
∆m+ (n) ,∆m− (n)

]
(3)

where ai (n) is the n’th sample of the i’th action di-
mension, ∆m+ is the sum of the two commands given to
the motors and is proportional to the speed, ∆m− is the
difference between these two commands and is proportional
to the rotation angle (differential drive arrangement),δ+i is
the upper limit on the required rate of change, and δ−i is
the lower limit. The pair ∆m+ and ∆m− constitute the
command sent to the motors C.

The problem is formulated as a Markov Decision Process
(MDP) and is solved using standard Q-Learning with the
aid of a simulator that can produce A (n+ 1) given A (n)
and C (n). The resulting F+

i and F−
i can now represent a

straight line in the action dimension i with an approximate
slope of δi=

(
δ−i + δ+i

)/
2. These two functions thus serve

to linearize the relation between the action dimensions and
motor commands and in the same time decouples different
action dimensions. Fig. 3 shows the outline of learning F+

i .
The inputs to the function are not only the current value of
the action stream but also the initial state of the robot with
respect to the environment.

A particular property of the specific action stream dimen-
sions we selected for this work is that a different slope
δ2 = a × δ1 can be achieved simply by multiplying the
final command by the constant a. This means that F+

i and
F−
i need to be learned for a single value for δi and their

output can then be scaled to achieve any required slope in
the corresponding action dimension. In more complex cases,
these functions need to be learned for multiple values of the
slope and then interpolated as needed in run-time.

B. Piecewise Linear Controller Generation

The second and final step in generating the required
controllers given the ABN and the F+

i ,F−
i functions. Fig.

4 depicts the proposed approach. Firstly, the mean pattern
attached with the node is approximated by a piecewise linear
time series using the SWAB algorithm [17]. Secondly, the
slope of each line segment is calculated for every action
dimension included in the pattern and F+

i ,F−
i functions are

used to generate a controller for each of these dimensions.
This results in a sequence of F+

i and F−
i calls that produce

the required pattern.
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Fig. 4. Piecewise Linear Controller Generation.

This is an open loop controller and in real world can cause
large errors. To correct for that, the difference between the
actual action stream (state) as perceived by the robot and
the piecewise mean approximation (m̂) is calculated at a
frequency of 10Hz and functions F+

i and F−
i are then used

to correct for the error with a rate equal to ±ζδi where ζ > 0
and δi is the slope of the current linear segment of m̂. In
the experiment reported in this paper we used ζ = 1. This
closes the loop and produces the final closed loop controller.

This simple approach did work in the navigation case be-
cause the motifs in the action stream were mostly piecewise
linear. In more complex motif forms (e.g. the gestures in the
gesture stream), the applicability of this technique will be
limited and further research is required to allow the learner
to generate more complex nonlinear controllers.

V. ACCUMULATION STAGE

By the end of the controller generation stage, the learner
robot will be able to replace the actor in the guided naviga-
tion scenario. Nevertheless, new human partners (operators)
will tend to use different gestures or may use some already
learned gestures with a different meaning. The robot then
needs a mechanism to improve the learned protocol (i.e. the
ABN) either by watching new interactions or during its own
engagement in guided navigation. This section describes a
simple mechanism for achieving this goal.

In this paper, we focus on the situation in which the
robot needs to combine two already learned ABNs. After
learning an ABN by watching interactions between a new
actor/operator pair, the robot needs to combine this ABN
with its already existing ABN learned by watching previous
pairs of partners to generate a single ABN that captures
the gesture/action relations represented by both ABNs. The
more general incremental case in which it is required to
update a single ABN during interaction will not be discussed
in this paper. The evaluation experiment will use only the
described two ABN combination approach. The ability to
model gesture usage of a single user (without this stage) can
still be useful practically if there is a recognition mechanism
that allows the robot to recognize with which user it is
interacting and adjust the ABN it uses according to this

knowledge. Nevertheless, the ability to combine multiple
ABNs – provided in this stage – allows the learner to move
from user modeling to task modeling which improves its
generalization as will be shown in the evaluation experiment
(see section VI). It also allows us to get more insight into
the task itself by examining the combined ABN from many
users. It allows us also to study the differences between cul-
tures and user groups in interacting with robot by comparing
ABNs that were trained with multiple users from different
groups.

To combine two different ABNs we need to discover nodes
in the two ABNs that represent the same action or gesture and
combine them while keeping nodes of every ABN that have
no counterparts in the other one. The simplest approach is to
compare the HMM parameters stored in each node from the
two ABNs (or the mean motif) and combine any two nodes of
the same type if the distance between their parameters is less
than some predefined threshold. This approach is expected
to have limited success because it does not take into account
the relation of every node to other nodes in the ABN which
prevents it from using the full information embedded in the
ABNs in solving the association problem between nodes. In
the same time, it is hard to decide the value for the threshold
that will give good false rejection/false acceptance balance.

In this paper we try to utilize more information from the
two ABNs. The main assumption of the proposed approach
is that action nodes will be more similar in the two ABNs
than gesture nodes. The justification of this assumption is
that action nodes depend on the task which is fixed in our
case (e.g. guided navigation), while gesture nodes depend on
the human partner which is much harder to predict as two
humans may use very different gestures to mean the same
thing (e.g. during our experiments six different gestures were
found that mean stop). Based on this assumption action nodes
first were processed and matched first.

The algorithm starts by compiling two lists of action
nodes from the two ABNs (namely AN1 and AN2). For
every member of AN1 (called an1i ), the motif mean (m1

i )
is compared with every other motif mean in the same
ABN (m1

j ) using Dynamic Time Wrapping (DTW) and the
minimum distance is selected as the similarity threshold of
this node τi:

τi = min
(
dDTW

(
m1

i ,m
1
k

))
(4)

where 1 ≤ k ≤ n1A, k 6= i, and n1A is the number of action
nodes in AN1.

The second step is to compare the mean of node i with
every other node in the second list AN2 and a link la2j1i
is created between an1i and an2j iff: dDTW

(
m1

i ,m
2
j

)
< τi

and
(
dDTW

(
m1

i ,m
2
j

)
− dDTW

(
m1

i ,m
2
k

))
< ητi for 1 ≤

k ≤ n2A and k 6= j for some value of η greater than zero.
We select η to equal 0.25 for all our experiments. If two
or more nodes in AN2 satisfy these two conditions, a link
is created between an1i and each of them. Each link had a
value equal to the DTW distance between the means of the
two nodes it links.
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The third step is to apply the first two steps to all the
gesture nodes in the two ABNs (called GN1 and GN2

hereafter). This generates another set of (possibly conflicting)
links lg2j1i .

The final step is to remove all the conflicts in the two
link lists to have at most one node in the second ABN
connected to any node in the first ABN. For every link we
calculate a link competence index (LCI) that evaluates the
match between the two ABNs if this link was kept as follows:

LCI
(
la2i1j

)
=

1

v
(
la2i1j

)+λa
∑

gn2l ∈ Par
(
an2i
)

gn1k ∈ Par
(
an1j
)
LCI

(
lg2l

1k

)

(5)

LCI
(
lg2i

1j

)
=

1

v
(
lg2i

1j

)+λg
∑

gn2i ∈ Par
(
an2l
)

gn1j ∈ Par
(
an1k

)
LCI

(
la2l1k

)

(6)
where Par (n) is the set of all parents to node n. These

equations constitute a set of nla+nga equations in the same
number of variables and can be solved using a simple
iterative approach similar to the value iteration for solving
MDPs.

A larger action LCI means that not only the action nodes
connected by the link are similar but also their parent gesture
nodes are similar as well. A larger gesture LCI means that
not only the gesture nodes connected by the link are similar
but also their child action nodes are similar as well. The
parameters λa and λg controls the relative importance of
gesture nodes in calculating the LCI of action nodes and
vice versa. In our experiments we selected λg = λa = 0.5.

After the LCI is calculated for every link, the link with
highest LCI fanning out from any node is kept and the rest
are discarded.

After resolving all conflicts, the nodes in the two ABNs
that are still linked are combined and their HMM and motif
mean are re-generated from the full set of motif occurrences
used when creating the two ABNs.

Combining nodes from two ABNs does not affect the
edges except if it caused two nodes to be connected by
more than one edge in the final ABN. In this case, the
mean and variance of the delay associated with the final
edge is calculated from the mean, variance, and number of
occurrences in the two combined edges.

The main advantage of this approach is that it utilizes in-
formation from the whole ABN in determining the similarity
between nodes. Another advantage is that the thresholds are
adjusted per node and are determined automatically from the
data.

VI. EVALUATION EXPERIMENT

This section describes a proof of applicability experiment
that was conducted to evaluate the proposed method. 18
subjects were recruited for this experiment (10 males and 8
females) with ages ranging from 18 to 31. All subjects were

university students and they had no professional experience
in operating robots. 15 of the subjects never operated a
robot before. The goal of the experiment was to compare
the performance of the learner robot in performing the actor
role in guided navigation under three settings:

• WOZ: Wizard of OZ arrangement in which the robot is
remotely controlled by a hidden human operator. The
hidden operator watches the gestures of the subject and
issues motion commands to the robot

• Per-Participant Learner: The robot controller is de-
veloped using the first three stages of our approach
(without accumulation) from a single interaction with
the subject and then used as the actor with the same
subject.

• Accumulating Learner: The robot controller is devel-
oped using the four stages of our approach and then
tested with a subject it never encountered before.

After completing a background evaluation questionnaire
and attaching PhaseSpace motion capture markers and B-
PACK [15] wireless accelerometers, every subject conducted
four sessions. In every session the goal of the subject was to
instruct a robot to follow a path drawn in the ground using
free hand gestures.

In the first session, the robot was WOZ controlled. This
session served two purposes: Firstly, it allowed the learner
to collect training data in the form of G and A streams.
Secondly, it allowed the subject to get used to controlling
the robot using hand gesture. After each session, the subject
filled a questionnaire to evaluate the performance of the robot
during this session. Because the learning robot did not have
any access to the behavior of the WOZ operator (only G and
A), the learning system is still unsupervised and the WOZ
operator can be considered as a part of the actor. The main
reason for using this arrangement is not to pre-program the
actor with fixed action/gesture relations that can be easily
learned.

While the subject was filling the first session question-
naire, the Per-Participant learner applied the first 3 stages of
the proposed approach to generate an ABN representing the
interaction protocol used by this user.

The accumulating learner combined this ABN with its
current ABN but the combined ABN will not be used
with this participant but the next one. This ensures that the
accumulating learner did not use any information from the
user it was tested with in any of the 17 trials (The first
participant did not interact with the accumulating learner
because there was no ABN available other than the one
created using this participant’s data).

To test the generalization of the learning model, the path
used in the first session during training was different from
the path used in the final three test sessions. Fig. 1 shows
a snapshot of this experiment and the accompanying video
displays a compilation of short clips from it. If the subject
was not able to get the robot to the goal within 20 minutes
the session was considered a failure and was aborted.

In each post-session questionnaire, the subjects evaluated
the robot they interacted with using a scale from 1 to 7 in
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Fig. 5. Average subjective scores assigned by the 18 participants for the
three conditions.

the following dimensions:
1) Ease of guiding the robot.
2) Ability of the robot to understand gestures.
3) Attentiveness of the robot.
4) Accuracy of the robot in following the gestures.
5) Naturalness of robot’s behavior.
After all the sessions, the subject selected one of the last

three robot controllers as her/his preferred actor.

VII. RESULTS AND DISCUSSION

The WOZ condition was always successful. The per-
participant learner failed once in the second day, while the
accumulating learner failed three times all in the first two
days (not including the first participant with which it did
not interact because of the unavailability of any accumulated
ABN).

Fig. 5 shows the average subjective score assigned by the
18 subjects to the three conditions. As the figure shows,
the per-participant learner received a similar average score
to the WOZ operated robot from all participants. On the
other hand, the first six participants ranked the accumulating
learner much less than both the WOZ operator and per-
participant learner. One possible explanation of this finding
is that the accumulating learner had to rely on training data
from participants other than the one with whom it was tested
and it needed some time to collect enough gesture types to
cover the gestures usually used in this task. During the last
two days (last 6 sessions) the accumulating learner caught
up with the per-participant learner and the WOZ operated
robot and ended in the last session with a score higher than
the per-participant learner. An interesting finding from this
figure is that the improvement in the accumulating learner’s
behavior did not happen gradually, but it seems that there is
some threshold that the learner passed with the ninth session
and its behavior suddenly improved after that. One possible
explanation is that the total number of actions in this task is
fixed and so the accumulating ABN did not need to include
new actions, but the number of gestures that can invoke each
of these actions is rather large and once the robot could
learn enough of them, it could show a qualitatively different
(better) behavior.

To quantify this difference objectively, we calculated the
Pearson correlation between the average score in the three

(a) First Nine Participants

(b) Last Nine Participants

Fig. 6. The change of the scores assigned by participants to the three
conditions over time.

conditions and the participant number. The accumulating
learner showed a correlation of 81.94% with the participant
order and the p-value was 0.000032 showing a statistically
significant correlation. The WOZ and per-participant learner
showed no statistically significant correlation with the par-
ticipant order.

Fig. 6-a shows the mean and standard deviation of the
average scores assigned by the first nine subjects to the three
conditions. The t-test was used to check the significance in
mean differences shown in the figure. In the case of the WOZ
operated robot and the per-participant learner, the difference
in mean was not statistically significant (p-value=0.4653).
In the case of the accumulating learner, the difference was
statistically significant between it and the WOZ operated
robot (p-value<0.001) and the per-participant learner (p-
value=0.0052). Wilcoxon rank sum test also agreed to this
result

Fig. 6-b shows the mean and standard deviation of the
average scores assigned by the last nine subjects to the three
conditions. Again, using t-test and Wilcoxon rank sum test,
no differences were found to be statistically significant in
this case.

This fact that the behavior of the per-participant learner
and the WOZ operator was similar in all cases suggests
that the first three stages of the proposed approach were
successful in generating the needed controllers from a single
training session.

The high correlation between the average score of the
accumulating learner and the participant order suggests that
the accumulating learner did improve its behavior over time
and supports the claim that the ABN combination approach
described in section V was successful at least in this task
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and this experimental settings.
The participants selected the WOZ operated robot as their

preferred robot eight times, the per-participant learner seven
times and the accumulating learner three times (all in the
last two days). Again, the effect of time on the evaluation of
the accumulating learner was evident. In the first two days
no one preferred the accumulating learner, while in the last
two days half of the participants preferred it even over the
WOZ operated robot. The WOZ operated robot and per-
participant learner were each preferred three times in the
first two days and the per-participant learner was preferred
two times (compared to one for the WOZ operated robot) in
the last two days. These findings confirm the results found
from analyzing the post-questionnaire scores. Due to lack
of space the objective evaluation based on completion time
and accuracy will not be presented here but they confirm
the findings of the subjective evaluations presented in this
section.

VIII. LIMITATIONS AND FUTURE WORK

The proposed approach was designed to allow the learner
to copy the behavior it perceives from the actor in an
unsupervised way. Extension of the learned behavior to other
tasks was not considered in this work.

Another limitation of the proposed approach is the as-
sumption implicit in the motor babbling algorithm that the
primitives needed in the action dimensions are linearizable
and that it is possible to decouple these dimensions for
easier control during the PLCG phase. This assumption was
true for the guided navigation task and the specific action
stream signals we selected, but there is no guarantee that the
proposed F+

i and F−
i learning mechanism will converge in

other cases. In the future automatic generation of controllers
when the action stream is coupled will be addressed.

The final limitation we discuss here is that the system was
designed assuming no explicit feedback from the actor to the
operator. Again this was acceptable in the guided navigation
settings but to generalize the approach to more teammate
situations, a third stream of feedback signals needs to be
added to the discovery phase with corresponding controller
generation. The proposed approach should be easily extended
in this manner to take care of simple interactions with
feedback but more research will be required to extend it to
more complex human like spontaneous interactions.

IX. CONCLUSION

This paper presented a new approach to unsupervisedly
learn simple interaction protocols in the form of an Aug-
mented Baysian Network and automatically generating the
required controllers to actually participate in the learned
interactions. The approach was successfully applied to learn
guided navigation using free hand gestures with no assump-
tions about the actions related to the task, the number of
gestures used, their durations, or their occurrence patterns.
The proposed approach also allows the learner to combine
different learned ABNs to improve its performance over time

and to accommodate different gestures used by different
human partners.

The paper also reported a proof of applicability exper-
iment using 18 untrained users who conducted 72 guided
navigation sessions with a cart robot. The results of this
experiment show that the proposed approach was successful
in allowing the learner robot to achieve undistinguishable
behavior from a WOZ operated robot after a single training
session. It also showed that the ABN combination algorithm
allows the learner to improve its performance over time and
allows it to interact with new participants without any need
for re-training.
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