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Abstract— This paper proposes a new framework for fast
and reliable traffic sign detection using images obtained from
a single front-facing road vehicle camera. Our focus is on
a methodology for reducing the computational requirements
and increasing the performance of existing detection methods
by refining the image space search using 3D scene geometry.
Information concerning physical traffic sign dimensions and
vehicle camera parameters is integrated into a model that
predicts the image scales and locations at which traffic signs are
likely to appear. We apply our framework to a Haar-feature-
based detection method trained on a collection of stop signs.
Experimental results show that the refined image search space
results in much less computation time while retaining the same
true positive detection performance as existing methods that
search all image scales and locations. In addition, false positives
at physically implausible traffic sign locations are eliminated.

I. INTRODUCTION

The broad problem addressed in this paper is the au-
tonomous detection of road signs using data acquired from
a single camera mounted on a road vehicle. Fast and reli-
able road sign detection could enable autonomous vehicle
navigation in uncharted urban environments by providing
information about traffic patterns, road hazards, speed limits,
locations to stop and yield, and more. In addition, traffic sign
detection systems can be implemented in human-operated
vehicles as a warning system for weary drivers.

Given a sequence of images or video taken from the
perspective of a vehicle, an ideal traffic sign detector should
be able to perform the following tasks: (1) store invariant
visual models of commonly encountered road signs; (2)
search the image space and extract the pixel coordinates
and size of any visible traffic signs; (3) identify the type
of traffic sign (stop, yield, speed limit, warning, etc); (4)
estimate the location of the sign relative to the vehicle; (5)
perform reliable detection in real time.

Existing road sign detection approaches use a variety of
models to represent traffic signs (task 1), and a wide range
of detection methods to locate the signs within the image
(task 2). Each method exploits one or more unique design
aspects of traffic signs such as color, perimeter shape, and
face pattern.

In many systems using color information, a pre-
segmentation operation is first performed using thresholding
in RGB, HSV, or customized color spaces. Shape-based
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models for traffic signs are subsequently used to detect signs
in the pre-segmented image regions. For instance, Escalera
et al. use corner features to model signs [1], Zadeh et al. use
edge features [2], and Torrensen et al. use image templates
[3]. Several authors examine a joint treatment of color and
shape, such as Fang et al. [4] and Bahlmann et al. [5]. Lopez
et al. use only color information to identify and track image
regions likely to contain signs [6].

Other authors have implemented traffic sign detection
algorithms on grey scale images. Gavrila et al. model traffic
signs using templates, and employ a hierarchical detection
method using distance transforms [7]. Shen et al. use polygon
geometry to identify signs in cluttered images [8], and Barnes
et al. use radian transforms and cross correlation for detecting
traffic sign templates [9]. Baro et al. use a set of rectangular
Haar features for modeling and detection of traffic signs [10].

However, none of the approaches listed above use a-priori
information about the physical dimensions and mounting
locations of road signs in the 3D environment. Such infor-
mation is standardized for particular road environments by
government agencies, and is readily available (for example,
see [11]). Existing detection methods waste valuable com-
putation time searching for signs in physically improbable
locations, and furthermore, register false positives in image
locations at which signs cannot exist. Hoiem et al. present a
probabilistic approach to object detection using 3D geometry
[12], but their method relies on object interdependence, and
focuses on detection with a static camera. Picciolo et al. use a
segmentation technique in traffic sign detection to eliminate
uniform sections of sky and road [13], and limit their search
to the right side of images, but do not present a quantitative
model for incorporating physical traffic sign geometry.

Referring back to the task list, the primary contribution
of this paper is the introduction of an add-on methodology
to existing traffic sign detecors for intelligently refining the
image-space sign search in task 2. Utilizing information
about the vehicle’s camera and physical dimensions of signs,
we can predict the locations and sizes of the signs within
the images captured by the camera. These predictions allow
us to eliminate large regions of search space that cannot
physically contain traffic signs. The reduced search space
aids task 5 by significantly lowering the computation time
required to search each image, as well as eliminating false
traffic sign detections at unrealistic locations. As a result of
our assumed scene geometry, we are also able to address task
4 by estimating the distance between the traffic sign and the
approaching vehicle.

We address task (1) in our experiments by modeling stop
signs using a learned cascade of simple Haar-features, as
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introduced by Viola and Jones [14]. Stop signs were chosen
because of their high incidence in urban environments, and
their importance in preventing vehicular accidents. Noting
that our search space reduction framework is applicable to
almost any existing detection algorithm, we picked Haar-
based detection for its robustness to lighting and scale, its
computational efficiency, and its applicability to greyscale
images (to avoid introducing the color thresholding problem).
Traffic sign classification (task 3) is outside this paper’s
scope.

The core of the paper is section 2, which describes our
novel image search-space reduction approach. Sections 3
and 4 describe validation results of the approach via data
collection and computational experiments. We conclude with
a discussion of the results and future research directions in
section 5.

II. APPROACH

A. Forming a road sign model

Our approach is valid for any road sign model and
corresponding detection method that searches image space
at particular locations and scales. For the experiments in
this paper, we employ a combination of simple rectangular
features (called Haar features) to model the traffic sign in
image space (Fig. 1). These features can be quickly computed
using a concept called the “integral image” [13]. Using
the Haar features and a boosting scheme called Adaboost,
an efficient cascaded classifier can be trained that contains
information only about the critical visual features of the
sign [14]. Signs are detected within an image by evaluating
the trained features at a particular image location and scale
(detection window).

B. 3D scene assumptions

Our 3D scene model makes the following key assump-
tions: (1) traffic signs of a particular type have similar
mounting heights relative to the ground; (2) the vehicle’s
pitch and the road’s incline are limited; (3) signs of interest
are facing the driver and camera; (4) the calibration matrix
and height of the vehicle camera are known.

As mentioned in the introduction, precise traffic sign
dimensions and mounting requirements are primarily gov-
ernment regulated, justifying our assumption of standardized

Fig. 1. Typical 2 and 3- rectangle Haar features used to model traffic signs.
The value of each feature is the difference between the sum of pixels in the
light and dark rectangles.

sign geometry. For visibility reasons, traffic signs are gen-
erally designed to face the driver so that they are easily
spotted. Furthermore, the incline of most urban roads is
small for driver comfort and safety reasons, allowing us
to limit the maximum road steepness and vehicle pitch in
our model. Finally, since the vision system for autonomous
vehicles remains the same throughout the course of driving,
the camera calibration information will remain constant. A
list of parameters necessary for the subsequent analysis is
shown in Table I.

Our assumptions place restrictions on the locations where
a traffic sign may exist in 3D space (X0, Y0, Z0). As Fig.
2 illustrates for the case of flat ground, the sign may be
posted anywhere in ground plane defined by Z0 and Y0, but
its height and physical dimensions are specified.

C. Projection of scene geometry into image coordinates

Plausible 3D traffic sign locations can be projected into
pixel coordinates (x′, y′) within the image using the standard
pinhole camera model,
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or more concisely,

Zx′ = KΠ0gX0, (2)

where x′ is the vector of pixel coordinates, Z is the 3D Z-
coordinate in the camera frame, K is the camera calibration
matrix, Π0 is the canonical projection matrix, and g is a
Euclidean transformation between 3D camera (X) and world
(X0) coordinate frames. The camera frame is assumed to be
rigidly attached to the vehicle.

Equation (2) can now be used to project any 3D road sign
location to pixel locations of the sign’s bounding box in the
image. Fig. 3 shows the transformation for a grid of stop
signs evenly spaced in 3D, similar to the grid illustrated in
Fig. 2.

TABLE I
3D SCENE AND CAMERA KNOWLEDGE

Symbol Interpretation
hs Average height of the middle of a sign measured

along the X0-axis in world coordinates
dx Width of a sign measured along the Y0-axis in world

coordinates
dy Height of a sign measured along the X0-axis in

world coordinates
f Focal length of the vehicle camera

sx, sy , sθ Scaling factors relating pixels to metric distance units
ox, oy Pixel coordinates of the location where the camera

z-axis intersects the image plane
hc Height of the vehicle camera with respect to the

ground
θincline,max Maximum expected road incline
θpitch,max Maximum expected vehicle pitch
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Fig. 2. Assumed 3D road scene context, showing possible locations of
traffic signs on flat ground.

D. Traffic Sign Detection Framework

In order to detect signs in an image, a reference point of
the detection window must be specified in pixels (we will use
the upper left corner), along with the scale of the detection
window. Denote the reference point of the detection window
in the image coordinates as (x′w, y

′
w). In many existing

detectors, the search is executed according to the pseudocode
shown below:

for(all possible window sizes s)
for(all possible x′w image coordinates)

for(all possible y′w image coordinates)
run detector at (x′w, y

′
w) for scale s

end
end

end

According to this algorithm, locations in 3D space where a
traffic sign could not physically exist will still be searched.
This wastes valuable computation time, and increases the
likelihood of false positives being detected, since the search
space is larger than what is necessary.

Instead, it is proposed that the detection should proceed
according to the following pseudocode:

for(all possible window sizes s)
calculate Z-coordinate of sign
for(all possible x′w image coordinates)
for(valid y′w image coordinates)

run detector at (x′w, y
′
w) for scale s

end
end

end

We now detail each step in the pseudocode shown above.
1) Iterate through detection window sizes: The outer loop

of our framework cycles through all detection window sizes
in pixels, s = (x′size, y

′
size), for which the user would like

to watch for traffic signs. Note that the relationship between
x′size and y′size is fixed, according to the sign’s aspect ratio.
The lower limit on window size is dictated by the chosen
deteciton algoithm, and the upper limit should be set for the

x’

y’

Fig. 3. Projection of various possible 3D traffic sign locations into the 2D
image plane using (2).

maximum size a sign could appear in the image (depends on
camera parameters). Iteration step size is determined by the
sensitivity of the detection algorithm to window size.

2) Calculate appropriate Z-coordinate of sign: The next
step is to calculate the expected distance of the traffic sign
from the camera (Z), according to the current detection
window size s. Given that 3D world-frame points on the
top and bottom edges of the sign are Xtop,bottom0 = (hs ±
dx/2, Y0, Z0, 1)T , (2) is used to compute the Z-coordinate
of the sign as follows:

Z = (fsydx)/y′size (3)

where y′size is the current y′ window size in pixels.
3) Iterate through x′w coordinates: After calculating the

sign’s distance from the camera, the algorithm iterates
through all possible x′w coordinates in the image. In reality,
not all the x′w coordinates are valid positions, since traffic
signs cannot be located in the middle of lanes. However, to
account for curving roads and signs mounted in the median,
the entire range of x′w coordinates are checked across the
image.

4) Iterate through valid y′w coordinates: Next, only the
valid range of y′w coordinates are scanned, reducing the
image space search for a given Z-distance of the sign from
the camera. If the road is perfectly flat, and our 3D scene
model is perfect, we can determine y′w with certainty for a
particular distance Z. That location is given by

y′nom = [fsy(hc − hs − dx/2) + oyZ]/Z (4)

However, several sources of uncertainty will affect the actual
y′-location of a traffic sign in the image, including: (1)
vehicle pitch; (2) incline of the road; (3) camera calibration
parameters; (4) height of the camera relative to the ground;
(5) physical dimensions of the traffic sign. To mitigate these
issues, a pixel uncertainty ∆y′ is added and subtracted from
y′nom to form a search window. The first three uncertainty
sources listed above are the most significant in our problem;
we examine those here.
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Fig. 4. Scenarios in which the nominal pixel coordinate of the sign in the
y′ direction could change due to (a) road incline and (b) vehicle pitch. The
star represents the nominal location of the base of the sign.

Road incline and vehicle pitch: Fig. 4 (a) depicts a vehicle
encountering a road incline, and Fig. 4 (b) depicts a vehicle
that is pitched upwards (for instance, due to a speed bump).
In each case, the effective location of the road sign relative
to the ground of the world frame is changed by a distance
±Ztan(θ) . If we incorporate this term into (4), the cor-
responding change in pixel coordinate due to pitch or road
incline is

∆y′θ = fsytan(θmax) (5)

where θmax = f(θpitch,max, θincline,max) is a user-selected
parameter based on the road environment. When selecting
θmax, note that in many commonly encountered scenarios,
θpitch = θincline as the sign is approached, and the nominal
sign location remains unchanged. Also notice that the pixel
uncertainty ∆y′θ is independent of the distance Z of the sign
from the camera.

Traffic sign height: Considering an uncertainty of ∆hs
pixels in traffic sign height, the corresponding uncertainty
in pixel location of the sign is given by

∆y′h = (∆hsfsy)/Z (6)

Total pixel uncertainty is the combination of the two uncer-
tainties outlined above,

∆y′ = ∆y′θ + y′h = fsy(tan(θmax) + ∆hs/Z) (7)

The search window in the vertical image direction for y′w is
[y′nom − ∆y′, y′nom − ∆y′]. Combined pixel uncertainty is
greater for closer Z distances, meaning the search window
size decreases as the algorithm scans for traffic signs further
away from the vehicle.

5) Run detector at x′w, y
′
w for size s: As demonstrated

by Fig. 5, the search region for a particular window size
is reduced from the whole image to a small strip when 3D
scene context is incorporated into the detection framework.
The traffic sign detector is now run at each location within
the new search region. If a traffic sign is detected, we
may estimate the distance of the sign from the vehicle as
the coordinate Z, computed in step 2. The accuracy of

x’
y’ yʹ′Δnomyʹ′

current 
window 
size( )ww yx ʹ′ʹ′ ,

Fig. 5. Search region for a particular window size using 3D scene geometry.
The search region is bracketed (best viewed in color).

the distance estimate will depend on the window step-size
iteration selected in step 1.

III. EXPERIMENTAL SETUP AND DATA COLLECTION

To verify our approach, we first collected a series of 4000
images using a tripod-mounted camera in a moving vehicle
(Fig. 6 (a)). The images were obtained at 5 frames/second in
bursts of 1-15 seconds while approaching intersections with
stop signs, and at random intervals throughout a residential-
area drive. A Nikon D700 camera with 24mm lens focused at
infinity captured the images at 2128x1416 resolution. Table
2 shows the physical parameters of the road scene and the
results of camera calibration.

Dimensions dx and dy are standardized for stop signs
in urban and residential streets in the USA [11]. Modified
values are also available for freeways and specialized areas,
had the vehicle entered such zones. Stop sign height hs is
also standardized, with small variations allowed in certain
situations (such as multiple traffic sign mountings on a
single post), so ∆hs was chosen accordingly. Angle θmax
was picked to account for small vehicle pitch and incline
mismatches, noting that the data collection was performed
in a relatively flat area.

Next, the collected images were converted to grayscale
and used to train a cascaded Haar classifier. A total of 700
stop signs were manually cropped from the images, scaled
to 25x25 resolution, and used as positive samples (Fig. 6
(b)). Negative samples were obtained at random from 1500
images that did not contain stop signs.

The trained stop-sign classifier and the parameters in
Table II were used to implement our traffic sign detection
framework. Code was written in C++ using the OpenCV
computer vision library on a Intel Core i7 2.67GHz machine
running Windows. Our test set consisted of 300 images that
were not used in the classifier training process, containing
21 unique stop signs. We use (3), (4), and (7) to compute
Z-coordinate, nominal y′ search coordinate, and pixel un-
certainty, respectively. Computational results comparing our
detection process to a comprehensive search over all image
locations and scales are presented in the following section.
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TABLE II
PARAMETERS FOR STOP SIGN DETECTION

Symbol Value Symbol Value
hs 2.1 meters fsθ 0
dx 75 cm ox 1055
dy 75 cm oy 698
fsx 1427 hc 1.1 m
fsy 1427 θmax 5 degrees
∆hs 0.2 meters

(a) (b)

Fig. 6. Experimental setup and sample training images.

IV. RESULTS

Table III summarizes the outcomes of our experiments,
and Fig. 7 shows typical stop sign detection results using our
3D scene geometry framework. Detection percentage refers
to the total number of signs (not necessarily unique) detected
in the image set relative to the total number of signs present.
Signs with sizes less than the training template (25x25) are
not counted as present, since they cannot be detected using
the trained Haar features.

A. Computation time

As Table III demonstrates, our add-on framework signif-
icantly decreased the computation time searching for traffic
signs within each image. The computation time scales with
the size of the window used for traffic sign detection, and
resulted in an average reduction factor of 2.44 compared to
a full search.

TABLE III
EXPERIMENTAL RESULTS

Comprehensive
Image Search

Reduced Search Using
3D Scene Context

Average Computing
Time

1014 ms/image 415 ms/image

# Unique Signs De-
tected

21/21 21/21

Total # Signs De-
tected

283/380 283/380

Detection
Percentage

75% 75%

Total False Positives 19 12

Fig. 7. Stop sign detection results using 3D scene context framework.

B. Traffic sign detection

Equally significant, our reduced image space search de-
tected all 21 of the traffic signs in the testing images, and
achieved the same detection percentage compared to the
comprehensive image search. This means that our reduction
in computation time did not come at the cost of reduced sign
detection performance.

C. False positives

Fig. 8 shows the same image analyzed by the comprehen-
sive search algorithm, and by our 3D scene context software.
Notice that a false positive is registered in the comprehensive
search, but is not detected using 3D scene context. Since
our framework only searches physically plausible traffic sign
locations, it does not accumulate false positives such as
the one in Fig. 8 (a), explaining the reduced number false
positives presented in Table 3 for the 3D scene context
search.

D. Effect of pixel uncertainty

Without data about vehicle pitch or terrain elevation,
we must pick relatively large values for ∆y′ to detect all
traffic signs in a given environment. Reducing ∆y′ decreases
computation time, but also risks missed traffic sign detections
due to the uncertainties mentioned in the Approach section.
Fig. 9 quantifies this effect by varying the θmax parameter
in our 3D scene context implementation (with ∆hs =0.2m),
using a 50-image subset of testing data. The number of
correct detections levels out at 51, meaning that further
increasing θmax will not likely yield better results. Since
computation time continues to increase with increasing θmax,
the ideal parameter to use is θmax = 5 degrees.

False positive

(a) (b)

Fig. 8. Physically implausible false positive registered by comprehensive
search algorithm (a), but skipped by 3D scene geometry search (b).
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Fig. 9. Effect of pixel uncertainty on computation time and road sign
detections in 50-image sample set.

V. DISCUSSION

The number of correct detections, false positive rate, and
computation time for Haar-based object detection methods
are highly sensitive to factors such as image resolution,
pixel step size during searches, and training parameters like
number of classifier stages, minimum hit rates, number of
training images, and many others. Therefore it was ensured
that all of these factors remained constant during the com-
parison between the comprehensive search algorithm and
the 3D context algorithm. Had more training examples or
higher minimum hit rate been used in the training process,
the percentage of correct detections would have been higher.
However, the relevant information for the evaluation of our
add-on methodology is the relative false positive rate and
correct detections, and it is clear from the previous section
that our 3D context algorithm performs better relative to the
comprehensive algorithm.

Although the search space reduction framework was dis-
cussed in the context of grey-scale detection for a single
type of traffic sign, it is applicable to a much wider range of
traffic sign detection methods. For instance, the framework
can be used with color-based segmentation methods to limit
the region of the image that needs to be color-thresholded,
allowing more computationally-expensive and robust color
mapping techniques to be used. Furthermore, our framework
can be used to detect multiple types of traffic signs by search-
ing the image multiple times, each for a different type of sign,
and each with a unique search window defined by its physical
parameters and our 3D scene model. Alternatively, bounds
for the physical sign parameters could be implemented to
account for multiple sign types, and the image could be
searched in a single run for all types of signs with a reduced
search space based on the bounds.

A number of areas remain unexplored for future research
and testing. First, our method could be further tested in areas
with extreme hills or rough terrain, in order to evaluate the
algorithm’s performance in a wider range of 3D scenes. In
these cases, it is likely that the uncertainty parameter θmax
would need to be increased to account for wider variations
in vehicle pitch and road incline discrepancies. An analysis
of the effect of pixel uncertainty on detection success in
such environments could be enlightening. Second, a search

space reduction method in the horizontal image direction
would be a valuable add-on to our method. For example,
road boundaries or lanes could be detected via edge chains
[15], probabilistic Markov-style processes [16], or multi-
model methods [17], and the projection of the localized road
coordinates into the image space could be excluded from our
search.
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