
  

  

Abstract—Traditional indoor 3D structural environment 

modeling algorithms employ schemes such as clustering of 

dense point clouds for parameterization and identification of 

the 3D surfaces. RANSAC based plane fitting is one common 

approach in this regard. Alternatively, extensions to feature 

based stereo have also been used, mainly focusing on 3D line 

descriptions, along with techniques such as half-plane 

detection, real-plane or facade reconstruction, plane sweeping 

etc. Noise in the range data, especially in low texture regions, 

accidental line/plane grouping under lack of cues for visibility 

tests, presence of depth edges or discontinuities that are not 

visible in the 2D image and difficulties in adaptively estimating 

metrics for clustering can hamper efficiency of practical 

systems. In order to counter these issues, we propose a novel 

framework fusing 2D local and global features such as edges, 

texture and regions, with geometry information obtained from 

range data for reliable 3D indoor scene representation. The 

strength of the approach is derived from the novel depth 

diffusion and segmentation algorithms resulting in superior 

surface characterization as opposed to traditional feature based 

stereo or RANSAC based plane fitting approaches. These 

algorithms have also been heavily optimized to enable real-time 

deployments on personal, domestic and rehabilitation robots.  

I. INTRODUCTION 

raditional indoor 3D structural environment modeling 

algorithms employ schemes such as clustering of dense 
point clouds for parameterization and identification of 

the 3D surfaces. RANSAC based plane fitting [1] is one 

common approach in this regard. Alternatively, extensions to 

feature based stereo have also been used, mainly focusing on 

3D line descriptions, along with techniques such as half-

plane detection, real-plane or facade reconstruction, plane 

sweeping etc. Pioneering work in this regard is attributed to 

Baillard et al. [2,3] and Zisserman et al. [4]. Other important 

works include facade detection and multi-level regeneration 

by Lee - Nevatia [5]. Recent efforts at plane grouping based 

on PCA and visibility tests include [6] and [7]. The literature 

in building 3D line descriptor based structure analysis is also 
quite vast. Recent articles include Hausdorff measure based 

grouping [8] and model based recognition [9]. However, the 

performance of most of these techniques rapidly degrade in 

the presence of high amounts of noise (in range data such as 

stereo) under conditions of low illumination and in regions 
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of low-texture or sparse features. Furthermore, accidental 

line/plane grouping (for eg. in the case of shelves/ 

cupboards), especially under lack of cues for visibility tests, 
presence of depth edges or discontinuities that are not visible 

in the 2D image and difficulty in adaptively estimating 

metrics for clustering can hamper efficiency of practical 

systems for door/doorway detection. On the other hand, 

traditional laser [10] or panoramic camera [11,12] (or multi-

view) based room modeling and doorway detection systems 

(often using piecewise planar modeling [13], triangulation 

[14] or space carving [15]) are often impractical for cost-

effective domestic robots. Moreover, machine learning 

based door recognition systems (usually from only 2D 

images) such as [16,17,18], perform poorly in cluttered 

scenes (especially with floor reflectance) and when the door 
is open or is viewed partially or the doorway is structurally 

similar to an arch and lacks the actual door and door frame, 

besides the inherent ambiguity in handling 

cupboards/shelves. Depth based doorway detection is more 

practical and useful in such cases and also provides cues for 

place learning.  

In order to resolve these challenges, we propose a novel 
framework fusing 2D local and global features such as 

edges, texture and regions, with geometry information 

obtained from pixel-wise dense stereo for reliable 3D indoor 

scene representation. The strength of the approach is derived 

from the novel depth diffusion and segmentation algorithms 

resulting in superior surface characterization. Unlike earlier 
schemes, these algorithms also enable identification of depth 

edges that are critical to surface isolation. The pipeline also 

renders visibility tests and constraints superfluous.  

The proposed framework follows a three step process – 

detection of walls, followed by the enclosing room and 

finally doorways. Walls and wall-like surfaces are detected 

using 2D edge, texture and region features. The 3D surfaces 

corresponding to the walls are then generated using 

piecewise depth diffusion techniques followed by depth 

segmentation to identify intra - wall depth discontinuities. 

The room model is built by classifying and selecting these 

wall-like surfaces to fit cuboidal (deformable) constraints. 
Finally, doorways in the room are hypothesized based on 

clustering of the dense stereo data pixels that do not conform 

to the concave room hypothesis. 

II. OVERVIEW 

This paper offers a number of novel contributions. The 

main contributions are listed below. Firstly, this paper 

presents an innovative framework for the processing of 

stereo images for 3D reconstruction of indoor structural 
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environments and detection of doorways, corridors and other 

negative spaces in the given scene of interest. Secondly, this 

paper demonstrates efficient indoor wall segmentation by 

extending intrinsic gradient extraction and texture analysis 

algorithms. Thirdly, a new image-agnostic scheme of noise 

removal in range images is presented. Fourthly, a real-time 

depth diffusion algorithm, suitable for 3D surface 

generation, especially with extremely sparse range data is 

introduced. A fifth contribution is the demonstration of 

efficiency of intra-entity surface segmentation and depth 

discontinuity detection resulting from the novel diffusion 

framework. Other contributions include a framework for 

wall reconstruction using transformed plane fitting, a PCA 

based plane grouping scheme for building the room model 

and doorway detection using a concave room structure 

hypothesis.  

The images used for evaluating the developed algorithms 

have been obtained in an indoor environment, from an 

experimental robot at a height of about 1m from the ground 

plane. A high dynamic range monochrome stereo camera is 

used to estimate the range images along with a centrally 

mounted inexpensive color camera. Note that the algorithms 

presented here are well suited for fusion of data from distinct 

color and range (stereo or otherwise) sensor systems. In 

order to simplify the algorithmic framework, it has been 

assumed that the fixed pose of camera and its height above 

the ground plane are known accurately, thereby establishing 

the approximate ground plane in any scene without further 

processing.   

The approach for 3D room reconstruction and doorway 

detection presented in this paper follows a 3 stage modeling 

pipeline comprising of wall modeling, room modeling and 

doorway modeling. The various assumptions required for the 

modeling/ hypothesis at each stage are listed below.  

A. Wall Modeling 

Walls are typically characterized by  

1. Homogeneous regions or areas with regular texture, 

usually with high numeric intensity values. 

2. Largest single color regions in a given scene, especially 

when there are no large occluding obstacles in the 

vicinity. 

3. Hold pixels with the farthest visible range information 

on planes parallel to the ground plane. 

4. Frequent loss of homogeneity in color values owing to 

lighting and shading effects.  

B. Room Modeling 

Rooms are characterized by 

1. Combination of walls typically as a cuboid. 

2. Largest and most consistent of all possible cuboids in 

the scene (helps exclude walls internal to the room). 

3. Often encompasses all extreme range pixels in the 

horizontal dimensions (along the image width).  

4. Room fitting can be reduced in most cases (based on 

assumptions of known floor and ceiling) to fitting of a 

maximum of just three (largest) vertical walls.  

C. Doorway Modeling 

Doorways are characterized by 

1. External outliers (or exclave points in range images) to 

the room model, that can be grouped to form regions 

with size bounds similar to that of typical doors or 

doorways.  

2. These outliers should be at a jump discontinuity to the 

modeled room surfaces.  

3. Floors are typically uniform across doorways. 

III. ALGORITHM 

The algorithmic pipeline presented in this paper follows 

from the above sequence of modeling. The framework can 

largely be divided into three sections. The first section deals 

with color image processing, wherein after pre-processing, 

reflectance image gradients are extracted from the 2D image 

and segmentation (along with region selection) is carried to 

identify walls and wall-like regions. The second section 

performs dense stereo depth data processing in a number of 

steps that include denoising, piecewise diffusion to 

reconstruct depth surfaces and depth segmentation to 

identify intra-object depth discontinuities. The last section 

deals with 3D indoor structure generation by fitting planes to 

the wall-like surfaces and grouping them to find room 

boundaries. The 3D reconstruction of the room from the 

depth map leads to detection of doorways and other negative 

spaces in the room. The various stages are detailed below. 

Color Image Processing 

A. Color Pre-processing 

The color image, obtained from the centrally located 

camera is rectified and used as the reference image. 

Locations of dead or noisy sensor pixels are pre-determined 

and the intensity at these locations approximated by nearest-

neighbor filling. All other images from the sensor system 

Figure 1. Intrinsic Image Extraction and Segmentation (A) Input color image (B) Segmentation using the standard Felzenszwalb-Huttenlocher (FH) graph 

based algorithm – demonstrates high clutter in regions of the left wall with lighting changes (C) Shading intrinsic image (D) Reflectance intrinsic image – 

note that C and D (obtained by inversion of input image gradients classified as shading or reflectance respectively) are presented here only to demonstrate the 

separation of shading/lighting effects from material properties; segmentation is not carried out on these images (E) Segmentation on the input image using a 

low complexity multi-scale full gradient edge analysis scheme (F) Segmentation on the input image with the same scheme using reflectance-only gradients – 

shows superior performance in wall regions affected by lighting changes in comparison with full-gradient image segmentation schemes such as the graph 

based FH. Note that similar values of gradient and region size thresholds were used for the two approaches - FH and our scheme. 
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(range images - stereo pair and hence depth image, 

confidence image) are referenced to the coordinate system of 

the color image by registering with this image. As a pre-

processing step, the noise in the color image is reduced using 

a bilateral filter that preserves salient gradient values and 

hence sharp edges that are crucial for algorithms in the 

following stages of processing, including 2D segmentation.  

B. Intrinsic Reflectance Gradients Extraction 

The gradients of the filtered color image are estimated and 

these gradients are decomposed into shading and reflectance 

components. The shading component captures the lighting 

and shadows in the scene while the reflectance component 

captures the distinction in the material surfaces. This step is 

helpful to eliminate the highlights and shadow patterns 

created by light fixtures typically mounted on walls. Since 

walls are the primary focus of this 3D room reconstruction 

and doorway detection solution, it is beneficial to use 

reflectance components since they are devoid of gradients 

pertaining to highlight and shadow artifacts, thus 

representing the wall faces as true homogenous surfaces. 

The algorithm we employ for intrinsic gradient extraction is 

based on the intrinsic image extraction algorithm developed 

by Weiss [19] and extended by Tappen et al. [20]. In the 

presented framework, gradients in the intensity channel of 

the color image are classified as ‘shading’ or ‘reflectance’ 

gradients by modeling an asymptotic linear color variation 

across neighboring pixels. The formulation for intrinsic 

image extraction [20] is, , ,  x ,    1  

where ,  is the shading image, , is the reflectance 

image and , is the input image defined in the 

dimensions and . Using a logarithmic transformation and 

applying multiple scale selective gradient/ derivative filters  ,  we have the gradient images  and , the ,  

components of which can be classified as shading if the 

color pixels satisfy the constraints and 

respectively and as reflectance otherwise. Shading and 

reflectance component images can be reconstructed from the 

gradients as  , , ,   2  

where, * represents convolution, and are component 

gradients (image gradients classified as either shading or 

reflectance) and  is obtained from , ,  , ,
   3   

The shading and reflectance components as defined by 

equation (2) are shown in Fig. 1C and 1D. In our framework, 

the reflectance image gradients and  are used directly 

in the segmentation process. One possible disadvantage of 

this scheme is that gradients at edges pertaining to depth 

discontinuities or surface orientation changes in walls and 

other structures may not be captured in the reflectance 

component. This disadvantage limits the application of 

algorithms for intrinsic image extraction. However, this is 

not a major issue in the presented framework as the 

additional step of depth segmentation detects these 

gradients, from the depth image.  

C. 2D Reflectance Gradient based Segmentation and 

Region Isolation using Texture Analysis 

 Using the gradients and obtained in the previous 

stage, segmentation is carried out using a low complexity 

multi-scale edge analysis scheme. The scheme links edges 

found at various scales (by analysis of reflectance only 

gradients) using proximity and similarity measures to form 

enclosed regions or segments. The choice of the 

segmentation algorithm is based on the goal of meeting real-

time constraints for deployments on robots, which excludes 

the possibility of using algorithms like the Felzenszwalb-

Huttenlocher (FH) graph based algorithm. It can be seen 

from Figure 1B, 1E and 1F that the performance of the 

proposed ‘reflectance gradient only’ segmentation approach 

is superior in terms of output to traditional full-gradient 

image segmentation approaches like FH (with gradients as 

grid graph edge weights) and the variant of the multi-scale 

edge analysis algorithm operating on full-gradients, in the 

given context of wall detection with lighting and shading 

changes. The performance is comparable in regions devoid 

of lighting changes. Any possible over-segmentation in 

regions of high texture does not affect the output since these 

regions are unlikely to be wall surfaces. The segmented 

regions are then subjected to a region selection algorithm 

that uses pixel spans and texture analysis to select walls and 

wall-like structural surfaces that are expected to support the 

room model. The characteristic features of walls such as 

homogeneity, large pixel spans and representations using 

high gray-scale intensity values are used in region selection. 

The current framework employs 2 levels of thresholds (hard 

and soft) on measures of entropy (E), homogeneity (H), 

uniformity energy (U), correlation (R), contrast (C) and 

other constraints based on the Grey Level Co-occurrence 

Matrix (GLCM) to select wall-like surfaces. Estimated soft 

threshold values, along with the assigned confidence values 

of the measures on condition conformance (in brackets) for 

the two-class separation (positive wall classification) are 

Figure 2. Segmentation and Regions of Interest Selection (A) Input color 

image (B) Ground Truth (Manual Segmentation) for walls and wall-like 

regions (floors, ceiling etc.) (C) Results using FH (mislabeled pixels: 70292) 

(D) Results using our framework (mislabeled pixels: 32069) – note the 

correspondence to Fig. 1B and 1F respectively, mislabeled pixels are 

estimated by XOR logical gating with the ground truth. 
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H>0.99 (1.0), C<0.0275 (1.0), R>0.9 (0.9) - can be 

undefined or slightly negative under near perfect surface 

homogeneity; reduces slightly below this threshold for walls 

with rough texture such as in the case of visible brick 

layouts, U>0.6 (0.3) - is unreliable and varies with the 

lighting changes; ideally 1.0 under no lighting change or 

natural lighting but drops to 0.3 under artificial lighting/ 

large lighting changes, E<5.5 (0.8). The hard threshold 

values are H>0.96 (0.8), C<0.0475 (0.7), R>0.85 (0.6), 

U>0.3 (0.1), E<7.0 (0.5). The surface is classified as a wall 

if the aggregate confidence value exceeds 3.0 out of a 

maximum of 4.0. On a representative data set of 80 image 

chips of various material textures found indoors, such as 

wood, tile, brick, rock, vegetation, carpet, cloth, curtain, 

steel, bronze, tree bark, granite etc., besides painted wall 

surfaces, the classifier achieved a classification rate of 95%, 

with a wall detection rate of 97.87%. False alarms were 

caused due to white curtains, steel and floor tiles that were 

homogenous or ‘wall-like’. The features were robust to wall 

colors and surface roughness. Objects such as uniformly 

colored doors and cupboard doors had confidence measures 

close to that of walls. Since these surfaces are also helpful in 

the room reconstruction, they are used in further analysis. 

Thresholds on pixel spans of the surfaces (> Iw*Ih/15, where, 

Iw is image width and Ih is image height) and average gray-

scale intensity (> 100/255), further help reduce the detected 

segments to the set of primary room surfaces. The 

framework can be extended to use machine learning 

techniques to adaptively estimate these thresholds based on 

in situ training in the environment of deployment of the 

robot. This is the scope of future work. Figure 2 

demonstrates the results of the segmentation and region 

selection approach and compares the performance with the 

output of the region selection approach in combination with 

the FH segmentation algorithm. While the number of 

mislabeled pixels is 70292 with the FH approach, this 

number is less than half (at 32069) for our framework. The 

region masks thus obtained are used for piecewise isotropic 

depth diffusion. 

 Stereo Depth Image Processing 

D. Depth Pre-processing 

Depth pre-processing involves registration and 

transformation of the depth pixels to the coordinate system 

of the color camera. This is followed by noise removal. This 

is done using a novel sparse de-noising algorithm, 

employing iterative hysteresis filtering and morphological 

reconstruction. The various steps in the proposed noise 

removal algorithm are detailed below: 

1. The input depth map is divided into core-blocks and the 

standard deviation (σc) of each core-block is estimated 

using values of depth pixels that have high confidence 

measures (obtained from the confidence map). Macro-

blocks corresponding to each core-block are created, 

composing of a larger number of pixels and centered at the 

core-block and the standard deviation estimated as σm. 

Macro and core block linear dimensions are selected as Iw/10 

and I /10 based on expected spans of depth surfaces at 

mean ranges from the camera (for given FOV). Typical core 

and macro block sizes are 7x7 and 50x50 respectively. 

2. For each core-block and macro-block, logical maps 

corresponding to all valid pixels, the values of which fall 

within a pre-determined threshold times σc and σm, 

respectively, are estimated. The threshold for the macro-

block is set higher than that for the core-block, thereby 

permitting greater deviation. Testing on a number of images 

yielded a rough rule of the thumb calculation for the macro-

block and the core-block thresholds. The thresholds can be 

calculated as 0.25/P and 0.175/P respectively, where P is the 

percentage pixel density with typical values of the thresholds 

being 1.0 and 0.7 for 25% pixel density. 

3. Valid pixels in the core-block that are flagged true in both 

the logical maps retain their original values in the filtered 

depth map. These pixels are well-behaved, in the sense that 

they satisfy topological smoothness constraints and are 

likely to belong to the same surface. 

4. Pixels that are flagged true in only one of the logical maps 

are categorized as hysteresis pixels. These pixels might 

belong to other surfaces at a depth discontinuity with respect 

to the most prominent depth surface in the current core-

block. For each hysteresis pixel, neighborhood pixels are 

ascertained (based on limits - set at 300 for the current 16-bit 

depth pixel range, on depth values from the current 

hysteresis pixel value and connected component analysis) in 

the macro-block map (which is expected to contain much of 

the surface supporting the hysteresis pixel, while only a 

small portion of this surface is present in the core-block that 

had resulted in the hysteresis pixel being classified as an 

outlier in the core-block logical map). If the size of the 

neighborhood pixel region exceeds a certain threshold, 

indicating the presence of a high confidence depth surface as 

opposed to spurious depth pixels, the hysteresis pixel along 

with the neighborhood pixels are added to the filtered map. 

5. The above steps are iterated for the entire depth map until 

Figure 3. De-noising depth data. (A) 2D Color image (B) Noisy depth map 

from the stereo system – Note the presence of red pixels in areas that are 

predominantly blue and vice-versa (the depth varies from blue – nearest to 

red – farthest). Bounding boxes in orange are shown around large clusters of 

noisy pixels (C) Results from a median filter – Note that though much of the 

noise is removed, only pixels at surface segment boundaries have been 

preserved while almost all of the valid depth values in the interior of surface 

segments (which are crucial for proper surface curvature reconstruction) are 

lost (D) Results of the proposed scheme – Note that while most of the noise 

is removed, surface depth pixel values are preserved 

A B 

C D 

2761



  

the number of pixels classified as noise pixels between 

iterations falls below a threshold.  

The final noise filtered depth map is obtained by 

morphological reconstruction of the marker under the mask 

map, where the iterative hysteresis filtered depth map 

obtained in the previous step is used as the marker and the 

original depth map is used as the mask. Results presented in 

Figure 3 show superior performance of our algorithm in 

relation to another image-agnostic filtering scheme – the 

median filter. On a representative set of images from the 

Middlebury dataset, the filtering scheme reduced the noise in 

the dense depth data from ICM stereo by an average of 26% 

(MSE drop from 2300 to 1700). 

E. Depth Diffusion 

Since the input depth map is quite sparse, it is required to 

convert it into a dense cloud for reliable and coherent 

surface estimation. This step is necessary since the span of 

the surfaces (in terms of pixels) is crucial for reliable 

weighting in the fitting and room reconstruction process and 

for outlier rejection. Diffusion of depth values is carried out 

using a Piecewise Isotropic Laplacian Partial Differential 

Heat Linear Equation (PDE) Solver that operates only in 

regions identified by masks obtained in step C. By 

combining Multi-grid and Iterative Back Substitution (IBS) 

schemes to solve the PDE equation, rapid convergence is 

obtained, demonstrating suitability for real-time 

deployments. 

The PDE representing the flow of heat in a 2 dimensional 

isotropic medium [21] is given by r, r,  r,    4  

where, r,  represents the heat measured in the two 

dimensional space r(x,y) at time t. If  varies in the space of 

the depth map dimensions, the equation becomes 

anisotropic. Equation (4) can be also be used to represent 

depth diffusion, where r, 0  represents the original depth 

values and  r,  final depth values obtained after 

diffusion (at steady state). This equation is equivalent to  r, r,      5  

where,   is the Laplacian operator. While it is possible to 

define  using the confidence map or reflectance gradients in 

order to preserve edges, we hold  constant within regions 

identified by the segmentation mask in the current 

framework, giving rise to a piecewise isotropic formulation. 

This scheme preserves the wall edges (segment boundaries) 

identified in the 2D image. Using the tuple (i,j) for the row 

and column indices of the image, we have 

, ,  , , 1   , ,
  , . , ,
 , . , ,
 , . , ,
 , . , ,                    6  

where, the constant  ≤ 0.25 controls the overall rate of 

diffusion. In the steady state, 

1/ . , ,
  , . , ,

, . , ,
, . , ,

, . , ,
 0                                                     7  

Representing 1/  as λ and linearizing the tuple indices, 

(7) can be reduced to a matrix system. A sample matrix for a 

3x3 depth image, is shown in (8) 
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000000000

     8   

                     9  

This system of equations forms a block-tridiagonal matrix 

system with fringes. In matrix A, from equation (8), the 

blocks are denoted by red squares, the upper (called , ) 

and lower ( , ) tri-diagonals by the violet and blue 

indices along with the main diagonal, the upper fringe 

( , ) in green and lower fringe ( , ) in orange, along 

with the main diagonal ( , ). For the case of pixels with 

known depth values, the corresponding row in the A matrix 

has only one non-zero element (at the main diagonal and 

equal to 1), the row in the x vector is non-zero and equal to 

the known depth value and that in B is set to 1. IBS 

algorithm has been used for isotropic diffusion of grayscale 

images, in the context of image compression [22]. This 

paper extends the scope of IBS to perform piecewise 

isotropic diffusion of depth data. Adapting the IBS scheme 

[23] for the case of depth maps, the pseudo-code for solving 

the system is: 
FringeTriDiagSolver := {InitializeSolution, 

    InitializeMatrixComputation,  iiter -> 0, 

While[{CurrEps > EpsTol && iiter < MaxItr && 

AbsErr > AbsErrTol},{ 

      iiter -> iiter + 1, 

      StorePreviousResult, 

  ForwardSubstitution,BackwardSubstitution, 

  ComputeMaximumResidual}] } 

where, InitializeMatrixComputation estimates the values of 

intermediate matrices , , as, ,   1/   , 1,   ,, 1   ,  ; ,   , , , 1 1,1   , ; ,   ,  , ; ,   , 1, ; ,   , , 1 ;       10  
ForwardSubstitution and BackwardSubstitution modules are 

iterated until convergence of X estimated as,  
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,   , , 1,   1,   1,   , , 11, 1   1, 1   , 1  , ; ,   , 1, ; ,   , , 1 ; ,   ,   ,   ,   , ;   11  
where  is an inverse matrix, , ,  are intermediate 

matrices and  is the solution matrix (the right side of the 

equation). Traditional isotropic diffusion solvers smooth out 

edge regions, while direct application of anisotropic 

diffusion to depth data smoothens depth edges in regions 

where image gradients are weak (such as in the case of the 

edge of intersection of two homogenous wall surfaces). In 

the piecewise isotropic diffusion solver, the calculation of 

the forward and backward substitution modules is 

suppressed for known depth pixels, thereby propagating and 

preserving depth edges across iterations in addition to those 

identified during the segmentation process (Fig. 4).  

While the above solution is reasonably fast (of the order 

of 0.5 sec on a 3.2 GHz single core PC with 512 MB RAM, 

for a 320x240 depth image), the convergence rates are to be 

further enhanced for real-time operation on resource 

constrained systems. In our frameworks, we use a variant of 

the multi-grid approach (that employs the solved equation 

systems at smaller scales as pre-conditioners for higher 

scales) to speed-up calculations of the IBS. Results of 

piecewise depth diffusion for an input depth map (Figure 

4B) are presented in Figure 4C. On the representative 

Middlebury dataset, diffusion reduced the MSE from 1700 

(post-filtering) to 1100. 

F. Depth Segmentation  

An additional step of depth segmentation is necessary to 

detect depth discontinuities and hence surface boundaries 

that are not captured in 2D edge segmentation. A good 

example is the case of a discontinuity in a wall surface as a 

result of a pillar or column like structure or a depth edge 

created at the intersection of two wall faces of a room (Fig. 

4C, 4D). Since the faces of the room are expected to be of 

the same color, it is possible that a reliable edge is not 

detected at the junction of these faces or at locations of 

surface orientation changes on a column during color 

processing. As explained in the previous section, our novel 

diffusion step renders these edges detectable and regions 

separable using a standard segmentation approach. A 

number of range segmentation algorithms such as relaxation 

labeling, planar and linear region growing, clustering are 

available for segmentation of dense depth data [24]. In our 

approach, the simple, low-complexity multi-scale edge 

detection and linking approach explained in section C is 

sufficient for intra-object (here intra-wall) depth 

discontinuity detection as demonstrated in Fig. 4. This 

approach is chosen with a view of minimizing computation 

requirements. This also removes noisy depth surfaces. 

3D Scene Generation  

G. Surface Fitting 

The detected wall-like depth segments are then fit to 

planar surfaces. This process helps parameterize the depth 

surfaces, rendering surface orientation analysis easier. All 

surfaces that do not conform to planar constraints are 

eliminated based on the measure of error obtained from the 

fitting process. Since walls are expected to satisfy Manhattan 

constraints and the floor plane is approximated to be 

perpendicular to the image plane, all depth surfaces that are 

not perpendicular to the floor plane (within tolerance limits) 

are also excluded from further analysis. 

The plane fitting is carried out using Iteratively Re-

weighted Least Squares Robust Linear Regression. In order 

to overcome the effect of propagation of errors to the 3D 

planar coordinates - X and Y (ideally independent variables) 

from the depth coordinate Z (ideally dependent variable) 

during point cloud estimation, the 3D fitting is carried out 

using a reprojected equation in the image plane given by 

(12). The equation is solved using a transformation of 

variable (1/Z) to a temporary variable z, with x and y being 

image coordinates. 

 12  

where, A, B, C and D are the true plane equation coefficients 

in the 3D world, and are camera focal lengths, while 

,  is the principal point (The additional negative sign 

is due to an inverted Y reference system). 

H. Room Boundaries Detection  

The depth surface planes are projected onto the ZX plane 

and PCA is used to find the principal orientation of each 

wall like surface. The planar surfaces are then classified by 

orientation and mapped to a cuboidal (deformable – to 

permit some deviation) structure. Planes that do not support 

the cuboid hypothesis are rejected. Planes are ranked based 
on consistency, span, texture content and the degree of 

meeting Manhattan constraints. Higher ranked planes are 

preferred (using a rule based framework) in the room 

boundary establishment. This scheme permits use of wall-

like surfaces like doors (at reasonable orientations) and 

cupboards for approximating the room reconstruction 

Figure 4. Depth Diffusion and Segmentation (A) Input image – please note 

that the depth edge formed by the junction of wall plane parallel to the 

observer (in front) and perpendicular to the observer (to the left) is hardly 

visible and hence color image segmentation produces one single surface 

(B) Input depth map (C) Diffused depth map (after filtering & within mask 

from step C) – here the depth edge is clearly visible (D) Segmentation in 

depth identifies the depth edge (between the blue and green segments)  

B 

C D 
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whenever the current camera viewpoint does not contain 
significant wall surfaces. In case of contention between wall-

like and other large (door/cupboard door) planar surfaces, 

the algorithm adaptively chooses the wall-like surfaces for 

reliable reconstruction. The active room sector is also 

identified by the scheme. 

This framework renders any visibility tests and constraints 

superfluous. This is because the depth diffusion uses the 

values of all know depth pixels (noise suppressed) to build 

the depth surfaces, irrespective of the curvature and the 

depth segmentation step breaks those surfaces that would not 

have satisfied visibility constraints. Also, by ensuring that 

those surfaces that do not fit the planar constraints are 

removed from the final room boundary modeling and by 

permitting the PCA based approach to build wall sectors, 

only the most consistent and visible surfaces are used in the 

room modeling process (Fig. 5). 

I. 3D Room Reconstruction and Doorway Detection  

Using the detected room sector map, height of the camera 

above the ground and standard room height measurements, 

the 3D structure of the room is reconstructed. Doorways are 

detected by clustering depth pixels that do not support the 

concave room structure hypothesis. Typical measurements 

of doors are used to improve localization of doorways. 

These doorways are modeled as open regions in the 3D 

representation with the exclave pixels (those belonging to 

the room seen through the doorway) as sparse 3D points 

(Fig. 5P). The 3D reconstruction has also been texture 

mapped to enable easy identification of the exact position 

and width of the doorway. The use of bounds on depth 

discontinuity ranges (between current room boundaries and 

exclave pixels for categorization as a surface from the room 

beyond the doorway) make the scheme robust to presence of 

small cupboards and other enclosures, leading to high 

recognition rates for true doorways (Refer Fig 6C & 6D).  

IV. ANALYSIS 

The results presented in the previous section demonstrate 

the robustness of the framework. As described in Figure 5 

(with results for all stages of the algorithmic pipeline and 

comparative analysis), the proposed scheme outperforms 

traditional RANSAC based plane fitting and room boundary 
detection algorithm that uses the output of our surface 

segmentation approach. The pixel mislabeling error is 5 

times higher for RANSAC (our framework: 8713, 

RANSAC: 40125). Direct application of RANSAC to the 3D 

data set produces even worse results due to the high amount 

of noise in the input depth data. This is reflected by the fact 

that the orientation of the vertical plane (as it appears in the 

top view image in Fig. 5(O)) has a high amount of error. The 

algorithm is also shown to be robust for a variety of complex 

scenes. Fig. 6 describes robust and consistent performance 

for two positive scenarios (true doorways) and two scenes 

B1 B2 B3 

D1 D2 D3 

A1 A3 A2 

C3 C1 C2 

Figure 6. 3D Scene Reconstruction and Doorway Detection - Sets A and B are scenes with true doorways, while sets C an D are cluttered scenes with 

plenty of negative spaces but no doorways. Images indexed 1 present 3D ground truth of the scene, 2 are 2D input images and 3 are final reconstructions. 

Note that while true doorways have been estimated in sets A (at the intersection of two perpendicular wall faces) and B (2 doorways - a large one leading 

to the brighter room directly in front and a small one at the extreme left), the algorithm builds the 3D scene in sets C and D without detecting any 

doorways, demonstrating the robustness of the scheme to clutter. 

P 

Figure 5. Complete Algorithmic Pipeline (A) 3D ground truth of the scene (yellow arrow indicates position of camera) (B) Synthetic view from camera 

location – shows corner of a room composed of two intersecting wall planes and consisting of a doorway leading to a second room (C) 2D input image (D) 

Image segmentation output (E) Region selection output (of wall-like structures) (F) Input 3D point cloud (G) Input depth map (H) Depth diffusion output (I) 

Depth segmentation output (J) Surface fitting results (near top view) (K) Surface categorized and PCA based room boundary detection (L) Comparative 

results with RANSAC based plane fitting on segmented point clouds- inliers only (M) Ground truth room sector (N) Room sector results of proposed 

framework (mislabeled pixels = 8713) (O) Comparative results for RANSAC scheme (mislabeled pixels = 40125) (P) 3D Reconstruction (top view – note 
similarity to 5N) with exclave points corresponding to the doorway  
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with high clutter but no true doorways. While in the given 

environment (as modeled in Fig. 6 A1), all four doorways 

were reliably detected, the system was also demonstrated to 

work robustly in larger environments with multiple 

doorways and heavy clutter such as cupboards and closets. 

These are presented in Figure 7 in the form of reprojections 
of the built 3D models on to the image plane. Dark blue and 

red denote doorways and the floor, while walls are labeled in 

other colors. The reprojection error, measured here in terms 

of a rough metric of number of mislabeled pixels when 

compared with the manually labeled doorway, floor and wall 

regions in the image are also shown. It is seen that 

reprojection error is about 5% in typical scenes and 

exceptions are due to large and dynamic occlusions (such as 

humans). With a view to achieving real-time operation, 

critical modules such as depth diffusion have already been 

heavily optimized using novel techniques. Table 1 presents 

run-time comparisons of the proposed and other standard 
depth diffusion schemes (for 320x240 images with error 

tolerance of 0.01). Optimization of other modules for real-

time deployment is ongoing work.  

 
Method Time (sec) System configuration 

Our Scheme 0.048 Core 3.2 GHz, 512 MB 

CGHS – MG 1.100 Core 3.2 GHz, 512 MB 

YC04[25] 3.600 PIII 1.1 GHz 

ZBV08[26] 21.50 PIV 3.2 GHz, 256 MB 

Table 1. Run-time comparison of Depth diffusion schemes 

V. CONCLUSION AND FUTURE WORK 

In this paper, we have demonstrated the benefits of a 

novel framework of fusing 2D local and global features such 

as edges, textures and regions with geometry information 

obtained from pixel-wise dense stereo for reliable 3D indoor 

structural scene representation. The strength of the approach 

is derived from the novel depth diffusion and segmentation 

algorithms that result in better surface characterization as 

opposed to traditional feature based stereo or RANSAC 

based plane fitting approaches. While the presented 

framework is related to other color/range sensor fusion 

algorithms such as [27] and [28], it should be noted that in 

the context of indoor 3D room reconstruction, the presented 

framework is highly efficient with extremely sparse range 

data, preserves and detects depth edges in regions where 

there are no visible edges in the color data and also handles 

shadows and specular highlights effectively, unlike [27] and 

[28]. While the complete framework has been presented with 

a focus on achieving low computational cost and proof of 

concept established for a reliable 3D indoor environment 

modeling system, actual deployment of the algorithm on a 

robot (using optimized GPU routines) for real-time operation 

and testing is the scope of ongoing work. It should however 

be noted that, it might be sufficient to have the framework 

update the model/map of the environment every few seconds 

or whenever a large change in the viewpoint is expected or 

observed.  
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Figure 7. Results from test environment (Top to bottom) (a) Input scenes (b) 

Results of reprojection of the developed 3D model on to the image plane (c) 

Ground truth – manual labeling of doorway, wall and floor regions. The 

number of mislabeled pixels in the 5 test cases were 5%, 4%, 17%, 12% (due 

to large human occlusions) and 5% respectively.  
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