
Making Shapes from Modules by Magnification

Byoungkwon An*
dran@csail.mit.edu

Daniela Rus*
rus@csail.mit.edu

Abstract— We present a distributed algorithm for creating a
modular shape by magnification. The input to the algorithm
is presented with a small scale version of the desired shape
and a magnification factor m . The output of the system is the
object that corresponds to the m-fold magnification of the input
shape. We describe and analyze a distributed algorithm for this
capability and present simulation results. Making shapes by
magnification can be viewed as a programming interface for
creating objects by programming matter.

I. INTRODUCTION

Programmable Matter is achieved when a collection of
small robotic modules that are physically connected have
the ability to respond to the request of creating a goal
shape autonomously. Many approaches have been proposed
to creating shapes from modules. We have been developing a
method for creating shapes by subtraction [5]. Starting with
a collection of particles we call a bag of smart pebbles, we
compute which pebbles need to connect together to create the
desired object. Figure 2 shows example hardwares of smart
pebbles. The resulting object can be pulled out of the bag.
When the object is no longer needed the object is returned
to the bag and its smart pebble components are recycled and
made available for creating a different object.

In our previous work we presented distributed algorithms
for creating a desired shape using subtraction as the fun-
damental operation [5]. In this paper we demonstrate the
creation of objects by magnification. The intuition behind
this idea is as follows. We present the system with a
miniaturized version of the desired shape, for example a doll-
house sized chair. We then “dip” the object in the bag of
smart particles along with a magnification parameter. The
system outputs a copy of the desired object in the desired
size–for example a life-size chair with the same geometry
as that of the input object. The “smart” modules capable
of computing communicating to neighbors, and making and
breaking connections to neighbors. In this paper, the modules
capable of computing are up-down counter, loop-break and
evaluating a value is equal to 0 or not. The modules collec-
tively determine the shape of the object and compute how to
form connections among them to create a magnification of
the shape by a given magnification factor. Upon completion,
the desired object is extracted by reaching inside the smart
bag. This approach to making shapes can be viewed as a new
type of user interface for creating object. This user interface
allows the “programming” of different shapes without the
need for a computer to explicitly code the selection.

More specifically, we are given a set of modular robots
with the ability of making and breaking connections. We are

*Distributed Robotics Lab, CSAIL, MIT

Fig. 1. Screenshot of the simulator. The simulator makes char when the
magnification factor is 3. The module on red are the seed module. The
modules on blue are running Algorithm 3. The modules on pink is marked
itself as internal connecting modules and run Algorithm 4 . The modules
on Green is marked itself as internal connecting modules.

also given the description of a geometric shape and a mag-
nification factor. In this paper we present a distributed algo-
rithm that parses the given shape and creates the desired mag-
nification of the shape. The algorithm is implemented in the
subtraction approach to modular robots by self-disassembly
introduced in our previous work [5], [6]. Creating robotic
systems and smart objects by self-disassembly has one main
advantage over existing approaches by self-assembly. Self-
disassembling systems entail a simple actuation mechanism
(disconnection) which is generally easier, faster, and more
robust than actively seeking and making connections. Mod-
ular robots that can self-disassemble provide a simple and
robust approach toward the goal of smart structures and
digital clay. A collection of millions of modules, if each
were small enough, could form a completely malleable
building material that could solidify and then disassemble on
command. As in existing selective laser sintering systems,
(which fuse particulate matter to create rapid prototypes),
a self-disassembling robotic system would only require the
user to shake off the unused modules.

Fig. 2. Two examples of hardware modules that can use the magnification
algorithms for making shapes [6], [5]. We are currently implementing the
magnification algorithm on a 50 modules of robot pebbles[6]

The process of creating a shape by magnification proceeds
as follows. An initial amorphously connected shape is created
of the existing modules. Then, a scaled-down version of

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 1140

the desired shape is presented to the system. The system
analyzes the desired goal shape and computes incremen-
tally the desired magnification for the shape using parallel
evaluation of a system of three rules per module. Using
local communication, the group cooperates to distribute this
information so that all modules know whether to remain as
a part of the system or to extricate themselves. Finally, the
unnecessary modules disconnect from the system and drop
off to create the desired shape by magnifying the input shape.

A. Related Work

Our work builds on prior and ongoing research in modular
and distributed robotics [1], [18], [4], [8], [11], [3], [10],
[13], [16], [14], [2] and self-assembling systems [9], [15].
For a good review of this field see [17]. This prior work
is concerned with how to build a modular system capable
of aggregating different shapes autonomously. The work is
focused on the basic module design, modular system archi-
tecture, and control and planning algorithms for achieving
the desired shape creation or change. Most these systems
are composed of identical modules that can connect to each
other, communicate, have some actuation capabilities, and in
general are able to cooperate to perform a task as a group.
Like in these prior systems, we assume that the modules can
connect and communicate with each other in order to perform
a global task. The only actuation available to the system is
in the form of local connections and disconnections. This
is the subtraction model that supports making shape by
disassembly and was introduced by our prior work [7], [5].
The work in this paper is different in that its focus is the
creation of a desired magnification of a given shape in the
subtraction model.

input_h_shape: Example of input “h” shape.

0 1 2 (0,0)0 1 2
0
1
2

(0,1)
(1,1)
(2,1)
(0,2)
(2,2)

“h” ‐ Shape Coordinate

(2,2)

Seed Module

Fig. 3. Example of input “h” shape coordinates into the seed module.

Scaling has been proposed by [12] as a way of making
the largest possible instantiation of a given shape geometry
according to how many modules there are in a system. The
algorithm is centralized and computes the largest object of a
desired shape that can be constructed from a set of modules.
When some modules are removed, the system adapts and
compute smaller sized object. Our work is different from
this prior work that uses magnification in several ways. We
use subtraction as the basic model for creating shapes. We
specify the desired magnification size as part of the goal. We
develop and analyze a decentralized approach to this problem
and examine the use of buffering as a way of optimizing
communication in this system.

1 2 3

ex_h_mag: Example of magnification “h” shape.

x 2 x 3x 1

3

3x3 h 6x6 h 9x9 h

Fig. 4. An example of magnification “h” shape from the smart pebbles
in 2D. Magnification factors are 1, 2, and 3 from left to right figures. Top
figures are the smart pebbles in the bag. Bottom figures are the connected
smart pebbles which is the magnified desired shape. The red module is the
seed module. The modules on green is marked itself as internal connecting
module. The module on blue is disconnecting module.

II. PROBLEM FORMULATION: DISTRIBUTED
MAGNIFICATION

We are given a collection of modules capable of shape-
formation by subtraction such as the Smart Pebbles [6]. The
modules in the system are not localized. We assume that they
have the ability of communicating locally to neighbors and
of programming their connections to attach to and detach
from their neighbors.

In the future we envision providing the input to the
system as a physical miniature shape the that system could
envelop, model its geometry, and automatically extract the
input information from it. For now we provide the model to
the system as shown in Figures 3 and 4.

Shape formation by magnification and subtraction pro-
ceeds through three stages: shape parsing, shape distribution,
and disassembly.

A. Shape Distribution

The first phase of shape distribution takes as input the
geometry of the sample and the magnification factor (Figure
3). This phase expects a representation of the shape in the
form of a list of 3d coordinates expressed in a local coordi-
nate system. The goal is to ensure that each module in the
final magnified configuration is informed that it is part of it.
We will accomplish this by a sequence of messages flowing
outward to mark some key modules on the boundary of the
structure. These modules correspond to the mapping of the
input shape modules to the goal shape. A second sequence of
messages originate at the location of these special modules
and locate and mark all the internal modules in the goal
shape. These messages are called inclusion messages.

This list can be provided directly to the system as input.
Alternatively, this representation can also be extracted from
the sample object when the object consists of a set of
connected modules. Parsing the geometry of the sample
object for a list of local coordinates for each module is
an instance of localization and proceeds as follows. The

1141

Algorithm 1 Shape Distribution: Push the Shape Represen-
tation Message

1: input1: loc (= list of coordinates)
2: input2: scale (= magnification Factor)
3: for f = 1 to The number of loc do
4: message.x = loc[f].x × scale
5: message.y = loc[f].y × scale
6: message.z = loc[f].z × scale
7: message.m = scale
8: loop
9: Send message to the neighbor

10: end loop
11: end for

Algorithm 2 Shape Distribution: Processing the Shape Mes-
sage without the Buffer

1: loop
2: wait to receive a message
3: if message 6= (0,0,0) then
4: Do Algorithm 3: Shape Distribution
5: else
6: Do Algorithm 4: Shape Magnification
7: end if
8: end loop

Seed Module determines the relational location (0,0,0) (Fig-
ures 4 and 5 .) The Seed Module sends a message to the
structure as a starting point (Algorithm 1 and Figure 5.)
Each message includes the coordinate of the final destination
and the magnification factor ((x,y,z),m). Figure 2 shows an
example of the message. When the message is ((0,6,3),3),
the final destination is the relational location (0,6,3) and its
magnification factor is 3. When a message is received, it is
transmitted to the next module as explained in Algorithm 2.
The messages arrive their final destination without and any
global or local knowledge about the system because the
modules receiving the message repeat the Algorithm 2.

Given an encoding of the model shape in the form of
a list of 3D coordinates and a magnification factor, the
final shape is computed and transmitted to the connected
modules forming the “bag of smart sand” as follows (see
Algorithm 1.) For each coordinate tuple in the list, the mag-
nification factor is applied to each coordinate. As shownin

Algorithm 3 Shape Distribution: Distributing the Shape
Message

1: if message.x 6= 0 then
2: message.x −− ; send message to right until success
3: else if message.y 6= 0 then
4: message.y −− ; send message to front until success
5: else if message.z 6= 0 then
6: message.z −− ; send message to bottom until

success
7: end if

Algorithm 4 Shape Distribution: Magnifying the Shape
Message

1: if message.x= 0, message.y= 0 and message.z= 0 then
2: Set the connected module state
3: message.m −−
4: if message.m 6= 0 then
5: // message is ((0,0,0),m)
6: send three messages to right, front, and bottom,

respectively, until success
7: message.y ++
8: // message is ((0,1,0),m)
9: send message to right until success

10: message.z ++
11: // message is ((0,1,1),m)
12: send message to right until success
13: message.y −−
14: // message is ((0,0,1),m)
15: send message to right until success
16: send message to bottom until success
17: end if
18: end if

Algorithm 5 Shape Distribution: Distributing the Shape
Message (Negative Coordinate Extension)

1: if message.x < 0 then
2: message.x ++; send message to left until success
3: else if message.y < 0 then
4: message.y ++; send message to back until success
5: else if message.z < 0 then
6: message.z ++; send message to top until success
7: else if message.x 6= 0 then
8: message.x −−; send message to right until success
9: else if message.y 6= 0 then

10: message.y −−; send message to front until success
11: else if message.z 6= 0 then
12: message.z −−; send message to bottom until suc-

cess
13: end if

Figure 5 the coordinate (0,2,1) becomes (0,4,2) when the
magnification factor is 2 and the coordinate (0,2,1) becomes
(0,6,3) when the magnification factor is 3. A new message
is created out of the new coordinates and the magnification
factor. Algorithm 1 generates and sends such a message
for each module in the original structure. The message
sent from the seed module is no difference from the other
messages between modules. So, the modules the receiving
the messages from seed modules process Algorithms 2
without any difference from the messages from the “normal”
modules.

Algorithm 2, 3, and 4 shows how a pushed shape message
is processed. Algorithm 5 that can replace Algorithm 3 is
for negative coordinate extension. The goal is to push this
message through the structure until it reaches the module it
labels (Algorithm 3 .) Suppose module (i, j,k) has received

1142

Y

(x 3)
(0,2,1)
(x 3)

Z
1

((0,6,3),3)

8

((0,5,3),3)
2 3

((0,4,3),3)
4

((0,3,3),3)
5

((0,2,3),3)
6

((0,1,3),3)
7

((0,0,3),3)

8

9

((0,0,2),3)

((0,0,1),3)

((0,0,0),3) ((0,0,0),2)
10

A ((0,0,0),1)B

A

((0,0,0),2)

((0,0,1),2)

((0,0,0),1)
((0,0,0),2)

B

B

(())

((0,0,0),1)
((0,0,0),1)
((0 0 1) 1)

A
((0,0,1),1)

C

C

B

B
B

((0,0,0),1)

((0,0,1),1)
C

((0,0,0),1)

((0,0,1),1)

((0,0,0),1)

C
D

Fig. 5. An example of the message transmission. The red module is the
Seed Module. The green modules are connected modules (Algorithm 4.) The
tuples ((i, j,k),m) in the modules are the received messages. The numbered
arrows show the message transmitting. The numbers indicate the sequence of
transmission. Arrow 1 shows the first transmission (Algorithm 1.) Arrows
2 - 10 show the case when the transmitting message is not ((0,0,0),m)
(Algorithm 3.) Arrows A - D show the case when the transmitting message
is ((0,0,0),m) (Algorithm 4 .)

the message ((0,6,3),3). The module will forward the mes-
sage to one of its neighbors that is closer to the destination
than itself. If the module is pushed along the x axis its first
coordinate is decreased. If the module is pushed along the
y axis its y coordinate is decreased. If the module is pushed
along the z axis its z coordinate is decreased. For the example
in Figure 5 the message ((0,6,3),3) traveling along the y
axis will be received in sequence, for example ((0,5,3),3),
next ((0,4,3),3), ((0,3,3),3), ((0,2,3),3), ((0,1,3),3), and
finally ((0,0,3),3). At this point the message will change
direction and start traveling along the z axis till it becomes
((0,0,0),3).

At this point the given module in the original structure has
found its corresponding module in the magnified structure
(Algorithm 4.) When all the modules in the input shape have
found their match in the goal shape, the goal shape skeleton
is computed but the internal modules are not marked. The
final stage of shape distribution identifies and marks the
internal modules. Intuitively, we would like for each already
marked to be in the final shape to send final shape inclusion
messages to the internal modules that are closest to it. If the
module has coordinates (i, j,k) and the magnification factor
is m, this module must send inclusion messages to all the
modules in the m×m×m block originating at (i, j,k). The
following procedure accomplishes this task. Upon receipt
of the message ((0,0,0),m) the receiving module generates
messages it sends to its neighbors in the x, y, and z directions.
Each message hop decreases the magnification factor. For
example, the module receiving the message ((0,0,0),3)
sends the message ((0,0,0),2) in the x,y and z direction,

the messages ((0,1,0),2) and ((0,1,1),2) in x direction, the
message ((0,0,1),2) in x and z direction (Algorihtm 4.)
The message generation procedure is repeated by all nodes
asynchronously and in parallel until the magnification factor
becomes 1. Upon receipt of the message ((0,0,0),1), the
receiving node stops forwarding the inclusion message as
Figure 5 and Algorithm 4.

At this stage all the modules in the goal magnified shape
are marked. The next phase of the algorithm requires that all
modules that did not receive inclusion messages disconnect.
The remaining connected structure is the desired magnified
object.

B. Correctness Analysis

We now demonstrate that the magnified shape is computed
correctly.

Theorem 2.1: Given a goal shape and a magnification
factor m, Algorithms 1, 2, 3 and 4 will mark all the modules
of the goal shape and only the modules of the goal shape.

Proof: We observe that the magnification happens in
two main phases for each message. In the first phase each
module in the original structure is mapped to a location in
the magnified structure. This establishes the scaffold of the
magnified object. Next, assign the local coordinates (0,0,0)
to each module in the scaffold. By Algorithm 4, each module
will send inclusion messages to all the modules in the m×
m×m block originating at (0,0,0). The union of these blocks
is precisely the desired magnified object.

Algorithm 6 Shape Distribution: Processing the Shape mes-
sage with the Buffers

1: < Processing Buffers>
2: loop
3: Wait until receiving a message
4: if bu f f erQueue are full then
5: reply f alse
6: else
7: receive a message to bu f f erQueue
8: reply true
9: end if

10: end loop
11: < Buffering >
12: loop
13: wait until bu f f erQueue has messages
14: message = bu f f erQueue.pop()
15: Do Algorithm 2
16: end loop

C. Optimization by Buffering

We observe that if the modules do not have a way to
simultaneously store and process messages, the performance
of the system is affected by the order in which messages
arrive at each module. When multiple messages arrive at
the same time it is beneficial to use buffering to parallelize
message processing. To use buffering, Algorithm 6 replaces

1143

Algorithm 2. Algorithm 6 shows an extension of the system
that uses buffering. This algorithm does not change the flow
and correctness of the Magnification algorithm.

Fig. 6. Two examples of screenshots from the simulator. The first example
shows the creation of a chair. The second example shows the creation of a
shelf. In each image the red module is the seed module. The modules in blue
are running Algorithm 3 . The modules in pink are the final destinations
of the messages transmitted from the Seed Module. The modules in pink
and green are internal modules and run Algorithm 4.

III. IMPLEMENTATION IN SIMULATION

We have implemented Algorithms 1, 2, 4, 5, and 6
in simulation in MATLAB. We have used this system to
experiment with several different object geometries and
magnification factors. We have done simulation experiments
on several complex objects (Figure 6). We repeated each
object magnification simulation three times and iterated for
all magnification scales between 1 to 10. We have done the
simulations without buffering, and with 1 and 2 buffers.

To evaluate building a shape with this system, we use
three metrics: (1) the number of messages, (2) the size
of each module’s buffer, and (3) the computational power
of each module’s processor. The number of messages is a
function of the size of required memory, the input, and time.
The buffer size is dependent on the size of circuits in the
module and to the time required to build the desired object.
The algorithm has a minimalist flavor. It consists of three
main computation functions: communication of a message
containing four numbers, counting, and comparing to zero.

Number of messages. For a scale 1 size chair composed
of 23 module, the number of the messages is 23. Our

Fig. 7. The Number of Modules for The Shape vs. The Number of
Messages / The Number of Modules for Chair Shape

Fig. 8. The Number of Messages for The Shape vs. The Number of
Modules for The Shape. Blue is No buffer, green is 1 buffer, and red is 2
buffer

algorithm also uses 23 messages for building the scale 10
size chair which needs 23000 modules. We conducted simu-
lation experiments for creating chairs with all scaling factors
between 1 and 10. Table I shows the Message Efficiency
for building the chair with scaling factors 1 through 10.
We define Message Efficiency as the ratio of the number
of messages to the number of modules while building the
desired shape. Figure 7 plots the message efficiency.

Buffering. To see the effects of buffering, consider using
Algorithm 3, 4 and 5 to make a chair. When (i, j, k) is (0, 0,
0), the processor will be locked until all of the magnification
messages are sent, because all of the messages are unique
and independent of the other messages. Table II and Figure 8
show how buffering affects running time. The simulations
were evaluated using the ratio between the number of buffers
and building time, when chairs with varying scaling factors
are built. Each scaling factor was simulated 10 times and the
reported numbers are averages. For small scaling factors, the
buffers make a difference by speeding the computation. For
large scaling factors, the number of buffers does not affect
the running time of the algorithm.

1144

TABLE I
RESULT OF SIMULATION - THE NUMBER OF MESSAGE / THE NUMBER

OF MODULES FOR THE SHAPE

scale 1 scale 2 scale 3 scale 4 scale 5
(23) (184) (621) (1472) (2875)

1.0000 0.1250 0.0370 0.0156 0.0080
scale 6 scale 7 scale 8 scale 9 scale 10
(4968) (7889) (11776) (16767) (23000)
0.0046 0.0029 0.0020 0.0014 0.0010

*(): The number of modules using for the chair

TABLE II
RESULT OF SIMULATION - TIME OF BUILDING THE SHAPE

scale 1 scale 2 scale 3 scale 4 scale 5
(23)* (184) (621) (1472) (2875)

0 buffer 30.0000 44.6667 46.3333 54.6667 59.0000
1 buffer 16.3333 26.3333 33.0000 45.0000 54.3333
2 buffers 12.6667 22.0000 31.6667 43.3333 51.6667

scale 6 scale 7 scale 8 scale 9 scale 10
(4968) (7889) (11776) (16767) (23000)

0 buffer 72.3333 74.3333 87.6667 92.6667 99.0000
1 buffer 63.0000 67.6667 79.0000 82.3333 97.0000
2 buffers 54.6667 70.3333 79.6667 84.3333 95.0000

*(): The number of modules using for the chair

IV. CONCLUSIONS AND FUTURE WORKS

We have explored the use of magnification as a way of
programming shapes in modular systems. In this paper, we
have presented algorithms for creating complex shapes by
magnification in a modular robot system. We describe the
algorithms, analyze their correctness and discuss efficiency in
the context of simulation data. The algorithm is decentralized
and minimal in the number of messages required to create a
shape. Two important goals for designing the magnification
algorithm has been to minimize information flow in systems
with limited resources, and to minimize the storage and
communication required to build a large shape that consists
of many modules. The magnification algorithm requires only
three function as discussed in implementation section. This
approach to communication minimization can be applied to
more general complex networks, for example as shown in
Figure 9.

We are currently working on two extensions of the mag-
nification algorithm. The magnification algorithm can be
applied to the formation of complex shapes with variable
scale features–for example some parts of the object can be
magnified more than others. The magnification algorithm
can be modified to operate in reverse direction to compress
shape for a modular system which has limited power or
memory space. We are also working on designing a new
type of computer, that runs the magnification algorithm with
distributed architecture.

V. ACKNOWLEDGMENTS

Support for this research has been provided in part by
the DARPA Programmable Matter program. We are grateful
for this support. We thank Sangbae Kim, Kyle Gilpin, and

Fig. 9. Simplified from triangle tile to graph.

Rob Wood for insightful discussions and feedback on this
research.

REFERENCES

[1] Byoungkwon An. Em-cube: cube-shaped, self-reconfigurable robots
sliding onstructure surfaces. In IEEE International Conference on
Robotics and Automation(ICRA), pages 3149–3155. IEEE, 2008.

[2] Preethi Srinivas Bhat, James Kuffner, Seth Goldstein, and Siddhartha
Srinivasa. Hierarchical motion planning for self-reconfigurable mod-
ular robots. In IEEE International Conference on Intelligent Robots
and Systems, 2006.

[3] A. Castano and P. Will. Mechanical design of a module for recon-
figurable robots. In Proc. of International Conference on Intelligent
Robots and Systems (IROS), pages 2203–2209, 2000.

[4] Andres Castano, Alberto Behar, and Peter Will. The conro modules for
reconfigurable robots. IEEE Transactions on Mechatronics, 7(4):403–
409, December 2002.

[5] Kyle Gilpin, Keith Kotay, Daniela Rus, and Iuliu Vasilescu. Miche:
Modular shape formation by self-disassembly. Int. J. Rob. Res., 27(3-
4):345–372, 2008.

[6] Kyle Gilpin and Daniela Rus. Self-disassembling robots pebbles: New
results and ideas for self-assembly of 3d structures. In Proceedings
of ICRA Workshop on Modular Robots: The State of the Art. IEEE,
2010.

[7] Kyle Gilpin, Iuliu Vasilescu, and Daniela Rus. Miche: Modular shape
formation by self-dissasembly. In IEEE International Conference on
Robotics and Automation(ICRA), pages 2241–2247. IEEE, 2007.

[8] Akiya Kamimura, Haruhisa Kurokawa, Eiichi Yoshida, Satoshi Mu-
rata, Kohji Tomita, and Shigeru Kokaji. Automatic locomotion
design and experiments for a modular robotic system. IEEE/ASME
Transactions on Mechatronics, 10(3):314–325, June 2005.

[9] R. Nagpal. Programmable self-assembly using biologically-inspired
multiagent control. In Proc. of International Conference on Au-
tonomous Agents and Multiagent Systems, 2002.

[10] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian. Useful metrics
for modular robot motion planning. IEEE Trans. on Robotics and
Automation, 13(4):531–45, 1997.

[11] Daniela Rus and Marsette Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. International Journal
of Robotics Research, 22(9):699–715, 2003.

[12] Kasper Stoy and Radhika Nagpal. Self-repair and scale-independent
self-reconfiguration. In IEEE Conference on Robotic Systems (IROS).
IEEE, 2004.

[13] C. Ünsal and P. Khosla. Mechatronic design of a modular self-
reconfiguring robotic system. In Proc. of IEEE International Con-
ference on Robotics and Automation (ICRA), pages 1742–7, 2000.

[14] Paul White, Victor Zykov, Josh Bongard, and Hod Lipson. Three
dimensional stochastic reconfiguration of modular robots. In Proceed-
ings of Robotics: Science and Systems, Cambridge, USA, June 2005.

[15] G. Whitesides and B. Grzybowski. Self-assembly at all scales. Science,
295:2418–21, March 2002.

[16] M. Yim. Digital clay. WebSite.
[17] M. Yim, Wei-Min Shen, B. Salemi, D. Rus, M. Moll, H. Lipson,

E. Klavins, and G. S. Chirikjian. Modular self-reconfigurable robot
systems [grand challenges of robotics]. Robotics & Automation
Magazine, IEEE, 14(1):43–52, 2007.

[18] Mark Yim, Ying Zhang, Kimon Roufas, David Duff, and Craig
Eldershaw. Connecting and disconnecting for self–reconfiguration with
polybot. In IEEE/ASME Transaction on Mechatronics, special issue
on Information Technology in Mechatronics, 2003.

1145

