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Abstract— Advancing research into autonomous micro aerial
vehicle navigation requires data structures capable of repre-
senting indoor and outdoor 3D environments. The vehicle must
be able to update the map structure in real time using readings
from range-finding sensors when mapping unknown areas; it
must also be able to look up occupancy information from
the map for the purposes of localization and path-planning.
Mapping models that have been used for these tasks include
voxel grids, multi-level surface maps, and octrees. In this paper,
we suggest a new approach to 3D mapping using a multi-volume
occupancy grid, or MVOG. MVOGs explicitly store information
about both obstacles and free space. This allows us to correct
previous potentially erroneous sensor readings by incrementally
fusing in new positive or negative sensor information. In turn,
this enables extracting more reliable probabilistic information
about the occupancy of 3D space. MVOGs outperform existing
probabilistic 3D mapping methods in terms of memory usage,
due to the fact that observations are grouped together into
continuous vertical volumes to save space. We describe the
techniques required for mapping using MVOGs, and analyze
their performance using indoor and outdoor experimental data.

I. INTRODUCTION

One of the fundamental requirements for mobile robots is
the ability to perform basic navigation tasks, such as moving
from the current location to the desired location while
avoiding obstacles. In 2D environments there is a number of
well established solutions that produce satisfactory results.
However, extending these solutions to 3D often increases
computational and memory costs beyond the limits of real-
time performance.

In some cases the problem can be simplified to the 2D case
by assuming that the robot is in a structured environment
where walls are purely vertical and cross sections are con-
stant at various altitudes [1]. Another possible simplification
that is often used for outdoor wheeled robots is to consider
only the height of the terrain when performing mapping and
path planning tasks; however, with this approach, vertically
overlapping features such as tunnels and bridges can cause
serious problems.
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Our research focuses on the development of indoor MAVs
which need to navigate unstructured indoor and outdoor
environments, requiring the use of true 3D maps. This paper
considers a novel technique for efficient 3D probabilistic
mapping using a Multi-Volume Occupancy Grid or MVOG.
The MVOGs have the following key characteristics. First,
they are compact in size, allowing for efficient storage on-
board, as well as transfer to other robots under bandwidth
constraints. Second, they are updatable in real time by range-
finding sensors such as laser scanners and depth cameras.
Third, they provide information about free, occupied, and
unknown space. Modeling both free and occupied space is
important, because it allows the robot to overwrite previous
erroneous sensor readings. Modeling unknown space is use-
ful for tasks such as autonomous exploration, as well as safe
path-planning.

The paper is organized such that, Section II reviews
existing 3D mapping approaches. Next, Section III describes
the algorithms for map construction and calculation of oc-
cupancy information. Section IV presents the experimental
methods and results for creating maps of indoor and outdoor
environments. Section V analyses open issues with MVOGs,
and their possible solutions. Finally, Section VI summarizes
the results of the paper.

II. RELATED WORK

A well established way for creating 2D maps is occupancy
grids. A probabilistic method for integrating readings into the
map can be found in [2]. All cells take on a continuous value
between 0 (free) and 1 (occupied), and are initialized with a
value of 0.5. When a sensor reports a certain distance, cells
at that distance have their values increased, while cells that
lie within the sensor ray area have their values decreased
to mark the free space. The probability values are modified
according to Bayesian update rules.

A slightly different mapping model for 2D maps is pro-
vided by reflection maps [2]. In a reflection map, each cell
in the grid keeps track of two counters: one for the number
of times a sensor beam was reflected in the cell (hits), and
one for the number of times a sensor beam passed through
the cell (misses). The ratio

hits

hits+misses
(1)

provides a probabilistic measure of the likelihood of a sensor
reporting that cell as an obstacle. Maps produced under this
model are very close to regular occupancy grids [2].
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The direct extension of 2D occupancy grids to 3D are
voxel occupancy grids. Work with 3D occupancy grids has
been presented in [3], [4], and [5]. While voxel grids support
all the algorithms developed for their 2D counterparts, they
are often impractical due to their large memory requirements.

An alternative approach is to represent the environment
using point clouds, where each point is created from a range
reading provided by a laser scanner or a stereo-camera [6],
[7]. However, this method does not model free and unknown
space, and is thus only suitable for sensors that have very
high accuracy. Moreover, the size of the map grows linearly
and without an upper bound with the number of sensor
readings.

An effort to create a more compact data structure is
presented in [8] and [9] with their introduction of multi-level
surface maps, or MLS maps. Similar to elevation maps ([10],
[11]) MLS maps represent 3D structures as height values
over a horizontal grid, but allow for the storage of vertically
overlapping objects. While this is shown to greatly reduce
the memory requirement, MLS maps only record positive
sensor data, and provide no mechanism for decreasing the
occupancy value of objects located on the map. Thus, any
erroneous readings such as false sensor positives are never
removed from the map.

Another approach to building 3D maps is by representing
the environment using an octree. Work on octree mapping
has been done by [12], [13], [14], [15], [16], and [17].
Octomap [18] provides an overview of existing octree ap-
proaches, and how they address issues such as updatability,
map overconfidence, and compression. Octomap achieves
probabilistic, compact 3D maps, but underperforms when
compared to MVOGs in terms of size for the data sets we
tested.

The MVOG mapping structure that we propose is closely
related to multi-level surface maps and reflection maps.
Similarly to MLS, MVOGs group readings into continuous
vertical volumes, which are placed over a horizontal grid of
fixed resolution. Unlike MLS, however, MVOGs record both
positive and negative readings, grouping them into distinct
positive and negative volumes. The occupancy information
is computed similarly to the reflection map model. Note
that although we use the reflection model, which does not
directly model occupancy, we informally refer to our maps
as “occupancy” maps modeling occupancy probabilities, due
to the similarity of the two models.

III. MULTI-VOLUME OCCUPANCY GRIDS

A. Volume List Representation

A multi-volume occupancy grid consists of a 2D grid G
of square cells cij , i, j ∈ Z lying in the xy-plane. Any point
p = [px, py, pz]

T , p ∈ R3 projects onto a cell cij such
that i ≤ spx < i + 1, j ≤ spy < j + 1. where s is a
constant scaling factor between the world and grid coordi-
nates [8]. Each cell contains two lists of volumes: +Vij =
{+V 0

ij ,
+ V 1

ij . . .
+ V nij } and −Vij = {−V 0

ij ,
− V 1

ij . . .
− V mij },

of sizes n and m respectively. The list +Vij contains vol-

umes representing positive (obstacle) readings, while −Vij
contains volumes representing negative (free space) readings.

Each volume V is defined using three values: the height of
its bottom face zbotV ∈ R, the height of its top face ztopV ∈ R,
and occupancy mass mV ∈ R,mV ≥ 0. We derive a fourth
value, the occupancy density ρV . The occupancy mass of
a volume corresponds to the amount of sensory information
the volume has received. The occupancy density corresponds
to the amount of sensory information per unit space.

ρV =
mV

(ztopV − zbotV )Acij
(2)

where Acij is the unit area of the grid cell.
For positive volumes, the occupancy mass comes from

sensory information obtained from obstacle readings. For
negative volumes, the mass comes from information from
free-space readings. All new volumes start off with a density
of 1. The occupancy mass of any volume can only increase
over time. For example, if we detect a certain point of
space as free, we would not decrease the occupancy mass
of a positive volume containing the point, but would rather
create a negative volume for that region of space. The exact
algorithm for manipulating the size and occupancy densities
of volumes over time is described in Section III-B.

We impose the additional restrictions on volume lists that:
• Each volume has a height greater than or equal to 1.
• No two volumes in the same volume list overlap.
• The gap between any two volumes in the same list is

greater than 1.
The size restriction on minimum volume and gap size is

chosen to be 1, which is the same as the resolution restriction
in the x and y directions. In this way, we guarantee that the
minimum vertical resolution the same as our horizontal one.
However, the vertical resolution is effectively better than the
horizontal one, since volumes are allowed to start and end
at non-integer z values.

Fig. 1 shows a possible list combination for grid cell c0,1,
displaying the positive (red) and negative (blue) volumes side
by side. Note that volumes from the positive list can overlap

Fig. 1. Positive (red) and negative (blue) volume lists for cell c0,1
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with volumes from the negative list, corresponding to the
situation that the sensors provided contradicting observations
for the same region in space.

B. Updating From Laser Data

The process of building a MVOG from range readings
provided by a laser scanner consists of three steps. First, we
rasterize each individual laser reading to obtain which grid
cells it crosses. Next, we create and insert new positive and
negative volumes into the volume lists of the corresponding
grid cells. Last, we examine the modified volume lists, and
apply the constraints defined in Section III-A. The process
diagram of the update process is shown in Fig. 2.

1) Rasterization: An individual laser scan can return
either an obstacle reading at a distance d or an out-of-range
reading, where d > dmax. From the position L ∈ R3 of
the laser and the orientation at the time of the scan, we
can calculate the end point of the laser ray L′ ∈ R3. In
this context, an out-of-range reading means that the space
between L and L′ is free, and an obstacle reading carries the
same free-space information, with the additional information
that L′ is occupied.

By projecting the ray from L to L′ onto the xy-plane,
we obtain a list cells C = {ci0j0 , ci1j1 . . . cikjk} that the ray
crosses, where C is a subset of the grid G, C has a length of
k, and cikjk is the grid cell where the laser ray terminates.
We can also calculate the heights where the the laser ray
enters the space above each cell zenterij and the height where
it leaves it, zexitij [19]. Note that the laser ray never leaves
the last cell cikjk , thus we only obtain an entry height value.
Instead of an exit height value, we will use the termination
height of the laser ray L′z .

2) Creating new volumes: All new volumes are created
with with an occupancy density ρ of 1. By knowing the
height of the volume and using (2), we can instantiate all
new volumes with the appropriate occupancy mass m.

When adding an out-of-range reading to the map, we
create a new volume V for each cell cij in C, apart from
the last cell, cikjk .

zbotV = min(zenterij , zexitij ) (3a)

ztopV = max(zenterij , zexitij ) (3b)

For the last cell, we have

Fig. 2. Process diagram for updating the MVOG map

zbotV = min(zenterij , L′z) (4a)

ztopV = max(zenterij , L′z) (4b)

Next, we insert the newly created V into the corresponding
negative volume list −Vij

When adding an obstacle reading, we repeat the above
procedure for each cell in C, apart from the last cell,
cikjk . We need to insert a positive volume of height 1, but
depending on the slope of the laser ray, we might need to
create an additional negative volume in the same cell. If
abs(zenter − L′z) ≤ 1, then we create a volume V such
that

zbotV = L′z − 0.5 (5a)

ztopV = L′z + 0.5 (5b)

and insert it into the positive volume list +Vikjk . On the
other hand, if abs(zenter −L′z) > 1, we create and insert V
in the same manner, but also create the additional negative
volume volume V ′ to pad the distance between zenter and
V , and insert it into −Vikjk . The two cases are illustrated in
Fig. 3.

3) Constraint application: The last step in the process is
to go through each modified volume list and make sure all
the volumes satisfy the constraints we defined in Section III-
A. The first constraint refers to the minimum volume size.
Any volume V such that ztopV − zbotV < 1 is replaced with a
volume V ∗ of height 1 in the following manner:

zbotV ∗ =
1

2
(zbotV + ztopV )− 0.5 (6a)

ztopV ∗ =
1

2
(zbotV + ztopV ) + 0.5 (6b)

Next, we satisfy the constraint that no two volumes in the
same volume list overlap by merging them together. Merging
two volumes is the main mechanism for incrementally fusing

Fig. 3. The two different cases when rasterizing an obstacle reading
from a laser. Grid cells in C are marked in gray. The left diagram
shows a rasterization of a laser ray from [0, 0, 0]T reading an obstacle
at [0, 4.5, 10]T , requiring a positive and a negative volume to be inserted
in the last cell. The right diagram shows a rasterization of a laser ray from
[0, 0, 0]T reading an obstacle at [0, 10.5, 4]T . requiring only a positive
volume to be inserted.
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in new sensor information. Two volumes V A and V B

overlap if zbotV B ∈ [zbotV A , z
top
V A ] or ztop

V B ∈ [zbotV A , z
top
V A ]. The

resulting volume has an occupancy mass equal to the sum
of the occupancy masses of the added volumes. Any two
overlapping volumes are replaced by a volume V ∗ such that

V ∗ = V A ∪ V B (7a)

mV ∗ = mV A +mV B (7b)

Last, we satisfy the constraint that the gap between any
two volumes is bigger than 1. Two volumes V A and V B

are too close if zbotV B − ztop
V A ∈ (0, 1]. We create a new

volume V GAP corresponding to the gap between V A and
V B , initialized with a density of 1. Then we merge all three
volumes into one continuous V ∗ such that

V ∗ = V A ∪ V GAP ∪ V B (8a)

mV ∗ = mV A +mV GAP +mV B (8b)

C. Extracting Probabilistic Occupancy Information

MVOGs allow us to extract probabilistic information about
the occupancy of each point in space. The two pieces of
information that we maintain for any point are the occupancy
densities of the positive and negative volumes containing the
point, if such volumes exist.

Having defined the positive and negative density functions,
we can define the occupancy probability p ∈ [0, 1] of a point
p = [px, py, pz]

T . Let ρ+p be the occupancy density of the
positive volume containing p (or 0 if no such volume exists).
Similarly, let ρ−p be the occupancy density of the negative
volume containing p. Then, the probability p(p) is the ratio
between ρ+p and the sum of ρ+p and ρ−p .

p(p) =


ρ+p

ρ+p+ρ−p
if ρ+p + ρ−p > 0

unknown if ρ+p + ρ−p = 0

(9)

If both ρ+ and ρ− in (9) are equal to 0, corresponding
to the situation when there are neither positive nor negative
observations for that point in space, we return an unknown
probability.

Using the probability function p, we can construct a
standard 2D occupancy grid for any plane in 3D space.
The 2D grid can then be used with existing algorithms -
for example, localization using a laser that has an arbitrary
orientation in space.

D. Time Complexity Analysis

Since occupancy volumes are stored in the form of a sorted
array, the insertion and lookup operations for volumes are
executed in linear time. For a grid cell with lists +Vij and
−Vij of length n and m respectively, inserting a positive
volume has a runtime of O(n), inserting a negative volume
has a runtime of O(m), and the calculation of the probability
function p has a runtime of O(m+ n).

The linear run time can be improved by storing the volume
lists in a different structure, such as a skip lists, which
provides O(log(n)) lookup and constant insertion time [20].
However, we find in practice that the average value of
n+m for our test environments remains low. This effectively
reduces the runtime of the insertion and lookup operations
to constant time.

E. Map Overconfidence

When a section of the map has received a large number
of negative readings, it normally takes the same amount of
positive readings to raise the probability ratio to 0.5 (and
vice versa). Thus, maps can become overconfident. This can
lead to serious problems, especially when there are dynamic
obstacles in the environment. For example, if the robot has
recorded a hallway as free multiple times, and a person
suddenly walks in, the robot will not be able to correct the
section on the map that the person is occupying until a large
number of sensor readings have been collected.

To overcome this issue, occupancy grids that use the
Bayesian update model in conjunction with log-odds propose
clamping, which effectively sets a limit on the number of
readings it takes to change the probability value of a cell in
the situation described above [18].

MVOGs overcome the issue of map overconfidence by
introducing a decay factor in the map. Both positive and
negative volume masses are periodically multiplied by a
constant factor kd, smaller than 1. Decaying the map has the
effect that new sensor readings have a higher weight than
previous sensor readings. Note that for map areas that do
not receive new sensor readings, the occupancy probability
remains the same before and after the update step, since both
the negative and positive volume masses are scaled down
equally.

IV. EXPERIMENTS

A. 3D Maps

We tested the performance of MVOGs using two experi-
ments.

For the first experiment, we use readings from a Swis-
sranger 4000 depth-camera mounted on a quadrotor MAV.
Since the depth-camera is too heavy to be carried in flight,
we maneuver the MAV by manually carrying it indoors,
obtaining multiple views of an office room. The room has
two desks and a person sitting on a chair in front of a
computer, as well as various clutter. The 6 DoF pose of the
UAV is determined by a combination of inertial readings and
scan matching [21].

The resulting map is shown in Fig. 4. The left image
shows the raw point cloud data. The middle image shows the
positive and negative volumes. The right image shows areas
of the map where the probability of occupancy is greater
than 0.5 (obstacles).
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Fig. 4. Stages in the generation of a 3D MVOG map of an office room. The left image shows the raw point cloud data from a Swissranger camera. The
middle image shows the positive (red) and negative (blue) volumes. The right image shows areas of the map where the probability of occupancy is greater
than 0.5 (obstacles). The volumes in the right image are colored by height.

Fig. 5. Occupancy grids obtained from the MVOG in Fig. 4 by taking a cross-section at different heights. The left image shows the occupancy at 1.6
meters above the floor. The entire room is navigable. The middle image shows the occupancy at 1.5 meters, where the top of a person’s head and room
clutter are visible. The right image provides a high-resolution 2D map of the room for comparison. The 2D map was created by a independent laser data
and a particle SLAM algorithm.

Fig. 6. MVOG of the New College Dataset (Epoch A, one loop). The left image shows 0.10m resolution. The middle image shows 0.50m resolution.
The right image shows the occupancy map obtained by taking a cross-section of the 0.10m MVOG, taken at the height of the laser scanners. Note that
the double walls and incorrect geometry of the loop are a result of the drift in the odometric pose estimation provided in the dataset.
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Fig. 7. Experiment demonstrating the addition and removal of dynamic
objects to the map. The Swissranger scans an empty hallway (left image),
a person walks into the frame (middle image), and the person has walked
out of view (right image).

In Fig. 5, we show a cross-section of the map taken at
2 different heights. For comparison, we also show a high-
resolution occupancy grid created by a 2D particle-based
SLAM algorithm [22] of the same room, using independent
data from a laser scanner.

In the second experiment, we build an MVOG using a
subset of the New College Dataset [23], collected by a
ground robot outdoors. We use the first 17500 laser scan
readings, corresponding to the first loop around the Epoch
A campus. We use the raw odometry data provided from the
robot.

Fig. 6 shows the resulting MVOG map using different
resolutions, as well as a cross-section of the map taken at
the height of the laser scanners. Note that the double walls
and incorrect geometry of the loop are a result of the drift
in the odometric pose estimation provided in the dataset.

We perform an additional experiment to demonstrate the
updatability of the MVOG in the presence of dynamic
obstacles. In that experiment, we collect readings from a
Swissranger 4000 depth camera positioned statically. The
camera observes a hallway while a person walks in and out
of view (Fig. 7).

All experiments were preformed using ROS (Robot Oper-
ating System) [24] as an underlying architecture to transmit
messages between various components of the system.

B. Size comparison

In this section, we analyze the memory consumption of
the MVOGs, compared to raw point cloud, voxel grid, and
Octomap representations. We have made at effort at a fair
benchmarking, even though we are comparing inherently
different data structures. The memory sizes provided for all
four data structures assume single-precision floating point
representations. For voxel grids, the reported size is for
the minimum 3D grid that accommodates all the data. For
MVOGs, the reported size is for the minimum 2D grid that
accommodates the data, and no restriction on the vertical
bounds. For Octomap, we report the size of the pruned
(lossless compression) tree needed to represent the data.
Out-of-range sensor readings present in the experiments are
disregarded in all four representations.

The results from the indoor and outdoor data sets, mapped
at different resolutions, are summarized in Table I.

TABLE I
DATA SIZE ANALYSIS

Point cloud Voxel grid Octomap MVOG
New College
1.00m res. 27.430 MB 0.422 MB 0.189 MB 0.150 MB
0.50m res. 27.430 MB 3.245 MB 0.785 MB 0.588 MB
0.10m res. 27.430 MB 390.750 MB 56.309 MB 16.438 MB

Office room
0.10m res. 16.823 MB 0.259 MB 0.273 MB 0.080 MB
0.05m res. 16.823 MB 2.031 MB 1.597 MB 0.328 MB
0.02m res. 16.823 MB 30.175 MB 15.877 MB 2.730 MB

C. Time analysis

The insertion time for the 0.10m resolution office room ex-
periment was on average 0.122s per Swissranger scan, where
each scan contained an average of 24510 range readings. This
results in an average insertion rate of 200778 readings per
second. The insertion time for the 0.10m resolution outdoor
dataset was on average 0.008s per 2D laser scan, where each
scan contained 180 range readings. This results in an average
insertion rate of 21886 readings per second. Note that this
includes a high number of out-of-range (50m) readings in
every scan. Timing was carried out on a standard desktop
CPU (dual Intel Xeon Processor E5504, 2.0GHz).

V. DISCUSSION AND FUTURE WORK

In this section, we examine the limitations and drawbacks
of Multi-Volume Occupancy Grids that have not been ad-
dressed in our implementation. Where applicable, a solution
is provided that can be implemented in the future.

A. Map Dimensions

As with other grid-based mapping approaches, the size of
the grid must be chosen in advance, so that it is big enough
to accommodate the map being built. Alternatively, the map
can be dynamically expanded when needed, at the cost of
copying over previous data. While this approach is usually
prohibitive for voxel grid representations due to their large
size in memory, the compact nature of MVOGs allows for
faster copying.

B. Rasterization errors

When rasterizing a laser beam into positive and negative
volumes, one often ends up adding free-space information in
incorrect areas of the map, due to rasterization errors. This
problem is common to all mapping techniques that model
discretized free space, and has been discussed in detail in
[18]. The solution provided for Octomap is to treat scans
in groups, and only add negative information where it does
not conflict with positive information within that scan. This
method can be applied to data received from laser scanners
on a static pan/tilt platforms, or range-finder cameras. A
similar approach is applicable to MVOGs, by discarding any
negative volumes that conflict with positive volumes, within
each scan group.
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C. Incorrect Volume grouping

A more significant drawback of MVOGs is that there
exists no mechanism for breaking up existing volumes. Thus,
a volume can be erroneously extended in size by a false
reading. Alternatively, two correct volumes can be merged
together and averaged if a false reading is placed in the
vertical space between them. This can lead to corruption of
the map data in highly dynamic environments, or when a high
amount of sensor noise is present. A technique to resolve
this issue could involve breaking up volumes dynamically,
or disallowing volumes to be merged until some criteria is
met.

VI. CONCLUSIONS

In this paper we presented Multi-Volume Occupancy Grid
maps, a novel method for representing 3D environments for
the purposes of micro aerial vehicle mapping and navigation.
MVOGs explicitly store positive and negative sensor readings
and group them together into volume lists attached to a 2D
grid. This allows the incremental addition of obstacles, as
well as addition of free space, in a model closely related to
2D reflection maps. We described a method for updating the
maps with data from rangefinder senors, and a method for
extracting probabilistic occupancy information for any point
in space.

We also presented MVOGs built using indoor and outdoor
data. We showed that the MVOGs can accurately describe
occupancy information in 3D environments. They require
significantly less memory space than existing mapping meth-
ods, and can be updated in real time.

The open-source software developed as part
of the research is available at our website
http://robotics.ccny.cuny.edu/.

REFERENCES

[1] S. Grzonka, G. Grisetti, and W. Burgard, ”Towards a navigation system
for autonomous indoor flying,” Robotics and Automation, 2009. ICRA
’09. IEEE International Conference on, pp.2878-2883, 12-17 May
2009

[2] Sebastian Thrun, Wolfram Burgard and Dieter Fox, Probabilistic
Robotics, MIT Press, Cambridge, 2005.

[3] N. Duffy, D. Allan, and J. T. Herd, ”Real-time collision avoidance
system for multiple robots operating in shared work-space,” Computers
and Digital Techniques, IEE Proceedings E , vol.136, no.6, pp.478-
484, Nov 1989

[4] Y. Roth-Tabak and R. Jain, Building an environment model using depth
information, Computer, vol. 22, no. 6, pp. 8590, Jun 1989.

[5] H. Moravec, Robot spatial perception by stereoscopic vision and 3D
evidence grids, Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-
RI-TR-96-34, September 1996.

[6] D. Cole and P. Newman, Using laser range data for 3D SLAM in
outdoor environments, in Proc. of the IEEE Int. Conf. on Robotics
And Automation (ICRA), 2006, pp. 15561563.
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