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Abstract— In this paper, we propose a marker-less full body
human motion capture system designed for humanoid robot
applications. The system is based on a stereo camera, and there-
fore has strong portability. Tracking is implemented within the
particle filter framework, and the high dimensionality problem
is solved through partitioned sampling. Taking advantage of
the stereo setup, we propose a depth cue which resolves the
problem of missing depth information in monocular tracking.
Three other cues, the edge cue, the color cue and the distance
cue, are also integrated into the system to enhance the tracking
performance. The system is tested using the publicly available

CMU MOCAP database which also includes ground truth data,
and this enables us to analyze the results quantitatively and
compare the relative usefulness of different cues. The system is
shown to be capable of tracking challenging videos accurately
and robustly in near real-time.

I. INTRODUCTION

With the fast development of robotics and artificial in-

telligence technology, there has been a recent increase in

research on humanoid robots. However, the issue of how to

interact with the robots more comfortably and how to enable

humanoids to accumulate motion knowledge autonomously

remains an open problem. Similar to humans, robot vision

could also be an effective sense to gather information and

to learn from human teachers. Vision based human motion

capture (human MOCAP) [1], [2] technology which is capa-

ble of real-time tracking is a promising way to solve these

problems.

Commercial motion capture systems such as Vicon [3] are

already available, however, most of these systems require

multiple cameras permanently installed in a capture studio,

and are based on markers, severely limiting their application.

Consequently, in recent years more efforts have been devoted

to the research of marker-less human MOCAP [4]. Model

based tracking exploits the characteristics inherent in a

human body. The typical model used is an articulated object

model, but other models, such as the loose-limbed model,

have also been proposed [5].

Many systems proposed in the literature consider the

scenario with a multiple camera setup [6], [7], [5], [8],

[9]. The cameras are separated by certain angles, and the

human motion can be observed from different directions.

In this approach, the problems of occlusion are alleviated

remarkably. Although high accuracy can be achieved, the
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processing speed is usually far from real-time. Moreover,

since the pre-calibrated cameras are mounted at permanent

locations, this limits the tracking area and entails high

hardware expenses.

Human MOCAP based on monocular video sequence is

an alternative way [10], [11], [12], [13]. A single camera

could be easily mounted to a robot head, but the missing

depth information makes the tracking much more difficult.

To incorporate depth information, several systems based on

stereo camera have been developed [14], [15], [16]. In [15],

Azad et al. propose an upper body tracking system, which

uses the depth information obtained from the stereo camera

implicitly. During the likelihood calculation, the predicted

model is compared with both images of the stereo image pair,

and the final weight is obtained by integrating the results

from the two pipelines. However, their method will not

function well when tracking motions which are complicated

or include noticeable depth changes.

Marker-less human MOCAP is a very challenging task

because the variety of possible human motions is very large,

and the motions are almost random if the motion type is

not specified. The complexity of the human motion makes

the model dynamics nonlinear, while the complicated nature

of the observation process causes the posterior density to

be non-Gaussian. The particle filter [17] is well suited for

this context. However, the number of particles required for

successful tracking increases exponentially with the dimen-

sionality, and this makes the basic particle filter quickly

intractable for high Degree of Freedom (DOF) human mod-

els [18]. As a result, variants of the basic particle filter have

been proposed, among which the best known are the annealed

particle filter [6] and the partitioned particle filter [18].

In this paper, we propose a new articulated model-based

full body human motion capture system intended for a

humanoid application, which is capable of running in near

real-time. The system is designed for stereo input, and the

human motion is tracked by a particle filter with partitioned

sampling in order to solve the high dimensionality prob-

lem. The tracker makes use of multiple cues, including a

newly developed depth cue. To enable a quantitative error

analysis of the algorithm performance, rather than using

video obtained from a stereo camera, we use videos from

the publicly available CMU MOCAP database [19], which

also includes ground truth data obtained from a marker-based

motion capture system. Since the database does not provide

access to stereo camera images, we generate virtual depth

images to simulate the true depth images. The system is

tested with challenging videos, and the results demonstrate
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that our system is capable of tracking through random, fast

and complex motions with high speed and good accuracy.

II. PARTICLE FILTERING AND PARTITIONED SAMPLING

The particle filter is the result of applying the Monte Carlo

method in recursive Bayesian filtering [20], [21], which is

used to estimate the posterior Probability Density Function

(PDF) of the state variable based on Bayes’ Theorem. When

applied to model based human MOCAP, the state is a vector

formed by all the joint angles and a root translation.

A typical recursive Bayesian filter has a two-step proce-

dure, namely a prediction step and an update step. In the

prediction step, the prior probability of the state at time step

k is predicted according to the posterior probability of the

state at time step k − 1 and the prediction model. In the

update step, the prior probability is updated into the posterior

probability by incorporating the observation at time step k.

Under the assumption of a linear system with Gaussian

noise, the optimal estimation is achieved in terms of the min-

imum covariance, i.e., the Kalman Filter [22]. In a particle

filter (also known as the Condensation algorithm [17]), the

PDF is sampled and represented by a set of particles with

weights proportional to the likelihood. This representation of

the distribution makes no assumption about the distribution

shape, and is capable of handling non-Gaussian and multi-

modal distributions.

Computing the particle weights is a key issue. In the

vision based tracking context, commonly used cues for the

weighting computation are color [13], [14], edge [6], [15],

[13], [8], [14], region [6], [9], [8], distance [15], [14] and

motion [13].

When implementing a particle filter, the biggest problem

for full body human tracking is the high dimensionality. The

number of particles required for successful tracking increases

exponentially with the increase in dimension. One approach

for handling the issue of high dimensionality is the annealed

particle filter [6], which tries to focus more particles to the

global maxima, reducing the number of particles required.

However, this leads to the loss of diversity, making it difficult

for the tracker to recover if the target is lost. This motivates

us to use the partitioned particle filter.

Partitioned sampling was first proposed by J. MacCormick

et al. in [23]. The partitioned particle filter deals with the high

dimensionality problem by breaking the high dimensional

state space down into several subspaces. In this way, the

number of particles required for successful tracking can be

reduced.

In our application, the 25 DOF state space is divided into

ten partitions: torso (6 DOF), head (3 DOF), two upper

arms (3 DOF for each), two forearms (1 DOF for each),

two thighs (3 DOF for each) and two calf legs (1 DOF for

each). For each frame, the same set of particles are used in

all the partitions, but with reproducing and perishing. This

is different from tracking the partitions using independent

filters. In the latter case, only the estimated position is passed

down from the previous partition to the subsequent partition.

For an articulated object, this will lead to accumulating errors

from layer to layer. In the partitioned sampling approach,

the estimated PDF is passed down. The advantage is that the

particles maintain the estimated distribution of the previous

partitions while evaluating the subsequent partitions. The

final resampling and estimation is done according to the

distribution obtained by combining the distributions of all

the partitions. In this way, by storing multiple hypothesises

of the preceding partitions, it is still possible to find the

correct configuration even if the previous partitions cannot

be well localized.

III. PARTICLE FILTER IMPLEMENTATION

A. Human Model and Projection Model

1) Human Model: The human model is composed of

a skeleton model (Fig. 1.1) and an outer shape model

(Fig. 1.2). The skeleton model contains 25 DOF: 3 DOF for

the root translation, 3 DOF for the root rotation, 3DOF for

the neck, 3 DOF for each shoulder, 1 DOF for each elbow, 3

DOF for each hip and 1 DOF for each knee. For each joint

angle, an angle limit is specified to reduce the search space

and to avoid impossible configurations.

0 5 10 15 20
0

5

10

15

20

25

30

Skeleton Model

1.1: Skeleton Model 1.2: Outer Shape Model

Fig. 1. Human Model

Moreover, an outer shape model is formed using truncated

cones to describe the model surface. Each truncated cone

is described by two circles and a mesh formed by points

sampled from the cone surface. As more points are sampled,

more computation will be required during the tracking.

Therefore the sample density is made adjustable, so that we

can balance the model accuracy and the computation time.

2) Projection Model: When weighting the particles, we

need to compare the predicted configuration with the image

data. The projection model, which describes how the camera

will project the human model from 3D to 2D, is therefore

required. Using the videos and the corresponding ground

truth data of the human motions, we obtained the projection

model through nonlinear fitting. Through the use of the

nonlinear projection model, lens distortion is also implicitly

rectified.

B. Particle Filter Computation Overview

To achieve faster processing speed, the entire system is

implemented in C++, using the OpenCV library. We initialize

the model configuration manually using ground truth data.

Since we are using the partitioned particle filter, the predic-

tion, likelihood calculation and resampling are performed in
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each partition for each frame. At the end of the processing

of each frame, the estimated posture of the actor is generated

by calculating the expectation over all the particles.

For simplicity, we use a zero order model for prediction,

which means we predict the state in the next frame by adding

a Gaussian noise around the previous state.

The weight calculation is the most important component

of the particle filter. Assuming the use of a stereo camera

system as input, we develop an explicit depth cue. Without

having actual data from a stereo camera in the dataset, we

simulate the stereo images by generating virtual depth images

offline.

The virtual depth images are generated from the ground

truth motion data which is synchronized with the video

sequence. The human motion is then projected onto the

image plane according to the projection model. The depth

map of the actor is formed by the front surface, which is

calculated by weighted averaging the depth of the nearest

sampled points. Occlusion is also considered by always

updating the depth of a pixel with the smallest depth value.

Finally, the image is smoothed and Gaussian noise is added

to simulate the noise which would occur during actual

sensing. The precision of the virtual depth image is about

2cm, which is comparable to commercially available stereo

cameras.

In each time step, the particle weights are calculated from

the depth cue, the edge cue, the color cue, and the distance

cue, described in Section IV.B below. After the weight

calculation, some particles will have large weights while

many others will have very small weights, leading to the de-

generation problem [21]. Resampling is used to redistribute

the particles in the search space while maintaining the PDF,

so that more particles are concentrated in the peaks. In the

partitioned particle filter, resampling is performed after the

likelihood calculation for each partition and after combining

the likelihood of all the partitions. The systematic resampling

approach is adopted, which is always favorable because of

its good performance and ease in implementation [24], [25].

The final weighting function for each particle is obtained

by integrating the weights from all the partitions by weighted

multiplication. At the end of the processing for each frame,

the estimation is generated by calculating the expectation of

the configuration distribution.

C. Weight Calculation

The weight for each particle is calculated by comparing the

configuration contained in that particle with the image data

using different cues. For each cue, we need to extract the

corresponding information from the image, and calculate the

distance between the predicted configuration and the image.

Since in different cues, the scales of the distances are also

different, we rescale all the distances into unit scale ranging

from 0 to 1 linearly. Then the weight is calculated from the

distance using w = A−d′

. In this equation, A determines

the survival rate of the particle filter in this cue [18]. In our

experiment, A is set to 100 and the average survival rate is

around 0.5.

1) Image Pre-processing: First, foreground segmentation

is performed, to reduce the effect of background noise.

Assuming the background image is available and the camera

is static, a standard background subtraction technique [26] is

applied on the color image in the RGB space. The subtraction

and thresholding are performed separately for R, G and B

color. The final foreground mask is obtained by combining

the foreground masks obtained from all three colors through

Exclusive Or operation. However, because of the complex

background, there are many holes on the foreground mask

after doing the subtraction. Dilation is performed to fill those

holes.

If the camera is moving, for instance in the case of

being mounted on a robot head, this background subtraction

technique will not be suitable. In this case, if we have

good depth image, foreground segmentation can be extracted

completely based on depth, and this method is tolerant to

ego-motion. Since we are using the virtual depth image, our

implementation here is based on background subtraction in

the color space.

2) The Depth Cue: Different from the implicit stereo

in [15], here we propose an explicit depth cue, in which

we use the depth image generated from the stereo system

directly. Using the foreground segmentation result, we extract

the foreground depth image. The distance for the depth

cue is calculated by comparing the projected front surface

of the predicted configuration with the foreground depth

image. For each sampled point, if its projection is within

the foreground mask, the distance is the absolute value of

the depth difference. If it is not, the distance is set to a fixed

large value as penalty, which is 2.8m in our experiment.

From our experience, this value should not be too large,

otherwise the depth cue will degenerate into a region cue

and lose its advantage in providing depth information. The

distance for the partition is the summation of the normalized

distances for every body part in that partition (Eq. 1). In our

current system version, virtual depth images are used instead

of the actual depth images (Fig. 2.1).

ddepth =

N
∑

i=0

∑Mi

j=0
dij

Mi

(1)

In Eq. 1, dij is the distance for the jth sampled point of

the ith body part in this partition, Mi is the total number of

sampled points in body part i, and N is the number of body

parts in this partition.

2.1: Depth 2.2: Edge

Fig. 2. Depth Cue and Edge Cue

3) The Edge Cue: To extract the foreground edges, we

first apply the Canny operator [27] on the whole grey
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level image, and then apply the foreground mask to filter

out the edges in the background. The remaining edges are

strengthened by dilation, as shown in Fig. 2.2. Having the

foreground edge image, we go through the projected edges

to check whether the projected edges match the extracted

edges. The distance is calculated according to Eq. 2.

dedge =

N
∑

i=0

∑Mi

j=0
(1 − bij)

Mi

(2)

In Eq. 2, bij is the binary value for the jth pixel along the

predicted edge in the ith body parts, Mi indicates the length

of the edge in this body part, and N is the number of body

parts in this partition.

4) The Color Cue: The color cue is typically based on

template matching, using the color histogram of each body

part in the initial frame as the templates. However, we argue

that generating the color histogram for each particle takes

too much time, because each pixel covered by the human

silhouette in the image for each particle must be considered

and classified.

Instead, based on the sampled points we already have in

the human model, we directly use the colors of these sampled

points in the initial frame as the template. The Euclidean

distance is calculated from the color of the predicted config-

uration to the color template in RGB space Eq. 3.

dcolor =
N

∑

i=0

∑Mi

j=0

√

(rij − r′ij)
2 + (gij − g′

ij)
2 + (bij − b′ij)

2

Mi

(3)

In Eq. 3, rij , gij and bij are the intensity of the red, green

and blue color of the jth sampled point in the ith body parts

in the predicted configuration, and r′ij , g′ij and b′ij are the

values in the template, Mi is the number of sampled points

in the ith body part, and N is the number of body parts in

this partition.

5) The Distance Cue: During full body tracking, small

body parts such as the forearms and the calf legs are the most

difficult parts to track. To improve tracking performance, we

use an additional cue, the distance cue, which is composed

of two parts, the Blob Distance and the Ground Distance.

For the Blob Distance, we make use of the two black wrist

bands worn by the actor. This does not only help to localize

the arms, but also provides a clue for where the torso is. For

each arm, the Blob Distance is calculated as the Euclidean

distance between the predicted position of the wrist and

the corresponding detected band position. For the torso, we

consider both wrists at the same time. In addition, we make

the assumption that for most of the time, the feet of the actor

are always on the ground. The distance is calculated from

the feet to the ground. As the Blob Distance, the Ground

Distance does not only help to localize the legs, but also

helps to localize the torso. For the cases the feet is below

the ground, which is obviously impossible, we set a large

value for distance as a penalty. For the Ground Distance,

we make no specific assumption about the appearance of the

feet, so the actor’s footwear will not affect the result.

The final weighting function for the lth particle in the ith

partition is obtained by integrating these cues using Eq. 4.

wli = wα
edge · w

β
depth · w

γ
color · w

δ
blob · w

θ
ground (4)

In Eq. 4, wli is the final weight for the lth particle in the

ith partition, wedge, wdepth, wcolor, wblob, and wground are

the weights calculated from the distance from the edge cue,

the depth cue, the color cue and the distance cue respectively,

and α, β, γ, δ and θ which are within [0, 1] are their weights.

IV. EXPERIMENTAL RESULTS

The system is tested using challenging videos, in which

the actor performs random and fast motions. The system is

shown to be capable of tracking accurately and robustly with

high processing speed. Benefiting from the approach we take,

the experiment results can be analyzed in both tracking video

form and quantitative error form.

A. Tracking Video

Fig. 6 shows the images captured when tracking a video

of 1123 frames. In the video, the actor performs a variety

of dancing movements, including 11 jumps accompanied by

raising arms (Fig. 6.7), half squatting down (Fig. 6.16), and

turning (Fig. 6.24). In the experiment shown, 1000 particles

are used for the torso, 200 for the head, 500 for each upper

arm, 200 for each forearm, 500 for each thigh and 200 for

each calf leg. For each cone, the number of sampled points

on the front surface is ranging from 15 to 75, proportional

to the area of the front surface of the cone.

As can be seen from Fig. 6, the tracker performs well

through challenging tracking scenarios, where the actor’s

movements are random and fast. In the video, the actor

moves his body parts through a large range without any

constraints. The actor is not restricted to be always directly

facing the camera. In the last part of the video, the actor

rotates his body about the vertical axis almost 120 degrees.

The tracker still keeps tracking, although the accuracy de-

creases due to the occlusion. The complexity is also reflected

in some ambiguous motions for a stereo camera. For example

in Fig. 6.2, the forearm is perpendicular to the image plane,

and this is difficult to determine from a single view angle.

An additional difficulty is the fact that most of the motions

are very fast. For example, there are only 17 frames for

the jumping motion between Fig. 6.4 to Fig. 6.5, during

which the position and the posture of the actor changes

significantly. The tracker is able to successfully track through

most of these situations smoothly. Even when the tracker

loses track of some body parts, it can recover from the

incorrect configuration quickly. This can be seen in Fig. 6.9

to Fig. 6.12, where the tracker momentarily loses track of

both arms because of the fast movement, but recovers again

after 80 frames, demonstrating the robustness of the system.
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B. Quantitative Error

In order to perform a quantitative evaluation, an error

metric must be defined [8]. Because we are most interested in

the final tracking result, our error is measured by calculating

the distance from the estimated value to the ground truth. The

error is measured in terms of the positions of 15 key joints.

Three error terms are defined: Average Error is calculated by

averaging the errors over all the joints in each frame. Joint

Average Error is calculated by averaging the error for each

joint throughout the tracking. Overall Average Error is the

average error over all the joints throughout the tracking. In

addition to the averages, the standard deviation can also be

calculated to measure the fluctuation of the error. In all the

following experiments, each test is run for five times.

One of the most basic problems when using a particle

filter is how to determine the number of particles. For a

partitioned particle filter, the problem is exacerbated because

there are several partitions and each can have a different

number of particles. Intuitively, the partition with more DOF

and closer to the root of the hierarchical structure should

have more particles. Empirically, we found that using 1000

particles for the torso, 200 for the head, 500 for each upper

arm and 200 for each forearm, 500 for each thigh, 200 for

each calf leg, produced good results with an Overall Average

Error of 19.1cm and standard error deviation of 12.9cm.

These values are used in the following experiments. By using

this number of particles, it takes 1.1 second to process each

frame. However, the processing speed can be improved by

reducing the number of particles. When half the particles are

used, it takes 0.67 second for each frame, with an Overall

Average Error of 20.7cm and standard error deviation of

13.3cm. If using one fourth of this number, the frame rate

can achieve 4Hz with an Overall Average Error of 24.3cm

and standard error deviation of 15.9cm.

Then, we obtained the Joint Average Error and the cor-

responding standard deviation, as plotted in Fig. 3. From

Fig. 3, we can conclude that the error increases along each

kinematic chain. This is because we used more particles

for the partitions that are closer to the root, and also the

body parts become smaller along the kinematic chain, which

makes them difficult to track. Also, the errors for the ankle

joints are larger than the wrists. The reason is that the blob

distance in the distance cue is more powerful than the ground

distance.

Next, the Average Error is generated to help us to deter-

mine how the tracker performs as time proceeds. The Aver-

age Error is plotted in Fig. 4. From this figure, we can see

as time proceeds, the Overall Average Error increases, with

several peaks. In the video, the actor performs very small

movements in the first 300 frames, followed by 11 sequential

jumps which approximately correspond to one peak each in

the figure. For example, there is a jump at around frame

400, and another at around frame 590. Starting from frame

850, the actor performs several jumps with body rotation,

and the error also increases. From these observations, we can

conclude that the error is greater when the actor is performing
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Fig. 4. Average Error

fast, strenuous, and complex movements.

We also tested the tracking performance when using

different cues, to determine the relative importance of each

cue. In this experiment, we first test the system using all the

four cues, and then test excluding one cue to see how this

cue affects the tracking. The system is tested using a shorter

clip from the video used above, and the result is shown in

Table. I.

Surprisingly, the average error is low when the edge cue

is excluded. However, we cannot judge the tracking based

on the quantitative error alone, but should also consider the

correctness from visual inspection. When the edge cue is

not used, the two legs usually get overlapped when they

are close, and the tracking of the legs is incorrect (Fig. 5),

introducing large errors in the leg position. However, tracking

of the upper body appears improved because the unusual

position of the legs introduces an additional constraint at

the waist. This is an artifact of the particular video clip.

In order to get the correct tracking result, the edge cue is

important to avoid leg overlapping. We can also see that the

newly proposed depth cue is the most important cue. Without

using the depth cue, the performance decreases significantly,

since no other cue incorporates depth information. Adding

TABLE I

CUE COMPARISON (ERRORS REPORTED IN [CM])

All Cues No Edge No Depth No Color No Dist.

Error 16.4 14.6 34.8 14.1 19.0

Std Dev 11.7 9.6 23.0 10.7 11.7
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Fig. 5. Tracking without Edge Cue

the color cue also decreases performance, due to the fact

that regions in the background are similar to the actor’s skin

color, and this confuses the tracker.

V. DISCUSSION

Through implementing this tracking system, we investi-

gated several key problems with using a partitioned particle

filter for human tracking.

Full body tracking: Through our implementation, we

show that by using the partitioned particle filter, full body

human motion could be tracked in near real-time. However,

partitioning also introduces additional problems, such as how

to determine the number of particles and control the survival

rate for each partition.

Tracking based on stereo system: Considering the ap-

plication to portable tracking, the system was designed in

a stereo context. Depth information is incorporated into

monocular tracking by using the proposed depth cue, and

the system achieves successful tracking that would be very

difficult when using monocular video only. However, we

could benefit further from the stereo system, such as in

foreground segmentation. On the other hand, the depth cue

could become significantly degraded if the actor is operating

in a cluttered environment, where objects in the foreground

would affect the depth image.

Cue comparison: We also evaluated the commonly used

cues and the newly proposed depth cue. From our experi-

ment, we show that the depth cue is a strong cue which can

compensate for the missing depth information in monocular

tracking. However, the depth cue cannot work well alone,

especially when we only use a limited number of sampled

points. The edge cue and distance cue are also strong cues

which require less computational resources.

Processing speed: To speed up the system, we applied

partitioned particle filter to reduce the required number of

particles. For the weight calculation, only sampled points

are used to describe the front surface of the human model

to reduce computation. To further improve the speed, the

most essential problem is how to improve the particle filter

to further reduce the required number of particles. According

to our measurements, over half of the time is consumed in

configuration and projection calculations, so further improve-

ments could be realized by optimizing these computations.

In addition, developing more computationally efficient cues

would also help to speed up the processing.

Sources of error: For our system, there are several factors

that lead to the tracking error. First, the particle filter is based

on a sampling method, so the tracking result cannot avoid

being jittery when a limited number of particles is used.

Especially when the goal is higher processing speed, we have

to sacrifice some accuracy. Second, the cues for weighting

the particles cannot distinguish certain configurations. For

example, when the forearm is perpendicular to the image

plane, it is almost impossible for the current system to track

correctly. Third, the projection model is not always accurate.

In modeling the projection, we made the assumption that the

z axis of the world frame is perpendicular to the image plane,

although there is a perceptible angle deviation. In estimating

the parameters, the sampled points are not uniformly dis-

tributed in the work space. So the projection model accuracy

also depends on area of the workspace in which the actor

is currently located. Finally, the image processing introduces

some error. The background is complex and contains regions

of similar color with the foreground. When doing background

subtraction using color, the foreground is corrupted. This

directly affects the edge extraction by losing some edges.

Moreover, we did not consider changes to the environment,

for instance lighting brightness. If the brightness changes, the

background subtraction and the color cue will be affected,

because both of them are done in the RGB space. Also,

if a significant part of the human body is not seen by the

camera for a long time, the tracking result could be degraded,

because the configuration of the unseen body parts will be

impossible to estimate and the resulted distribution will be

random, and this will affect the configuration estimation of

the whole body. If only the upper body is visible, tracking

based on a partial model of the body can also be applied [28].

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a new marker-less full body

human motion capture system based on stereo input. The

human motion is tracked by a particle filter with partitioned

sampling. In addition to the edge, color and distance cue, we

propose a new depth cue to utilize the stereo information.

To enable a quantitative error analysis of the algorithm

performance, we use videos from the publicly available CMU

MOCAP database, and generate the virtual depth images

offline from the ground truth data. The system is tested with

challenging videos, and the results demonstrate our system

is capable of tracking random and fast motions accurately

and robustly in near real-time.

The current version of the system requires further im-

provements to realize real-time performance. While tracking

performance is excellent when the actor is facing the camera,

performance degrades with significant out of plane rotation.

Moreover, the standard background subtraction in color space

is not suitable for the actual humanoid application, in which

case the camera should be able to move. In future work, we

hope to address these limitations and implement the system

on an on-board camera of a humanoid robot.

REFERENCES

[1] T. Moeslund and E. Granum, “A survey of computer vision-based
human motion capture,” Computer Vision and Image Understanding,
vol. 81, no. 3, pp. 231–268, 2001.

3433



6.1: Frame110 6.2: Frame327 6.3: Frame332 6.4: Frame396 6.5: Frame413 6.6: Frame499 6.7: Frame510 6.8: Frame571

6.9: Frame579 6.10: Frame584 6.11: Frame652 6.12: Frame660 6.13: Frame676 6.14: Frame686 6.15: Frame720 6.16: Frame792

6.17: Frame874 6.18: Frame882 6.19: Frame931 6.20: Frame940 6.21: Frame967 6.22: Frame1022 6.23: Frame1073 6.24: Frame1097

Fig. 6. Frames Extracted from Video

[2] T. Moeslund, A. Hilton, and V. Krüger, “A survey of advances in
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