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Abstract— We propose a strategy for a robot to operate
in an environment with movable obstacles using only on-
board sensors, with no previous knowledge of the objects in
that environment. Movable obstacles are detected using active
sensing and a color range sensor, and when an obstacle is
moved, the perception of the environment is reconstructed.

Active sensing is defined as the classification of an object as
either movable or static after the robot tries to push the object
using its arm. This classification is collectively based on force
sensor inputs, joint angles, and color range sensor inputs. In
order to gather information from the environment, we use a
color range sensor consisting of a TOF (Time of Flight) range
sensor and conventional stereo cameras.

Finally, we show experimental result in the environment with
movable obstacles such as a table and chairs. Humanoid robot
HRP-2 detects that a chair is a movable obstacle, moves the
chair to clear a path to its goal, and then reaches the goal.

I. INTRODUCTION

Robots working in nursing care, home assistance, office
service, and other environments shared with humans are
required to recognize changing environment and navigate by
avoiding collision with fixed obstacles and moving movable
obstacles out of the way to clear a path. Humanoid robot’s
range of abilities has been expanded to include being able to
move movable objects to clear a path to its destination [1],
[2]. In order to execute actions effectively in such a complex
environment, on-line reconstruction of the robot’s perception
of the environment in response to environmental changes
is needed. In addition to passive sensing, active sensing is
effective for recognizing movable obstacles.

Humanoid robots that can operate in several environments
using 3-D stereo vision or a range sensor have been studied
[3]–[6] . Accurate 3-D sensing is necessary for recognizing
complex environments. Color is also useful information
for environment perception when combined with 3-D point
information. In this paper, we adopt a color range sensor
consisting of a TOF (Time of Flight) range sensor and
conventional color stereo cameras to construct a 3-D point
cloud with color.

Fig. 1 shows an example of the type of problem we address
in this paper. The robot is directed to go to the goal in an
environment with an obstacle (Fig. 1 (a)). The robot looks
around and detects the obstacle it needs to avoid in order
to prevent collision (Fig. 1 (b)). If the path to the goal is
not found, the robot tries to push the obstacle in order to
determine whether or not it is movable (Fig. 1 (c)). If the
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Fig. 1. Example of a scene with movable and static obstacle

object is determined to be movable, the robot pushes it out
of the way to clear a path to the goal (Fig. 1 (d)). Then, the
robot proceeds to the goal (Fig. 1 (e)).

This paper is organized as follows. In the next section,
related works are surveyed. The action strategy proposed in
this paper is described in Section III. In Section IV, environ-
ment perception by the color range sensor is described. In
Section V, how to detect a movable obstacle by combining
information from the color range sensor, force sensors, and
joint angles is described. Experimental results are presented
in Section VI. and conclusions are described in Section VII
.

II. RELATED WORKS

We proposed a motion planner in an environment with
movable obstacles [1], in which the approach was to con-
struct an environment manipulation task graph and solve
the task using a navigation path planner and a whole-body
motion planner. Stilman [2] solved the navigation plan-
ning problem among movable obstacles using the geometric
model of obstacles. In this paper, we propose an action
strategy in an environment with movable obstacles with no
previous knowledge of the objects, such as their geometry or
grasping points. Therefore, the robot needs to detect which
obstacles are movable by trying to push them.
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Humanoid robots using on-line environment recognition
have been researched [7], [8]. Michel [7] has proposed an on-
line environment recognition system for a biped robot using
on-board sensors and external optical motion capture system.
In [8], a biped robot navigation in an environment with
previously unknown obstacles has been researched using a
pivoting range sensor for sensing the environment on-line.
In this paper, the robot moves obstacles depending on the
results of movable object detection, and the perception of
the environment is reconstructed after each time an object is
moved.

There has been research done using the fusion of a
range sensor and a color camera [9], [10]. Categorization
of objects in a kitchen environment has been achieved by
using statistical relational learning method in [9]. In [10]
localization and mapping for a mobile robot expected to
explore an unknown environment has been researched.

ICP(Iterative Closest Point) is an algorithm for estimat-
ing the transformation between two point clouds [11] by
minimizing the distance of closest points. A more accurate
estimation has been achieved [12] by using a 3-D point
cloud with color. In this paper, the color-ICP algorithm was
used for detecting the displacement of the movable obstacle
pushed by the robot.

III. STRATEGY FOR WORKING WITH UNKNOWN
OBJECTS

In this section, a strategy for working in an environment
with movable obstacles is described. The proposed strategy
consists of obstacle recognition using a point cloud captured
by range sensor, active sensing for detecting movable obsta-
cles, pushing a movable obstacle away, and them performing
on-line reconstruction of the robot’s perception of the envi-
ronment.

Obstacles were detected by generating simple geometric
shapes using point clouds obtained using a “looking-around”
motion. Details are described in Section IV-C. “Detect Ob-
ject” in Fig. 2 corresponds to this explanation.

At first, path planning with avoiding obstacles is executed.
If a path to the goal is found, the robot navigates to the goal.
The execution flow reaches “Goal” in Fig. 2.

When there is no path to the goal, the robot tries to
detect movable objects using active sensing. “Movable object
exists?” corresponds to this action. The robot starts with
the obstacle nearest to its location and iterates until it finds
a movable obstacle or detects that all obstacles are static
objects. Details of detecting movable obstacles are described
in Section V.

If no movable obstacle are found, the execution flow
reaches “No path to goal” in Fig. 2. When a movable obstacle
is found, the robot moves the obstacle. Then, the execution
flow returns to “Detect Object”.

Fig. 3 shows an example of an environment in which a
table is a static object, and two chairs are movable objects.
“S” indicates the starting location of the robot. “G” indicates
the goal. Circled number from 1 to 3 indicate the objects
set in this environment. The path planner described in this

Detect
objects

GoalNo path
to goal

Start

Move
object

Yes

No

No

Path to goal
exists?

Movable object
 exists?Yes

Fig. 2. Execution flow for working with movable obstacles

paper uses the rapidly-exploring random tree (RRT) path
planning algorithm. In collision detection between the robot
and obstacles, the robot is assumed to be a bounding cylinder.

The robot executes actions in this environment as follows.
The path to the goal is not found in this setting because
distance between the table and the chair is shorter than
the diameter of the cylinder assumed to be the robot. The
sequence for detecting movable obstacles is then executed
as follows. The robot moves to a suitable position for trying
to push the obstacle, pushes the obstacle, and then detects
movement of the obstacle.

The robot push the obstacle forward and reconstructs a
perception of obstacles. If a path to the goal can be found,
the robot reaches the goal.
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Fig. 3. Example of an arrangement of obstacles in an environment
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IV. RECOGNITION OF THE ENVIRONMENT WITH
COLOR RANGE SENSOR

A. Color Range Sensor

The color range sensor (shown in Fig. 4) used in this paper
consists of a TOF range sensor (Swissranger, SR-4000) and
two conventional IEEE1394 color cameras(Pointgray, Flea2).
The focal length of the color cameras is 4 mm, and the base
length of stereo cameras is 110 mm. The focal length of the
camera is selected to be wider than the range sensor. The
horizontal view angle of the range sensor is 43.6 deg and
the vertical view angle is 34.6 deg. A 3-D point cloud, with
color, that has 25,344 (176 x 144) points can be constructed
at more than 10 frames per second using this color range
sensor.

The range sensor is placed in between the stereo cameras.
This alignment allows the estimation of the color correspond-
ing to a point using images from the two cameras. Therefore,
errors corresponding to the background side can be reduced.

Range Sensor
Swissranger

SR-4000

IEEE1394
Camera

Fig. 4. The color range sensor, which consists of a range sensor and color
cameras, is fixed at the head of HRP-2

Camera calibration is executed in two steps. First, intrinsic
camera parameters of the stereo cameras and the range
sensor are calibrated. In the second step, external parameters
of the range sensor and the stereo cameras are calibrated
simultaneously by showing the robot a checkerboard (shown
in Fig. 5).

Fig. 5. A checkerboard as seen by the left camera of stereo cameras (left),
and the intensity image seen by the range sensor (right)

Fig. 6 shows an example of a 3-D point cloud with color
captured by the color range sensor located on the robot head
and the image captured by the left camera.

Fig. 6. Constructed color point cloud(left), and the corresponding image
captured by the left camera(right)

B. Floor Detection

The view angle of the color range sensor is too narrow
for a humanoid robot to recognize the environment around it.
Thus, the color range sensor is panned and tilted by swinging
the head. Fig. 7 shows 15 point clouds gathered at tilt angles
of 45, 30 and 20 degree, for each pan angle of 50, 25, 0,
-25, and -50 degree.

Fig. 7. Gathered 3D point cloud of the room. 15 point clouds are shown
in this figure.

Removing floor points from gathered point clouds is
necessary for detecting obstacles on the floor. The floor
detecting method in this paper is based on the assumption
that the place where robot is standing is the floor of the
environment. From this assumption, points that have similar
color and that have similar elevation to known floor’s points
directly in front of the robot are assumed to be the floor.
P (z), Gaussian distribution of the height of the floor, is

defined as follows:

P (z) =
1√
2πσz

e−( z−µz
2σz

) (1)

where z is z component of the points, σz is the variance of
known floor’s points, and µz is the average of known floor’s
points.
P (c), Gaussian distribution of the color-vector of the floor,

is defined as follows:

P (c) =
1

(2π)3/2
√

|Σc|
exp[−1

2
(c−µc)Σ

−1
c (c−µc)

t] (2)

where c is the RGB color vector, Σc is the variance-
covariance matrix of color-vector of points, µc is the mean-
vector of color-vector of points.

The likelihood of points being floor points is defined as
P (z)P (c). Fig. 8 shows the floor detection result. In this
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case, the points, which were on a square side length of
400 mm in front of the robot, were used as known floor’s
points.

Green points indicate detected points as the floor. Colored
cloth put on the floor, to the right of the robot, as shown in
Fig. 8, is not detected as the floor.

Colored cloth on the floor

Fig. 8. Floor detection result. Green points are indicated as the floor.

C. Obstacle Detection

A simple labeling method is used for the clustering of
point clouds. An elevation map is generated from point
clouds excluding points detected as the floor. The elevation
map has square grid cells. The cell size is 40 mm on a side.
In order to eliminate measuring error, cells that contain a
quantity of points lower than a certain threshold are removed.
Each labeled point cloud is converted into a prism in order
to reduce the cost of collision detection. The prism has the
height of highest points in the same labeled cell and the
shape of the convex hull of the points projected onto the
xy-plane.

Fig. 9 shows labeled prisms. Gathered point clouds are
clustered into prisms, and each prisms is treated as a ob-
stacle. Some points outside of the prisms are detected as
measurement errors.

Fig. 9. Labeled prisms generated from point clouds

V. DETECTION OF MOVABLE OBSTACLES BY
ACTIVE SENSING

The results from the three types of sensor output are used
for movable obstacles detection. A 6-axis force-torque sensor
is placed at each wrist, potentio sensors at each each arm
joints and the color range sensor are used.

Fig. 10 shows pushing motion. The robot moves its hand
horizontally away from itself in order to push the obstacles in
front of it. Before detecting obstacles, the robot navigates to
a suitable position from which to push the object by using

Fig. 10. Left: Pushing a static obstacle (table), Right: Pushing a movable
obstacle (chair)

Probing target

Fig. 11. Detection result of pushing target

the results of obstacle detection. The height at which the
robot extends its hand toward the object varies depending
on the height of the detected obstacle.

Fig. 11 shows detection result of the pushing target. The
green square indicates the target for pushing. The target is
the top of the vertical surface facing the robot.

Whether or not the robot touches the obstacle is detected
by the 6-axis force-torque sensor. When the sensed force is
greater than a certain threshold, the robot stops pushing, and
the obstacle is determined to be a static obstacle. Fig. 12
shows the results of the sensing force from three cases. The
force shown in Fig. 12 is the norm of a 3-axis force. In
the case of the robot touching an obstacle and the obstacle
moving, a certain amount of force is needed against the
friction force. The robot touched the obstacle at about 1.2 s
as indicated by the green line in Fig. 12. In the case of
robot touching a static obstacle, the robot stops moving its
hand. The pushing motion was stopped when the sensed
force exceeded 20 N as indicated by the blue line in Fig.
12. In the case of robot not touching anything, sensed values
were roughly zero as indicated by the red line in Fig. 12.

3-D point clouds with color were used for estimating
obstacle displacement by means of the color-ICP algorithm
[12]. Fig. 13 shows the point cloud of the chair at the position
before pushing and the position after it was moved. The
colors of the chair points were obtained using color-ICP. Fig.
14 shows the results of estimated displacement using color-
ICP. Red points shows the point cloud of the chair after it
was moved. Green points shows the point cloud of the chair
at the original position. Blue points shows estimated result
using color-ICP.

In this case, calculated displacement was (189.3, 13.6, -
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Fig. 12. Force sensing results of each case

0.4) [mm] in Cartesian coordinates, and the rotation was a
yaw angle of 2.5 deg, a pitch angle of 0.5 deg, and a roll
angle of 0.2 deg. At the same time, the distance from the
points at which the robot first touched the chair to the points
at which the robot stopped pushing was 182.2 mm in the
x-direction. The displacement detected by two sensors was
7.1 mm. This was a sufficient enough result for detecting
obstacle movement.

In the case of pushing a static obstacle, the displacement
estimated by the ICP algorithm was less than 10 mm.

VI. EXPERIMENTAL RESULT

The proposed strategy was demonstrated with humanoid
robot HRP-2 in a room with two chairs (movable) and a
table (static). The goal was set at the opposite side of the
table. The chairs were set as obstacles in the path to the
goal. The green cross in Fig. 15 indicates the goal. Fig. 15
shows the experimental result of navigating to the goal in an
environment with movable obstacles by pushing obstacles
out of the way on the path to the goal. In this experiment,
the position of the robot was tracked using HRP-2’s built-in
walk pattern generator.

As described in Section III, HRP-2 looked around and
gathered point clouds from 15 views in 53 s. Obstacles were

Moved position Original Position

Fig. 13. Original and moved color point cloud of the chair

Fig. 14. ICP result, Red: moved points, Green: original points, Blue; moved
points translated with ICP result

detected and path planning was executed in 74 s. The nearest
obstacle (table) was found. HRP-2 walked to the front of it in
106 s, pushed the table, and, using hand position information
and former and latter point cloud information, confirmed that
the table was not moved. The table was detected as a static
obstacle in 122 s. Next, HRP-2 walked to the back of the
nearest chair in 222 s, pushed the chair, and confirmed that
the chair was moved. The chair was detected as a movable
obstacle in 244 s. Then, HRP-2 moved the chair 800 mm
forward. In this experiment, the direction and distance of
robot’s pushing a obstacle were preliminarily determined.
HRP-2 looked around, detected obstacles and found the path
to the goal. Finally, HRP-2 reached the goal in a total of
384 s. HRP-2 successfully reached the goal by pushing the
chair out of the way on the path to the goal.

VII. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we have proposed the action strategy in an
environment with movable obstacles without prior knowl-
edge of which objects were movable or which objects were
not movable. In this case, the robot needed to detect which
obstacles were movable and reconstructs its perception of
the environment. We have also shown that the color range
sensor is effective for detecting the floor and for clustering
obstacles. In order to detect a movable obstacles, active
sensing is necessary. Active sensing is achieved by pushing
obstacles and then using the combined output of color range
sensor, force sensor, and joint angles for accurate detection.

Humanoid robot HRP-2 succeeded in reaching the goal by
moving a movable obstacle. We have shown that humanoid
robots can execute actions in a complex complex environ-
ment with unknown obstacles by means of detecting movable
obstacles with active sensing.

There are some problems with detecting objects with no
previous knowledge. Segmentation with simple labeling fails
when objects are located too close. Also, there might be
objects that are not supposed to be touched, such as fragile
or valuable object.
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Fig. 15. The result of navigating to the goal indicated by green cross with detecting and moving movable obstacles

B. Future Works

In this paper, planning for obstacle reposition is not
considered. Rearrangement planning by mobile robots as
described in [13] is needed even for humanoid robots in order
for the robot to move obstacles more effectively.

Some problems remain for executing rearrangement by
humanoid in a real environment. One supposed problem
of rearrangement in a real environment is avoiding the
collision between manipulated objects and obstacles in an
environment. We think that using collision avoidance plan-
ning together with visual perception and a active sensing
method as trying to move objcts in order to detect a collision
is effective to that problem.

REFERENCES

[1] K. Okada, A. Haneda, H. Nakai, M. Inaba, and H. Inoue, “En-
vironment Manipulation Planner for Humanoid Robots Using Task
Graph That Generates ActionSequence,” in Proceedings of the 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2004, pp. 1174–1179.

[2] M. Stilman, K. Nishiwaki, S. Kagami, and J. J. Kuffner, “Planning
and executing navigation among movable obstacles,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2006, pp.
820–826.

[3] F. Kanehiro, T. Yoshimi, S. Kajita, M. Morisawa, K. Fujiwara,
K. Harada, K. Kaneko, H. Hirukawa, and F. Tomita, “Whole body
locomotion planning of humanoid robots based on a 3d grid map,” in
Proceedings of the 2005 IEEE International Conference on Robotics
and Automation, 2005, pp. 1072–1078.

[4] F. Saı̈di, O. Stasse, K. Yokoi, and F. Kanehiro, “Online object search
with a humanoid robot,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2007, pp. 1677–1682.

[5] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3d perception and
environment map generation for humanoid robot navigation,” The
International Journal of Robotics Research, vol. 27, no. 10, pp. 1117–
1134, 2008.

[6] N. Kwak, K. Yokoi, O. Stasse, and T. Foissotte, “3d grid and
particle based slam for a humanoid robot,” in IEEE/RAS International
Conference on Humanoid Robotics(Humanoids 09), 2009, pp. 62–67.

[7] P. Michel, J. E. Chestnutt, S. Kagami, K. Nishiwaki, J. Kuffner, and
T. Kanade, “Online environment reconstruction for biped navigation,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2006, pp. 3089–3094.

[8] J. E. Chestnutt, Y. Takaoka, K. Suga, K. Nishiwaki, J. Kuffner, and
S. Kagami, “Biped navigation in rough environments using on-board
sensing,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2009, pp. 3543–3548.

[9] Z. C. Marton, R. B. Rusu, D. Jain, U. Klank, and M. Beetz, “Proba-
bilistic categorization of kitchen objects in table settings with a com-
posite sensor,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009, pp. 4777–4784.

[10] J. V. Miro and G. Dissanayake, “Robotic 3d visual mapping for
augmented situational awareness in unstructured environments,” in
Proceedings of the International Workshop on Robotics for Risky
Interventions and Surveillance of the Environment (RISE 2008), 2008,
pp. 1–13.

[11] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in Proceedings of the Third Intl. Conf. on 3D Digital Imaging
and Modeling, 2001, pp. 145–152.

[12] A. Johnson and S. B. Kang, “Registration and integration of textured
3-d data,” in Proceedings of InternationalConference on Recent Ad-
vances in 3-D Digital Imaging and Modeling (3DIM ’97), 1997, pp.
234 – 241.

[13] J. Ota, “Rearrangement planning of multiple movable objects by a
mobile robot,” Advanced Robotics, vol. 23, pp. 1–18(18), 2009.

1701




