
Proposal of Augmented Linear Inverted Pendulum Model for Bipedal
Gait Planning

Huan Dau∗, Chee-Meng Chew†, and Aun-Neow Poo ‡

Department of Mechanical Engineering, National University of Singapore
10 Kent Ridge Crescent, 119260 Singapore

∗Email: dvhuan@nus.edu.sg, †Email: chewcm@nus.edu.sg, ‡Email: mpepooan@nus.edu.sg

Abstract— In this paper, we propose a new model called
Augmented Linear Inverted Pendulum (ALIP) in which an
augmented function F is added to the dynamic equation of the
linear inverted pendulum. The purpose of adding the function
F is to modify/adjust the inverted pendulum dynamics in such
a way that disturbance caused by un-modeled dynamics (legs,
arms, etc.) can be compensated or minimized. By changing the
key parameters of the augmented function we can easily modify
the inverted pendulum dynamics. The desired walking motion
with maximized stability margin is achieved by optimizing
the key parameters using genetic algorithm. The disturbance
created by the un-modeled dynamics is minimized because
full robot dynamics is considered in the optimization process.
Simulations results show that the walking gait obtained using
the proposed method is more stable than that obtained using
the Linear Inverted Pendulum Mode (LIPM).

I. INTRODUCTION

Many approaches have been used in walking pattern gen-
eration for biped robots[1-9]. One of the popular approaches
is to use dynamic model analysis in designing walking
patterns([1], [2], [9]). Due to its high-order, nonlinear and
complex characteristics, it is difficult to analyze biped dy-
namics unless some simplification is made.

Simplification techniques have been used by many re-
searchers. Golliday and Hemami used state feedback to
decouple the high-order system dynamics of biped into
independent low-order subsystems[2]. Kajita et al.[7] derived
an ideal massless-leg biped model. In this model, the center
of gravity (CG) of the body moves horizontally and the
horizontal motion of the CG can be expressed by a simple
linear differential equation. They called such a motion of the
ideal model the Linear Inverted Pendulum Mode (LIPM) and
used it to build the control framework for biped walking. The
advantage of this method is that the dynamic model is simple
hence it is easy to get analytical solution. Therefore, it is
quite straightforward to design walking gait. However, since
the model is too simple it may cause problem when control-
ling the real biped whose dynamics is not fully represented
by the simple model. Kajita et al.[5] proposed using the ankle
torque controller to compensate for the disturbance generated
by swing leg dynamics. The ankle torque controller helps the
biped to realize the desired walking motion generated using
the LIPM model. However, the required ankle torque may
need to be very large when the effect of swing leg dynamics

is significant.
Park et al.[9] improved the LIPM model by introducing

the term Gravity-Compensated Inverted Pendulum Mode
(GCIPM). Their approach takes into account the gravity of
the swing leg to generate biped locomotion pattern. The
walking trajectory generated by this approach is more stable
than that of the LIPM model. However, this method also has
its own limitation since only gravity term of the swing leg
is taken into account while the inertia term is not.

In this study, we further improve the LIPM model by
proposing a new model called Augmented Linear Inverted
Pendulum (ALIP). An augmented function F is added to
the dynamic equation of the Linear Inverted Pendulum. The
role of the augmented function is to adjust the inverted
pendulum dynamics such that the disturbance caused by
the un-modeled dynamics (legs and arms) is minimized.
The inverted pendulum dynamics can be easily adjusted or
modified by manipulating the key parameters of the aug-
mented function. Our objective is to design a walking pattern
that has the highest stability margin possible. In this study,
the Zero-Moment-Point (ZMP)[12] is used as a stability
criterion for dynamic walking. The desired walking motion
with maximized stability margin is achieved by optimizing
the key parameters of the augmented function using the
genetic algorithm (GA). The advantage of this method over
the above mentioned methods (LIPM and GCIPM) is that the
disturbance caused by the un-modeled dynamics (swing legs,
arms, etc.) is minimized during the optimization process.
When the disturbance caused by un-modeled dynamics is
minimized, better walking gait can be achieved. Simulation
results show that the trajectory generated by our proposed
method is more stable than that by the LIPM model and
GCIPM model.

II. AUGMENTED LINEAR INVERTED PENDULUM

The Linear Inverted Pendulum Mode (LIPM) was pro-
posed by Kajita et al.[7] in 1991. In this study, bipedal
robot is modeled as an inverted pendulum in which total
mass of the robot is concentrated into a point mass (see Fig.
1). The center of gravity (COG) is constrained to move on
a horizontal plane. The dynamic equation of motion of the
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inverted pendulum is described as follows:

ẍ =
g

zo
x +

τ

mzo
(1)

where x is the COG position, zo is the constant height of
the inverted pendulum, g is the gravity acceleration and τ is
the ankle torque.

To design the nominal walking motion for bipedal robot,
Kajita et al. ([6], [5], [7], [8]) assumed that the ankle torque
is zero (τ = 0). The dynamic equation becomes

ẍ =
g

zo
x (2)

Fig. 2 shows an example of reference hip trajectory gener-
ated using the LIPM equation (2) with step length S = 0.3
m, step time T = 1 s. Ideally, if there is no disturbance
(caused by the un-modeled dynamics such as legs or arms,
foot impact and other external forces) this reference motion
can be perfectly tracked and the zero-moment-point (ZMP)
stays exactly at the ankle joint position. However, in most
cases, at least one of these disturbances is present. These
disturbances may cause the resulting motion to deviate from
the reference motion.

In order to reduce or compensate for the disturbances
caused by un-modeled dynamics (legs and arms), there are
two possible solutions: i) Use the ankle torque to force the
robot to follow the reference motion[5], [7]; and ii) Modify
the reference motion of the center of mass (COM) so that
the disturbing effect caused by un-modeled dynamics is min-
imized. The first solution works well when the disturbance
caused by the un-modeled dynamics is small. However, when
the effect of the un-modeled dynamics become too big, the
reference motion may not be realized because the ankle
torque required exceeds the acceptable limit. Whereas, if we
can somehow modify the COM reference motion (second
solution) in such a way that it is in harmony with legs and
arms motions, a better walking behavior can be achieved. By
”harmony” we mean that the motions of arms and legs have
very little or no disturbing effect on the reference motion.

In this study, the determination of whether one trajectory is
better than the other is based on the stability margin criterion.
A trajectory is better than another one if it has larger stability
margin. And by this way, we define that a trajectory having
larger stability margin means that the disturbing effect on the
reference motion caused by arms and legs dynamics is less.

One way to modify the reference trajectory is to modify
the dynamic equation (2). In this study, we propose to modify
the dynamic equation (2) by adding an augmented function F
to the right hand side of the equation. The dynamic equation
is as follows:

ẍ =
g

zo
x + F (3)

where the augmented function F has the following charac-
teristics:
• F is continuous and is able to make gradual change to

the dynamics of the inverted pendulum model in (2).

Fig. 1. The inverted pendulum model of humanoid robot.

• F must satisfy the condition that (3) can be solved
analytically.
• F should be as simple as possible.
• The value of F can be changed by changing some key

parameters.
The purpose of adding the function F to the inverted pen-

dulum equation is to give us the ability to change or modify
the dynamics equation. There can be many choices for the
function F that has the above mentioned characteristics.

It can be seen that the dynamic equation (2) of the Linear
Inverted Pendulum Mode is a special case of the second-
order ordinary differential equation

aẍ + bẋ + cx = 0 (4)

where a = 1, b = 0, c = −g/z0 .
Equation (2) is the mathematical representation of the

LIPM, a highly simplified model of bipedal walking robots.
We suspect that Equation (4), a more general mathematical
representation compared to (2), might be richer in represent-
ing the dynamics of bipedal walking. Therefore, we propose
to choose the augmented function F to be

F = kpx + kvẋ (5)

where kp and kv are the constant parameters.
Substitute (5) into (3), we have

ẍ =
g

zo
x + kpx + kvẋ (6)

We call the dynamic model described by (6) the Aug-
mented Linear Inverted Pendulum (ALIP).

Equation (6) can be re-written as follows:

ẍ + bẋ + cx = 0 (7)

where b = −kv, c = −kp − g/z0.
Solving the second-order linear differential equation (6),

we have the following cases:
• If b2 − 4c > 0:

x(t) =
x(0)r2 − ẋ(0)

r2 − r1
er1t +

ẋ(0) − x(0)r1

r2 − r1
er2t (8)
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Fig. 2. A sample hip trajectory generated using the LIPM model (Eq. 2)
where Step length S = 0.3 m, Step time T = 1 s.

where x(0), ẋ(0) are initial position and velocity conditions,
respectively. r1, r2 are real roots of the auxiliary equation
and are determined as below:

r1,2 =
−b ±√

b2 − 4c

2
(9)

ẋ(t) =
x(0)r2 − ẋ(0)

r2 − r1
r1e

r1t+
ẋ(0) − x(0)r1

r2 − r1
r2e

r2t (10)

Since r1, r2 are functions of kp and kv, x(t) is also
function of kp and kv.

• If b2 − 4c = 0:

x = [ẋ(0) − rx(0)]tert + x(0)ert (11)

ẋ = [ẋ(0) − rx(0)](1 + tr)ert + x(0)rert (12)

where r = −b/2.

• If b2 − 4c < 0:

x = [x(0) cos(βt) +
ẋ(0) − x(0)α

β
sin(βt)]eαt (13)

ẋ = ẋ0 cos(βt)eαt+
αẋ0 − (α2 + β2)x0

β
sin(βt)eαt (14)

where α = −b/2, β =
√

4c − b2/2.

In summary,

x(t) =

⎧⎪⎨
⎪⎩

x0r2−ẋ0
r2−r1

er1t + ẋ0−x0r1
r2−r1

er2t, if Δ > 0
[ẋ0 − rx0]tert + x0e

rt, if Δ = 0
[x0 cos(βt) + ẋ0−x0α

β sin(βt)]eαt, if Δ < 0
(15)

ẋ(t) =

⎧⎪⎨
⎪⎩

x0r2−ẋ0
r2−r1

r1e
r1t + ẋ0−x0r1

r2−r1
r2e

r2t, if Δ > 0
[ẋ0 − rx0](1 + tr)ert + x0re

rt, if Δ = 0

ẋ0 cos(βt)eαt + αẋ0−(α2+β2)x0
β sin(βt)eαt, if Δ < 0

(16)
where b = −kv, c = −kp − g

zo
and Δ = b2 − 4c.
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1:Kp = 0, Kv = 0
2:Kp = −5, Kv = 0
3:Kp = 5, Kv = 0
4:Kp = 0, Kv = −1
5:Kp = 0, Kv = 1
6:Kp = 5, Kv = −1
7:Kp = 5, Kv = 1

Fig. 3. Some sample trajectories generated using equations (15) and (16).
The trajectories are numbered in sequence from 1 to 7 and each trajectory
corresponds to a set value of kp and kv. When kp = 0, kv = 0 (trajectory 1
- the thick solid curve), the trajectory generated using our proposed approach
will be the same as that generated using Kajita’s method (LIPM). It can
be seen that, the effect of kp is to change the degree of curvature of the
trajectory (see curve 2 and 3). Whereas, the effect of kv is to offset the
trajectory vertically (curve 4 and 5). .

Equations (15) and (16) will be used to plan reference
trajectory for humanoid robot. Fig. 3 shows some sample
trajectories generated using these equations when different
values of kp and kv were used.

The proposed augmented function F satisfies all the
required characteristics because: 1. F is able to make gradual
change to the inverted pendulum dynamics; 2. Equation (3)
can be solved analytically; 3. The function F is simple; 4.
F can be changed by changing the key parameters kp and
kv .

III. TRAJECTORY PLANNING

To design walking gait for biped robots, we need to plan
foot trajectory of the swing leg and hip trajectory. In this
study, we use the same way of planning foot trajectory as
in [9] (for comparison purpose later). Equations (15) and
(16) will be used to plan the hip trajectory of the walking
gait. x(t) and ẋ(t) are functions of time and the parameters
kp and kv. Different choice of (kp, kv) results in different
hip trajectory. Our objective is to find the optimal value of
kp and kv such that the resulting walking gait has highest
possible stability margin. Stability margin is defined as the
shortest distance from the ZMP trajectory to the edges of
the supporting foot polygon. This means that the maximum
stability margin is achieved when the ZMP is located exactly
at the middle of the foot polygon.

Let us assume that the robot is repeating single support
phase of duration T and double support phase is instanta-
neous. Figure 4 illustrates one walking step in X-direction.
At the beginning of the step (t = 0), the initial horizontal
position of robot body is xo. At the end of the step (t = T ),
the horizontal position of the robot body is xf . S denotes
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Fig. 4. One walking step in the sagittal plane is illustrated. The body
travels from A to B in the single support phase. While the body moves from
A to B, the tip of the swing leg travels from C to D. xo and xf are the
positions of the body at time t = 0 and t = T , respectively.

the walking step length. The origin O of the coordination
system is placed at the ankle of the supporting foot.

The hip trajectory is computed using equations (15) and
(16) together with the following conditions:

⎧⎪⎨
⎪⎩

x(0) = xo

x(T ) = xf

ẋ(0) = ẋ(T ) (velocity continuity condition)
(17)

Genetic algorithm (GA)[11] is used to find the optimal
value of kp, kv with the objective to maximize the stability
margin. The cost function is described as follows:

CF = Max{∣∣xmin
zmp − d

∣∣ ,
∣∣xmax

zmp − d
∣∣} (18)

where CF is the cost function; d is the horizontal distance
measured from the ankle joint to the middle point of the foot;
xmin

zmp, xmax
zmp are the minimum and maximum ZMP position,

respectively. Note that in this study the ZMP is computed
based on the full dynamics of the real biped. Therefore,
we can make sure that swing leg and arms dynamics are
included in the trajectory planning process which helps to
minimize the disturbing effects of arms and legs. The origin
O of the coordinate system is placed at the ankle joint as
shown in Fig. 5.

The fitness function is

FF =
1

CF
=

1
Max{∣∣xmin

zmp − d
∣∣ ,

∣∣xmax
zmp − d

∣∣} (19)

GA will search for kp, kv that maximize the fitness
function FF . When FF is maximized the stability margin
will be maximized as well. Note that the optimal values of
kp and kv may be different for different swing leg motions.

Fig. 5. The supporting foot is shown. The origin O of the coordinate system
is placed at the ankle joint.

Fig. 6. Picture of NUSBIP-III

IV. SIMULATION RESULTS

The specifications of the simulated biped was taken from
a real biped, which was named NUSBIP-III and developed
in our Legged Locomotion laboratory. Table I summarizes
the specifications of the biped robot NUSBIP-III. A picture
of NUSBIP-III is depicted in Fig. 6. In this study, we
used Yobotics (http://yobotics.com/), a dynamic simulator,
to simulate bipedal walking motion.

In this simulation, for no particular reason, the inputs were
chosen as follows. The time for one walking step is T = 0.8
s, and the corresponding step length is S = 0.3 m. Genetic

TABLE I

SPECIFICATIONS OF NUSBIP-II.

Length Thigh Shank Foot Length
(m) 0.32 0.32 0.21

Weight m1 m2 m3 m4 m5 m6 m7

(kg) 1.52 1.68 2.68 10.45 2.68 1.68 1.52

Inertia I1y I2y I3y I4y I5y I6y I7y

(kgm2) 0.1040 0.2739 0.3458 0.2426 0.3458 0.2739 0.1040
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Fig. 7. Averaged Fitness value of each generation is shown. It can be seen
from the figure that GA converged after 50 generations.

algorithm (GA)[11] was used to determine the optimal value
of kp and kv . The GA’s parameters were chosen as follows:
Number of Generations is 100, Population Number is 3000,
crossover rate is 0.8 and mutation rate is 0.02.

In order for GA to start the optimization process, we need
to define the ranges for the variables kp and kv . After some
simple checks we found that when kp < −100 or kp > 100
the obtained trajectory is unstable (the ZMP stays outside
the stable region) for any value of kv. When kv < −30 or
kv > 30 the obtained trajectory is always unstable for any
value of kp. Therefore, we select the ranges for kp and kv

as follows: −100 ≤ kp ≤ 100 and −30 ≤ kv ≤ 30.
Figure 7 shows that GA converged after 30 generations.

The converged value of kp and kv are: kp = 7.093, kv =
−0.94. Since kp and kv were determined, the hip trajectory
can be computed using (15), (16) and boundary conditions
(17). Fig. 8 shows the resulting hip trajectory obtained by
the proposed method (ALIP). The difference between the
hip trajectory obtained using ALIP model and the other two
models (LIPM and GCIPM) is illustrated in Fig. 9.

Fig. 10 shows the ZMP trajectories of the simulated biped
in one walking step. The thick solid curve is the ZMP
trajectory obtained using ALIP model while the dashed-curve
is the ZMP trajectory obtained using GCIPM model and
the thin solid curve is the ZMP trajectory obtained using
LIPM model. The horizontal thick lines are the Foot Toe
and Foot Heel which are the bounds of the stability region.
S1, S2 and S3 are the stability margin of the walking
trajectory generated using LIPM model, GCIPM model and
ALIP model, respectively. Stability margin is defined as the
shortest distance from a point on the ZMP trajectory to either
the Heel or Toe of the supporting foot. From the figure it can
be seen that S3 ≈ 12 cm is much larger than S1 ≈ 1.35 cm
and S2 ≈ 6 cm. Therefore, the walking gait generated using
ALIP model is significantly more stable than that generated
using the LIPM model and the GCIPM model.

Fig. 11 shows a comparison of the torque needed to apply
at the ankle joint when different models are used. It can
be seen from the figure that the ankle torque required for
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Fig. 8. The resulting optimal hip trajectory is shown. The upper graph
shows the position trajectory xh of the hip while the lower graph shows
the velocity trajectory.
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Fig. 9. Hip trajectories obtained using different models

the ALIP model is about one half smaller compared to the
ankle torque required for the LIPM model. Compared with
the GCIPM model, the ankle torque required for the ALIP
model is also smaller. Fig. 12 shows the stick diagram of the
simulated walking motion.

V. CONCLUSION

In this study, we proposed the Augmented Inverted Pen-
dulum (ALIP) model to generate walking patterns. In this
method, the disturbance caused by the difference between
mathematical model and real robots is minimized by incor-
porating an augmented function into the dynamic equation.
Simulation results show that the walking pattern generated
using ALIP model is more stable than that generated using
LIPM and GCIPM models. Furthermore, the ankle torque
required by the ALIP model is significantly smaller (about
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Fig. 10. ZMP trajectories of one walking step are shown. The thick solid
curve shows the ZMP trajectory in one walking step (T = 0.8 s) when
ALIP model is used. While the thin solid curve shows the ZMP trajectory
of the robot when LIPM model is used. And the dashed-curve shows the
ZMP trajectory obtained using the GCIPM model. The thick horizontal lines
are indications of Toe and Heel of the supporting foot. S1, S2 and S3 are
the stability margins of the LIPM, GCIPM and ALIP models, respectively.

one half) than that by the LIPM model. ALIP model is there-
fore a meaningful improvement of the LIPM and GCIPM
model while still keeping the simplicity of the method. The
significance of this proposed method is that although simple
modeling was used, full dynamics of the robot was taken
into account in the optimization process which resulted in
better walking gait. The ALIP model can be used to design
online walking gait. The result of online walking simulation
will be reported in our future publications.
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