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Abstract— This work addresses the problem of stochastic
data fusion for systems liable to heavy disturbances, which
denote environmental perturbations strong enough to modify
the system’s internal structure, including signal interference,
sensor faults, physical structure modification, and many other
sources of disturbance. In these such cases, traditional filtering
methods usually fail to provide reliable estimates because of the
highly corrupted sensor measurements. This work proposes to
model the data fusion problem for heavily disturbed systems
through a hybrid systems modeling framework and presents an
online hybrid stochastic filter capable of tracking the system’s
state in unfavorable operating conditions. Simulated and exper-
imental results compare the proposed filter’s performance with
the traditionally used Extended Kalman Filter (EKF) and show
its usefulness as a robust localization filter for an Unmanned
Aerial Vehicle (UAV) designed for aerial power lines inspection.

I. INTRODUCTION

NAVIGATION and 3D localization for robotic systems

are problems of utmost importance [1], specially for

robots operating in outdoor, uncontrolled environments. Pro-

viding reliable estimates of the system’s pose involves com-

bining data, by means of filtering algorithms, from propri-

oceptive and exteroceptive sensors, which may provide in-

formation about position, orientation, velocities or any other

spatial variable of interest. Depending on the application and

the types of sensors available, different strategies may be

used for robots localization. For example, [2] applies Kalman

filtering to the problem of positioning and heading control

of ships and offshore rigs using inertial, GPS, and compass

measurements, whilst [3] extracts information from a stereo

visual system in order to simultaneously localize a robot

and build a map of its surroundings. These examples and

most works concerning data fusion implicitly assume that

“two sensors are better than one”, an idea made famous

in the robotics field by [4]. However, this statement is

true only for sensors working correctly, i.e., with unbiased

measurements. In the case of robots operating in real life,

faulty measurements from just one sensor may degrade the

whole localization system’s performance.

Detecting failures and anomalous behavior in dynamic

systems have long been a matter of great interest, as can be

seen in the survey presented in [5]. One way of dealing with

disturbed measurements consists of considering different

sets of measurement equations in order to describe a given

system’s output. Nevertheless, having different kinds of mea-

surement equations introduces the problem of determining
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which set is the most likely to be true at each time instant.

In the field of Simultaneous Localization and Mapping

(SLAM), for example, [6] and derived works define the

set of measurement equations based on the correspondence

between local and global maps, which is determined by

means of statistical tests that are independent from the

localization filter. On the other hand, the hybrid systems

approach proposed in this work elegantly incorporates mea-

surement compatibility tests, which naturally determine the

most adequate set of measurement equations at each time

instant without the need of additional verifications.

Hybrid systems denote a class of dynamical systems

whose behavior combines continuous and discrete state vari-

ables [7] and extensive work has been done in the field of

state estimation for this kind of system. For instance, [8], [9]

apply particle filters as state estimators for hybrid systems,

while [10] uses robust Kalman filtering techniques. One of

the most famous multiple model estimation algorithms, the

Interacting Multiple Model (IMM), is introduced in [11],

[12] and target tracking applications using hybrid systems

are presented in [13], [14].

Motivated by the problem of 3D localization for an

Unmanned Aerial Vehicle (UAV) designed for aerial power

lines inspection, this contribution lies in the description of the

data fusion problem for heavily disturbed systems through

the hybrid systems modeling framework [15]. Due to the

strong electromagnetic interference generated by the power

lines and occasional sensor faults, the traditional stochastic

filters first evaluated for state estimation using the aircraft’s

sensors were not able to provide reliable information. Instead

of redesigning the instrumentation system, leading to higher

costs and delays in the project, the solution to cope with

environmental disturbances was developing a robust localiza-

tion filter able to deal with highly corrupted measurements,

making it capable to track the UAV’s state in conditions

where other filters fail.

This paper is organized as follows. Section II models

the localization system designed to track the UAV’s state.

The hybrid data fusion algorithm is presented in Section

III and simulated as well as experimental results comparing

its performance with the Extended Kalman Filter (EKF) are

shown in Section IV. Finally, conclusions are presented in

Section V.

II. LOCALIZATION SYSTEM

This section describes the mathematical model used in

the UAV’s localization system. An inertial navigation system

(INS) composed of a 6 degrees of freedom (DOF) Inertial

Measurement Unit (IMU) measures angular and linear rates
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through accelerometers and gyros. A three-axis magnetome-

ter and a barometric altimeter are used, respectively, to

correct the aircraft’s attitude and altitude. Finally, a global

navigation satellite system (GNSS) provides measurements

of position and velocity through a GPS receiver. For the lo-

calization system’s equations, consider the coordinate frames

shown in Figure 1.
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Fig. 1. Body (b) and reference (n) coordinate frames.

A. Translation

Let pb be the representation of the IMU’s position vector in
the body-fixed frame b and pn be the same vector described
in the earth-fixed frame n. Considering that b translates and
rotates with respect to n, it follows that

p
n = C

b
np

b + t
b
n, (1)

where Cb
n denotes the rotation matrix from b to n and

tbn = Ob −On is the displacement between the origins of b,
Ob, and of n, On. Since the IMU’s accelerometers provide
measurements in b, a transformation is necessary to describe
these accelerations in n. Differentiating (1) twice yields

v
n = ṗ

n = Ċ
b
np

b + C
b
nṗ

b + ṫ
b
n, (2)

a
n = v̇

n = C̈
b
np

b + 2Ċ
b
nṗ

b + C
b
np̈

b + ẗ
b
n. (3)

In most cases, pb is a fixed point in the structure, yielding
ṗb = p̈b = 0. In order to further simplify (1)-(3), pb can be
chosen to coincide with Ob and the body’s center of mass,
making pb = 0. In these such cases, (3) can be rewritten as

a
n = ẗ

b
n = C

b
na

b
, (4)

where ab = [ab
x ab

y ab
z]

T is the acceleration measured in b.

Since accelerometers measure the specific force f b acting on
the body instead of real accelerations, (4) is changed to

a
n = C

b
nf

b + g
n
, (5)

where f b corresponds to the IMU readings and gn is the

local gravitational field measured in n.
Choosing [pn vn]T as the state vector to represent the

motion of Ob with respect to n, the body’s translation can
be described as

»
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–

=

»

0 I
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– »
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–

+

»

0 0
Cb

n I

– »

fb

gn

–

+ ǫt, (6)

where I denotes the identity matrix of appropriate dimen-

sions. The term ǫt models disturbances due to modeling

errors and sensor noise.

B. Rotation

The body’s attitude, i.e., the orientation of b with respect

to n, is represented by means of hypercomplex quaternions

vectors [16]. Although this representation is not as intuitive

as Euler angles, which directly denote the body’s rotation

angles around each axis of b, using quaternions exhibits many

advantages concerning computational costs and singularities

in the representation of rotations [1].
Let qb

n = [q0 q1 q2 q3]
T , ‖qb

n‖= 1, be the quaternion
representing the orientation of b with respect to n. The
equation relating qb

n to its corresponding rotation matrix is

Cb
n(qb
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2

4

q2
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3

5 .

As the body rotates, the IMU’s gyros provide angular rate
measurements ωx, ωy, and ωz around axis Xb, Y b, and
Zb, respectively (Figure 1). Thus, the body’s rotation can
be described as

q̇
b
n = −

1

2

2

6

4

0 ωx ωy ωz

−ωx 0 −ωz ωy

−ωy ωz 0 −ωx

−ωz −ωy ωx 0

3

7

5
q

b
n + ǫq,

= −
1

2
Wq

b
n + ǫq. (7)

Similarly to (6), a disturbance term ǫq is added to cope

with modeling errors and sensor noise.

C. Corrective measurements

Denoting

rk =
h

(qb
n,k)T (pn

k )T (vn
k )T

iT

(8)

as the system’s state vector at the k-th sample instant,
where qb

n,k = [q0,k q1,k q2,k q3,k]T , pn
k = [xn

k yn
k zn

k ]T ,

vn
k = [vn

x,k vn
y,k vn

z,k]T , the model provided by (6) and
(7) allows the localization system to predict the body’s
current state based on the IMU’s measurements. However,
because of modeling errors and sensor noise, estimating the
system’s state using only inertial measurements quickly leads
to unreliable results, making it necessary to use additional
sensors in order to correct the estimates [17]. As described
in the beginning of Section II, besides the IMU, the UAV’s
embedded instruments are a magnetometer, a GPS receiver,
and a barometric altimeter. These instruments’ readings are
related to (8) according to

m
b
mag,k =

“

C
b
n,k(qb

n,k)
”T

m
n
E + ǫm, (9)

p
n
gps,k = p

n
k + ǫp, (10)

v
n
gps,k = v

n
k + ǫv, (11)

h
n
alt,k = z

n
k + ǫh, (12)

where mb
mag,k denotes the k-th magnetometer reading de-

scribed in b and mn
E is the local magnetic field vector; pn

gps,k

and vn
gps,k are, respectively, the position and velocity samples

read from the GPS receiver; hn
alt,k is the altitude measure-

ment provided by the altimeter; and ǫi, i ∈ {m, p, v, h},

model sensor disturbances.
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III. HYBRID DATA FUSION

A filtering algorithm capable of joining (6), (7), (9)-(12)

to provide reliable estimates of (8) completes the localiza-

tion system described in Section II. In standard operating

conditions where the model equations are valid, the EKF

and the Unscented Kalman Filter (UKF) are among the

most widely adopted filtering solutions for this kind of

nonlinear problem [18]. Particle filtering is another very

common alternative to handle nonlinearity [8], [9], generally

allowing for non-Gaussian noise. However, robots operating

in outdoor environments sometimes undergo very strong

disturbances, making traditional filters unable to track (8)

over time. The term heavy disturbance here is used to denote

environmental perturbations so strong that they are able to

modify the system’s internal structure. This perturbations in-

clude signal interference from outside the system, temporary

and permanent sensor faults, physical structure modification

and any other source of disturbance that cannot be modeled

just by adding an ǫ noise term. An approach to deal with

this problem is presented next.
Similarly to a well known procedure in the modeling

of hybrid systems [8], [19], state estimation in dynamical
systems under heavy disturbances may be modeled as a
hybrid data fusion problem with equations

rk = fmk
(rk−1, uk−1, wk−1), (13)

ymk
= hmk

(rk, vk), k ∈ N, (14)

where rk ∈ R
nr is the sampled state vector; mk ∈

M , {1, 2, . . . , M} is the system’s operating mode, which
can assume M different discrete values; fmk

: R
nr ×

R
nu × R

nw → R
nr is a possibly nonlinear mode-dependent

process evolution function; hmk
: R

nr × R
nv → R

ny and
ymk

∈ R
ny are the mode-dependent measurement function

and measurement vector, respectively; uk−1 ∈ R
nu is the

input vector; and vk−1 ∈ R
nv and wk−1 ∈ R

nw are noise
processes. The parameter mk is assumed to follow a Markov
Chain with possibly unknown transition probability matrix
(TPM)

Π = (πi,j), πi,j = P{mk = j|mk−1 = i}, i, j ∈ M, (15)

and initial probability vector p(m0). Each discrete mode mk

defines a measurement equation ymk
, each one of them mod-

eling a different way measurements can be used to correct the
predicted estimates. In the case of heavily disturbed systems,
a single measurement equation is generally not sufficient to
cope with the different ways that output measurements can be
generated and affected, possibly being completely degraded
by the environment. In theoretical situations when all sensors
work properly and signal disturbance is not strong, the model
(13)-(14) can be simplified to

rk = f(rk−1, uk−1, wk−1), (16)

yk = h(rk, vk), k ∈ N. (17)

For the system (16)-(17), all sensor measurements correct
the estimates. Furthermore, since the measurements are inde-
pendent, a sequential correction process is commonly used.
Considering that rk is not directly measurable, the problem
of stochastic state estimation can be formulated in a Bayesian
framework as obtaining the a posteriori probability density
function (p.d.f)

p(rk|y1:k) =
p(yk|rk, y1:k−1)p(rk|y1:k−1)

p(yk|y1:k−1)
(18)

from the sequence y1:k = {y1, y2, . . . , yk}. This subject has

been widely addressed in the literature both for the case of

linear and nonlinear functions f and h in (16)-(17) [9], [10],

[17], [20].
Assuming the possibility of not having any previous

knowledge on Π and considering the hybrid model described
in (13)-(14), one wishes to obtain

• r̂k, the estimated minimum variance state vector;
• p̂(mk), the estimated mode probability vector;

• Π̂(k), the estimated TPM;

from a sequence of disturbed measurements y1:k =
{y1, y2, . . . , yk}. From the Total Probability Theorem [21],
(18) can be rewritten as

p(rk|y1:k) =
M

X

i=1

p(rk|y1:k, mk = i)P (mk = i). (19)

The term P (mk = i) denotes the unconditional probability

of having mk = i at the k-th sample instant.

A. TPM estimation

Many works, such as [8], [11]–[13], concerning state

estimation in the context of Markovian jump systems (MJS)

assume prior knowledge on the mode transition probabilities,

i.e., Π is a given parameter. However, this assumption is

usually unrealistic, specially in the case of hybrid systems

like (13)-(14) where mode transitions have unknown causes

and occur at random. Choosing an incorrect a priori value for

Π may degrade the filter’s performance and lead to inaccurate

values for r̂k and p̂(mk), making the online estimation of Π
based on y1:k a desirable and important feature.

The algorithm presented in [22] to perform the online

estimation of unknown, nonstationary TPMs models each

row of Π as following a prior Dirichlet distribution and

derives a Bayesian mean-variance estimator based on the fact

that the Dirichlet distribution is conjugate to the multinomial

distribution. However, the estimator [22] assumes perfect

mode observation, which is not the case for (13)-(14). For

TPM estimation, it has been used the Quasi-Bayesian algo-

rithm described in [19] using just the system’s measurements

as inputs to the TPM estimator. This estimator, which gives

an approximation to the maximum a posteriori estimate

of the transition probabilities, is incorporated to the hybrid

nonlinear filter used to track (13)-(14).

B. Hybrid fusion of filters’ estimates

As can be seen in (19), estimating (18) for the hybrid

system described by (13)-(14) consists of keeping track of

M filters, each one of them following a model for a different

mode mk. Moreover, it is also necessary to estimate the mode

probability vector p̂(mk) = [P̂ (mk = 1) . . . P̂ (mk = M)]T

in order to weight the filters’ estimates according to how

likely their outputs are correct. In the context of multiple

models estimation, the IMM algorithm exhibits computa-

tional requirements which are nearly linear in the size of the

problem (number of modes) whilst its performance is almost

the same as that of an algorithm with quadratic complexity,

making this algorithm one of the best choices in terms of

cost and efficiency [14]. Unfortunately, many applications
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of the IMM algorithm assume previous knowledge of the

TPM, which is rarely the case. However, joining the TPM

estimation algorithm of Section III-A with the IMM algo-

rithm’s equations introduced by [11], [12] yields a hybrid

data fusion system which recursively estimates r̂k, p̂(mk),
and Π̂(k).

HDFF (Hybrid Data Fusion Filter) A set of M filters is
needed to track (13)-(14), each one of them following a dif-

ferent system mode. Let r̂i(k) and P̂i(k), i ∈ {1, 2, . . . , M},
be the state vector and associated covariance matrix corre-
sponding to the filter tracking the system mode mk = i at
the k-th sample instant. Let also yk be the system’s output
vector. Denoting p̂i(mk) = P (mk = i) and assuming initial
conditions

p̂(m0) = [p̂1(m0) p̂2(m0) . . . p̂M (m0)],

r̂i(0) = r(0), r(0) ∈ R
nr ,

P̂i(0) = P (0), P (0) ∈ R
nr×nr ,

Π̂(0) = Π(0),

the hybrid data fusion algorithm can be given by the

following steps:

i Mode probability prediction

p̄i(mk) =
M

X

j=1

π̂j,i(k−1)p̂j(mk−1),

ii Estimates mixing

ri(k−1)=
M

X

j=1

π̂j,i(k−1)p̂j(mk−1)r̂j(k−1)

p̄i(mk)
,

P i(k−1)=
M

X

j=1

π̂j,i(k−1)p̂j(mk−1)
h

P̂j(k−1)+δ(i, j)
i

p̄i(mk)
,

δ(i, j)=
`

r̂j(k−1)−ri(k−1)
´

(·)T ,

iii Filter-dependent prediction step

(ri(k−1), P i(k−1))
Prediction
−−−−−→ (r̄i(k), P̄i(k)), (20)

iv Filter-dependent correction step

(r̄i(k), P̄i(k))
Correction
−−−−−→ (r̂i(k), P̂i(k)), (21)

v Mode probability correction

p̂i(mk) =
p(yk|mk=i, Π̂(k−1), y1:k−1)p̄i(mk)

ci

,

γp =
M

X

j=1

p̂j(mk),

p̂(mk) = [p̂1(mk) . . . p̂M (mk)]T
„

1

γp

«

,

vi Output generation

r̂k =
M

X

i=1

p̂i(mk)r̂i(k),

P̂k =

M
X

i=1

p̂i(mk)
h

P̂i(k) + (r̂i(k) − r̂k) (·)T
i

.

vii TPM update: Π̂(k − 1)
Algorithm [19]
−−−−−−−−→ Π̂(k).

No details are given in (20) and (21) because these steps

vary depending on the filter chosen to track each system

mode. For example, if (13)-(14) are linear, the Kalman Filter

(KF) is a sensible choice. On the other hand, the numerical

results presented in Section IV for the nonlinear localization

system modeled in Section II were obtained by using the

EKF as the filtering solution. No matter what filter is chosen,

step iii takes the mixed initial condition (ri(k−1), P i(k−1))
for the filter tracking the mode mk = i and yields the

predicted state and covariance matrix (r̄i(k), P̄i(k)). Next,

step iv, based on the system’s current output sample yk,

provides the corrected estimates (r̂i(k), P̂i(k)).

IV. RESULTS

A. Simulations

This section presents the simulated tracking performance

under heavy disturbances of two nonlinear filters for the

localization system described in Section II. Among the

UAV’s embedded sensors, the magnetometer is the most

affected by the electromagnetic interference generated by

the aerial power lines. Furthermore, mechanical vibrations

sometimes momentarily disconnect the magnetometer from

the embedded computer, yielding invalid readings. At first, a

single EKF was intended to perform the UAV’s localization.

However, poor performance was obtained during tests in

a flight simulator, leading to the need of an alternative

filtering method. The solution found was developing the

hybrid data fusion algorithm presented in Section III, making

the localization system robust to environmental disturbances.
Implementing (6) in a digital computer requires its con-

version to the discrete time domain [23]. Denoting τ as the
sampling period, (6) has discrete representation

»

pn
k

vn
k

–

=

»

I Iτ
0 I

– »

pn
k−1

vn
k−1

–

+

»

Cb
n

τ2

2
I

τ2

2

Cb
nτ Iτ

– »

fb
k−1

gn
k−1

–

,

where the subscript k ∈ N denotes the sample taken at
instant kτ . Following a similar procedure for converting (7)
to the discrete time domain yields

q
b
n,k =

"

I4×4 cos

„

δ

2

«

− Wτ
sin

`

δ
2

´

δ

#

q
b
n,k−1,

where δ =
`p

ω2
x + ω2

y + ω2
z

´

τ and W is the same as in
(7). In order to apply the EKF’s equations, (13)-(14) were
modified to

rk = f(rk−1, uk−1)+wk−1, wk−1 ∼ N(0, Qk−1), (22)

ymk
= hmk

(rk)+vk, vk ∼ N(0, Rmk
). (23)

For the system (22)-(23), steps iii and iv of Algorithm

1 are, respectively, the EKF’s well-known prediction and

correction steps.

In this simulation, an UAV performs a helical trajectory.

The localization system was initially tested without the pres-

ence of heavy disturbances. Measurements were corrupted

only by standard sensor noise and state estimation was

performed by an EKF. It has been obtained a maximum of

5 degrees error in any of the attitude angles, indicating that

the EKF implementation seems correct.
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(a) Magnetometer measurements.
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(b) Attitude angle errors for the EKF.
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(c) Attitude angle errors for the HDFF.

Fig. 2. Simulation results under heavy disturbances on magnetometer measurements.

Next, two more simulations were conducted introducing
heavy magnetometer disturbances during part of the experi-
ment. The purpose of this perturbations was to simulate both
signal interference induced by the aerial power lines and
temporary disconnections between the magnetometer and the
embedded system. During one third of the time, disturbances
occurred at random, as can be seen in Figure 2(a). Once again
the EKF was used to estimate the UAV’s pose, yielding the
attitude estimation results shown in Figure 2(b). During the
first part of the experiment, where the magnetometer behaves
correctly, the EKF’s filtering performance is satisfactory.
However, as magnetometer disturbances start to take place,
the estimates provided by the EKF become completely
degraded, yielding the unacceptable errors seen in Figure
2(b). In order to solve this problem, the HDFF was used to
perform the UAV’s state estimation. Based on (9)-(12), two
mode-dependent measurement equations

y1(k) =

2

6

4

mb
mag,k

pn
gps,k

vn
gps,k

hn
alt,k

3

7

5
=

2

6

6

4

`

Cb
n,k(qb

n,k)
´T

mn
E + ǫm

pn
k + ǫp

vn
k + ǫv

zn
k + ǫh

3

7

7

5

, (24)

y2(k) =

2

6

4

mb
fault,k

pn
gps,k

vn
gps,k

hn
alt,k

3

7

5
=

2

6

4

0 + ǫfault

pn
k + ǫp

vn
k + ǫv

zn
k + ǫh

3

7

5
, (25)

were used to model the system’s output. Equation (24)

corresponds to the situation where all sensors are working

properly, while (25) models magnetometer faults. A zero

element was explicitly written in (25) because a pull-down

resistor yields magnetometer measurements containing only

zeros when temporary disconnections occur. The disturbance

term ǫfault ∼ N(0, Pfault) models signal interference gen-

erated by the aerial power lines. Using (24)-(25) as the

measurement model, the HDFF yielded the results shown in

Figure 2(c). Even under magnetometer disturbances able to

completely degrade the EKF’s estimates, the HDFF showed

a filtering performance very similar to that of the EKF in

the undisturbed case, indicating its usefulness as a robust

stochastic estimator.

B. Experiments

After being validated in simulation, the hybrid filter was

tested in a real navigation experiment. The UAV’s localiza-

tion system was embedded in a car and collected sensor data

while the vehicle moved around the University of Brası́lia’s

campus in a closed circuit. The goal was to verify if the

localization system was able to provide accurate attitude and

position estimates based on real sensor readings. Once again

a comparison was made between the EKF and the HDFF.

Attitude and 3D position estimates are shown in Figures

3(a) and 3(b) for the EKF. Similarly to the previous simula-

tion results, the EKF’s performance is poor and sensitive to

sensor disturbances. Moreover, magnetometer measurements

with norm beyond a chosen threshold among the experimen-

tal data had to be eliminated in order to prevent the EKF

from diverging.

Differently from the EKF, the results provided by the

HDFF are indeed reliable estimates of the localization sys-

tem’s pose during the experiment. As can be seen in Figures

4(a) and 4(b), the roll and pitch angles remained small

during the whole operation, which goes in agreement with

the fact that cars do not roll and pitch while moving, except

for eventual suspension vibrations. At the same time, the

yaw estimates follow the car heading during the course,

eventually returning to zero when the car arrives at its initial

position. Concerning the 3D position, the HDFF was able

to correctly track the vehicle and there is little deviation

between GPS measurements and estimated 3D positions,

which is not the case for the EKF.

V. CONCLUSIONS

This work proposed a new approach for the data fusion

problem based on the hybrid modeling of heavily disturbed

systems. The localization system developed in Section II was

simulated and experimentally tested for the operation of an

UAV designed for aerial power lines inspection and the per-

formance under environmental disturbances of two stochastic

filters was evaluated. The classical solution using the EKF

yielded good results in the undisturbed case, but failed to

provide reliable estimates in the presence of measurement

faults. On the other hand, the hybrid filter HDFF showed a

performance, for both the disturbed and undisturbed cases,

similar to the EKF in the lack of disturbances, showing the

HDFF’s utility as a robust state estimator for real robotic

systems.
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