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Abstract— This paper discusses the target motion around the
contact in the satellite capture operation using a free-flying
space robot. The contact force has the potential for pushing
the target beyond the manipulator reach or making the target
have a tumbling motion. An impedance control is useful to
prevent the robot hand from pushing the target. However,
the relationship between the dynamics parameters, contact
characteristics, and target motion have not been clarified yet.
In this paper, virtual mass of impedance system (VMI) model
is proposed to represent the influence of the hand impedance
on the target motion. Using this model, the condition to prevent
the robot pushing the target away is clarified.

I. INTRODUCTION

With the increasing number of satellites in orbit, service
and rescue missions are also becoming more important. In
the case of non-contingent services on operational satellites,
refueling is beneficial for extending the mission life and
replacements of on-board components are effective for en-
suring that the platforms will continue in the future. In the
case of contingent servicing or rescue, re-orbiting stranded
and end-of-life satellites will become the primary focus. If
such malfunctioning satellites drift in orbit, they become
potential hazards to other operational satellites. In 2009,
Illidium, a commercial satellite owned by a U.S. company
was destroyed in a collision with a defunct Russian military
satellite Cosmos 2251. This collision alone caused more than
500 new debris.

In order to perform such service and rescue missions, ded-
icated robotic technology is required. The Engineering Test
Satellite VII (ETS-VII) was launched by NASDA, Japan,
in 1997-1999 to establish a solid basis for the technology
of autonomous rendezvous-docking and robotic operations
on an unmanned satellite [1]. Orbital Express, which was
launched in 2007 by DARPA, successfully demonstrated
autonomous rendezvous-docking and refueling service [2].
However, those demonstrations were limited to operations
with a cooperative target. Here, “cooperative” implies the
existence of attitude stabilization, signal-responding devices
(transponders and/or optical markers), and dedicated fixtures
on the target. However, in practical future service and rescue
missions, most targets are non-cooperative in terms of the
lack of dedicated fixtures and attitude stabilization. In this
case, the gripper can potentially push the target away during
the capture sequence. Therefore, the robot hand should be
carefully controlled so that it can give minimum impact on
the target.
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Impedance control is useful to control the impact. The
authors have demonstrated that an impedance control can
prevent the robot hand from pushing the target [3]. Moosa-
vian et al. proposed a method that provides impedance
characteristics for the manipulator, the grasped object, and
the base of a free-flying robot. [4]. Pathak et al. also proposed
an impedance control method [5]. However, the relationship
between the impedance characteristics, dynamics parameters,
contact characteristics, and target motion have not been
clarified yet.

The idea of equivalent mass is useful criteria to express the
contact motion; these provide motion variations in the con-
tact phenomena employing simple formulae. Asada proposed
the idea of the generalized inertia ellipsoid (GIE)[6]. The
GIE introduces the concept of virtual inertia for a free-joint
link system, wherein the inertias of all links are projected
onto the hand position of the manipulator. Yoshida et al.
proposed the extended inversed inertia tensor, which is an
extension of the GIE. Their inertia tensor includes the effect
of joint damping and stiffness using a virtual rotor [7].
However, the relationship between the virtual rotor and the
viscosity or stiffness is not clarified.

In this paper, in other to evaluate the relationship, “virtual
mass of impedance system (VMI)” model is redefined to
represent the influence of the hand impedance on the target
motion. This model is an extension of the equivalent mass
concepts so that it can be applied to a multi-body impedance
system. By using the concept, the appropriate impedance
condition to prevent the pushing of the target away after
the initial contact is discussed.

II. DYNAMICS AND CONTROL OF SATELLITE CAPTURE

A. Assumption

In this chapter, a free-flying space robot (hereinafter called
“chaser”) is assumed to consist of a rigid main body and an
n DOF serial link manipulator. The target satellite is also a
rigid body. The chaser has already completed the rendezvous
with the target. In other to capture the target, the chaser’s
manipulator makes contact with the target surface. Figure 1
shows the image of the system of satellite capture.

B. Chaser Model

The dynamic equations of a free-flying robot with a
manipulator arm are given as follows:
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Fig. 1. Dynamics model of satellite capture

Hb ∈ R6×6 : inertia matrix of the base
Hm ∈ Rn×n : inertia matrix of the manipulator
Hbm ∈ R6×n : coupling inertia matrix between the base

and manipulator
cb ∈ R6 : non-linear velocity dependent term of the base
cm ∈ R6 : non-linear velocity dependent term of the

manipulator
Jb ∈ R6×n : Jacobian matrix between the base and end

tip of manipulator
Jm ∈ R6×n : Jacobian matrix between the joints and

end tip of manipulator
Fb ∈ R6 : external force and moment on the gravity

center of the base
Fh ∈ R6 : external force and moment on the end tip of

the manipulator
τ ∈ Rn : joint torque of the manipulator
xb ∈ R6 : position of the base
φ ∈ Rn : joint angles of the manipulator

C. Contact Model

The general form of the contact force can be formulated
as follows [8]:

F = dδpδ̇q + kδn, (2)

where δ is the penetration. The Five parameters (d, k, p,
q, and n) determine the contact force model. Further, the
parameters d and k represent the viscosity and stiffness
characteristics, respectively.

If one sets p = 0 and q = n = 1, Eq.(2) becomes the
following linear spring-dashpot model:

F = dcδ̇ + kcδ, (3)

where dc is the damping coefficient, kc is the stiffness, and
subscript “c” indicates the contact surface. The formulation
in this paper adopts the linear spring-dashpot model for
simplicity.

D. Impedance Control for Free-Flying Space Robot

The end effector impedance control is provided by the
following equation:

M iΔẍh + DiΔẋh + KiΔxh = Fh, (4)

where xh ∈ R6 denotes the position and orientation of the
end effector with respect to the inertial coordinate frame,
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Fig. 2. Impedance control with respect to the inertial coordinate
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Fig. 3. 2-degree-of-freedom (DOF) system

and Δxh (≡ xh − xhd) denotes the deformation from the
equilibrium point xhd. M i ∈ R6×6, Di ∈ R6×6 and Ki ∈
R6×6 are matrices expressing the desired impedance property
in inertia, viscosity, and stiffness, respectively, measured at
the end effector.

The impedance characteristics given by Eq.(4) with respect
to the inertial frame are achieved by controlling the joint
velocities φ̇ as follows [9]:

ffi̇ = J∗−1

jZ t

0

1

M i
(Fh − DiΔẋh − KiΔxh) + ẍhddt − ẋgh

ff
,

(5)

where J∗ ∈ R6×n is the generalized Jacobian matrix [10],
ẋgh ∈ R6 is the velocity of the gravity center of the entire
system projected on the velocity of the end effector.

In general, the contact in the target capture is a three-
dimensional phenomenon. However, It can be assumed as
a one-dimensional phenomenon in the local viewpoint. In
this case, the target mass is the GIE at the contact point
[3]. Hereinafter, a one-dimensional satellite capture model is
considered for simplicity. The dynamics model of a chaser
robot under the impedance control is shown in Fig.2. In
the figure, mi, di, and ki are mass, viscosity, and stiffness
characteristics given by the control, respectively.

From another viewpoint, the contact model combines the
dynamics of each object in the contact state. The entire
dynamics model during the contact can be represented as a
coupled-vibration system as shown in Fig.3. In this figure, xh

and xt are the chaser hand and target position, respectively.
In this case, the penetration δ in Eq.(3) is equal to xh − xt.

The equations of motion are as follows:

miẍh + (di + dc)ẋh + (ki + kc)xh − dcẋt − kcxt = 0
mtẍt + dcẋt + kcxt − dcẋh − kcxh = 0

}
.

(6)

Rewriting Eq.(6), a state space equation is obtained as
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Fig. 4. Simulation model: Target collision on an impedance system

follows:
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d

dt
X(t) = AX(t), (7)

where X and A are the state variable and square coefficient
matrix, respectively.

III. RELATIONSHIP BETWEEN MANIPULATOR

IMPEDANCE AND TARGET POST-CONTACT VELOCITY

A. Simulation Study

A contact simulation is conducted in order to investigate
the relationship between the manipulator impedance and the
post-contact velocity of the target. The simulation model is
shown in Fig.4. In the contact, the chaser hand and target
velocity is obtained by Eq.7.

Figure 5 shows the post-contact target velocity of the sim-
ulation results. The condition of the manipulator impedance
is given as follows:

[mi di ki] = A · [10 300 50], (8)

where A is the magnification ratio. Hereinafter, the
impedance condition that A is larger is called “higher
impedance,” the condition that A is smaller is called “lower
impedance.” The initial velocity is 0.1 [m/s]. The damping
coefficient dc and stiffness kc of the contact surface were
assumed as dc = 30 [Ns/m] and kc = 50, 000 [N/m],
respectively. The target mass was assumed as mt = 50 [kg].

This result shows that the post-contact target velocity
depends on the manipulator condition. In the case of higher
impedance, the manipulator bounces the target. In the lower
impedance case, the target pushes the manipulator. After a
few collisions, the target stops. When the impedance has a
medium value, the target stops after the initial contact.

B. Restitution Coefficient of Impedance

The restitution coefficient is a reasonable parameter for
describing the target motion around the contact. In general,
the coefficient is used in the rigid two-body contact. Here,
the coefficient is redefined to include the effect of the vis-
cosity and stiffness in the contact of the impedance system.
Hereinafter, in this study, the proposed restitution coefficient
is named the “restitution coefficient of impedance (RCI)”
in order to differentiate from the conventional restitution
coefficient. The impedance system and contact model are
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Fig. 5. Post-contact target velocity
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Fig. 6. Restitution coefficient eR vs. magnification ratio A to each
impedance parameter mi, di, and ki for over-damped systems (di = 300
[Ns/m])

considered as an virtual wall. The characteristics of the
impedance system and contact model are projected to the
RCI. The RCI reveal the manner in which the target velocity
after the initial contact changes with the impedance param-
eters. Suppose that contact starts at time t0 and ends at time
te. te, is given as the time that the penetration δ = xh − xt

returns to zero. The RCI eR is defined by the relative velocity
between the target’s velocity ẋt and the equilibrium point
velocity of the hand impedance ẋhd as follows:

eR = − ẋt(te) − ẋhd(te)
ẋt(t0) − ẋhd(t0)

, (9)

The eR is a number in the range from -1 to 1. Qualitatively,
eR = 1 represents that the target is bounced off with same
absolute velocity as the initial one. eR = 0 represents that the
target stops immediately after collision. eR = −1 represents
that the target motion is unchanged after collision. This
implies that 0 < eR < 1 represents that the target is bounced
off by the impedance system, while −1 < eR < 0 represents
that the target continues toward the impedance system and
repeats contact after the initial contact.

Figure 6 shows the relationship between the impedance
magnitude A and RCI eR. This result reveals that the increase
of the impedance increases the eR. The eR has a zero value
around A = 5. This implies that the target can be stopped
by choosing the magnitude of mechanical impedance.
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Fig. 7. Virtual mass model

IV. VIRTUAL MASS OF IMPEDANCE SYSTEM

When dealing with contact phenomena of the multibody
link system, the idea of virtual mass or inertia are useful to
simplify the dynamics model [6][7].

The advantage of the virtual mass model is that the
dynamics model becomes a simple two-body contact model
in which one mass collides with another mass. The chaser’s
hand can be modeled as a virtual point mass having an
equivalent mass value mv . Consider the case in which the
hand with an initial velocity ẋh collides with a target having
velocity ẋt. The post-collision velocities ẋ′

h and ẋ′
t can be

calculated using the restitution coefficient e as follows:

ẋ′
h =

mvẋh + mtẋt − mte(ẋh − ẋt)
mv + mt

, (10)

ẋ′
t =

mvẋh + mtẋt + mve(ẋh − ẋt)
mv + mt

. (11)

Note that the e is not the RCI, eR, but the conventional
restitution coefficient between the contact surfaces. It is
depends on the characteristics of the contact model.

The virtual mass is basically derived from the link configu-
ration and link inertia property. In addition, the viscosity and
stiffness of joints or structures affect the virtual mass value.
Mechanical systems have energy dissipation or damping
effect, while contact surfaces also have energy dissipation
at the time of contact. However, their effect have not been
clarified yet. The damping effect complicates the virtual mass
model, and it becomes difficult to solve the model because
describing energy dissipation by using mass characteristics
is difficult.

This section discusses an extension of the virtual mass
including the viscosity and stiffness when the impedance
system is contacted. A novel virtual mass is redefined as
the “virtual mass of impedance system (VMI)” with the
approximated contact model. Although the damping term is
present in the impedance system, the virtual mass model can
be calculated with an assumption of small damping effect.
The concept of the VMI model is shown in Fig.7.

A. Definition of Virtual Mass

The equivalent mass mv of the hand with an impedance
is given by the following three approaches.

1) Impulse-Based Virtual Mass: The mechanical
impedance system can be approximated as a single virtual
mass using the impulse-momentum equation:∫ t

t0

Fdt = mvẋh, (12)

where mv is the virtual mass of impedance. Hence, the
virtual mass of impedance is defined as follows:

mv(t) =

∫ t

t0
Fdt

ẋh
. (13)

Since the virtual mass defined in Eq.(13) changes with time,
the average of the virtual mass over a contact duration is
used as follows:

mv =
1
T

∫ te

t0

∫ t

t0
Fdt

ẋh
dt, (14)

where T = te − t0 is the contact duration of one collision.
2) Energy-based Virtual Mass: In a similar manner, an-

other definition of the virtual mass of impedance is obtained
by using the law of conservation of energy as follows:∫ t

t0

ẋhFdt =
1
2
mvẋ2

h. (15)

Hence, the energy-based mv at time t is defined as follow:

mv =
2
ẋ2

h

∫ t

t0

ẋhFdt. (16)

The time average of the mv is obtained as follows:

mv =
2
T

∫ te

t0

∫ te

t0
ẋhFdt

ẋ2
h

dt. (17)

B. Formulation of Virtual Mass

1) Contact Force: The theoretical representation of Eqs.
(14) and (17) requires hand velocity and contact force. They
can be obtained by solving the differential equation Eq.(7).
However, in general, a recursive numerical calculation is
required in order to solve it because the analytic solution is
complicated. In this section, an approximate analytic method
is mentioned.

Figure 8 depicts a typical time profile of the contact
force of the impedance system. If the damping effects of
the impedance system and contact surface are not large, the
upward profile from zero to the peak can be approximated
by a sinusoidal wave having a frequency of ω = 2π/T .

The equation of motion of the impedance system with the
sinusoidal force approximation is as follows:

sin(ωt) = miẍh + diẋh + kixh. (18)

Assume that in the frequency domain, the input to the
system is the contact force F (s), and the output is the
hand acceleration Ẍ(s) connected to the following transfer
function G(s).

Ẍ(s) = G(s)F (s). (19)
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Fig. 8. Typical time profile of the impact force

Taking the Laplace transform of Eq.(18) yields the following:

Ẍh(s) =
(

mi +
di

s
+

ki

s2

)−1
ω

s2 + ω2
. (20)

The inverse Laplace transform yields the hand acceleration
in the time domain:

ẍh(t) = |G(jω)|2
(

λ1

λ2
sin(λ2t) − di

ω
cos(λ2t)

)

· exp
(
− di

2mi
t

)
+ |G(jω)| sin

(
ωt + ∠

(
G(jω)

))
,(21)

where j is the imaginary number, ω is the natural frequency,
and λ1 and λ2 are given as follows:

λ1 =
1
m

(
k2

i

ω3
+

d2
i − 2miki

2ω

)

λ2 =
1

2mi

√
4kimi − d2

i

⎫⎪⎪⎬
⎪⎪⎭ . (22)

Thus, the integration of Eq.(21) yields the hand velocity in
the time domain.

ẋ =
{ |G(jω)|2

ω
exp

(
− di

2mi
t

)}

·
{(

mi − ki

ω2

)
cos(λ2t) − di

2miλ2

(
mi +

ki

ω2

)
sin(λ2t)

}

−|G(jω)|
ω

cos
(
ωt + ∠

(
G(jω)

))
. (23)

The natural frequencies ω of the system are approximated as
those with no damping.

ω =
{

1
2

[
ω2

1 + ω2
2(1 + μ)

]

±1
2

√
[ω2

1 + ω2
2(1 + μ)]2 − 4ω2

1ω2
2

} 1
2

, (24)

where

ω1 =
√

ki

mi
, ω2 =

√
kc

mt
, μ =

mt

mi
. (25)

When the contact stiffness is considerably larger than the
stiffness of the chaser impedance, the force frequency can be
approximated to that of the free-end single vibration model.
The frequency is obtained as follows:

ω′ =

√
kc

m̃
, (26)
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Fig. 9. Virtual mass of impedance system mv vs. damping coefficient di

(mi = 10 [kg], ki = 50 [N], kc = 5, 000 [N], dc = 0 [Ns/m])

where
m̃ =

mimt

mi + mt
. (27)

V. VERIFICATION OF VMI MODEL

In this section, the theoretical prediction and simulation
results of the VMI model are compared. The numerical
simulation model is identical to the coupled-vibration model
described in section III.

For the simulation, the damping coefficient di was varied.
The main basis for comparison was the manner in which
the damping effect changes the virtual mass mv . In the
simulation result, the mv was obtained by using Eq.(11).

Two cases of the contact stiffness were examined. The
two stiffness values of the contact surface used for the
comparison were kc = 5, 000 [N/m] and kc = 50, 000 [N/m].
The other parameters mi, ki, kc, and dc remained constant.

The mass mi and stiffness ki of the impedance system
were 10 [kg] and 50 [N/m], respectively. The damping
coefficient of the contact surface was assumed as dc = 0
[Ns/m], and the target mass mt was 50 [kg]. The impedance
system was initially unstretched and is in its equilibrium
state.

Figures 9 and 10 show the virtual mass mv obtained by
the dynamics simulation result and the predicted mv based
on the momentum definition and energy definition.

The results represent that both predictions by Eqs. (14)
and (17) are close to the simulation results. However, when
the damping effect is larger, the deviation between them are
larger because the waveform of the contact force become dif-
ferent from the sinusoidal. Therefore, when mv is predicted
by using the proposed method in practice, a margin of error
should be considered.

VI. CONDITION OF MAINTAINING THE CONTACT WITH

THE TARGET

At the moment of contact, the contact force fatally gives
the target velocity. The required condition for maintaining or
repeating contact with the target after the initial contact can
be formulated as follows:

sgn(ẋ′
h − ẋ′

t) > 0 (28)
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Fig. 10. Virtual mass of impedance system mv vs. damping coefficient di

(mi = 10 [kg], ki = 50 [N], kc = 50, 000 [N], dc = 0 [Ns/m])
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or
|ẋ′

h| ≥ |ẋ′
t| and sgn(ẋ′

h) · sgn(ẋ′
t) = 1, (29)

where ẋ′
h and ẋ′

t are the post-contact velocities of the chaser
hand and target, respectively. Equation (28) represents the
condition when the relative velocity is negative. Equation
(29) represents condition that the direction is same as that of
the target velocity, and the hand velocity is greater than the
target velocity. The velocity of the hand and target after the
contact should be controlled such that the above conditions
are met.

Figure 11 shows the classification of the relative post-
contact behavior of the target based on the manipulator
impedance. In order to satisfy the conditions for maintaining
the contact (Eqs. (28) and (29)), −1 < eR ≤ 0 should
be satisfied. the When the eR = 0, the target stops at the
equilibrium point of the impedance just after the contact. In
this case, the entire kinetic energy of the target is transferred
to the manipulator. According to Eq. (11), this phenomenon
occurs when mv = mt/e (when e �= 0). This condition
is so-called “impedance matching.” On the basis of the
VMI model, the post-contact velocity is given by Eq.(11).
When the manipulator impedance is less than the impedance
matching condition, that is mv < mt/e, the target pushes

the manipulator inside the equilibrium point (−1 < eR < 0).
In this case, the target repeats the contacts and the kinetic
energy is gradually transferred to the impedance system.
On the other hand, when impedance is higher, the target
bounces off the manipulator immediately after the contact
(eR > 0), which implies that the capture is failed. Therefore,
the impedance characteristics should be set so that mv is
lower than mt/e including the margin of the calculation
error.

VII. CONCLUSION

In this paper, the relationship between the post-contact
motion of the target and contact parameters has been clari-
fied. The VMI model was defined as an evaluation index of
the target’s post-contact motion. This model projected the
impedance characteristics to a mass property. The virtual
mass gives the post-contact motion of the target. The accu-
racy of the virtual mass model was verified by comparing
predicted and simulated values. By using these criteria,
the conditions for maintaining the contact were clarified.
The boundary condition to maintain the contact is given as
VMI matching the target inertia. When the hand impedance
is lower than the boundary condition, the robot hand can
maintain contact with the target.
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