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Abstract— We present an efficient path planner for smart
wheelchairs based on harmonic potential fields. While the use of
harmonic fields can always guarantee finding an existing path,
they are extremely computational intensive and a sufficiently
detailed map of the environment may lead to an unfeasible
solution for the path. Also, since our target application is
for the navigation of a smart wheelchair, for people with
severe disabilities, the path provided by the harmonic field is
frequently too sharp and needs to be smoothened. In order
to address the first problem, we propose a parallel algorithm
implemented using Graphics Processor Units (GPUs) on the
Compute Unified Device Architecture (CUDA) platform. And
for the second problem, we developed a rubber band model that
provides extra forces to be added to the attracting forces of the
harmonic fields. This model assumes that the path is an elastic
line, a rubber band, connecting the source and destination
points. This rubber band simulates the internal tension forces
trying to tighten the line. As the result section demonstrates,
both the original path from the harmonic field alone and the
path smoothened by the rubber band model have approximate
the same length, but the first path contains many bumps, sharp
angles, and zig-zags, while the second one provides a much more
comfortable ride for the passenger of the wheelchair. Either one
is executed in real-time, allowing the proposed method to be
used for real navigation of smart wheelchairs.

I. INTRODUCTION

Path planning is a crucial task for any mobile robot
navigation [1]. Usually, we can find two approaches for this
problem: 1) using topological graphs; and 2) using grid-
based maps; and while other methods, such as in [2] and [3],
may not fall directly into this dichotomy, they are ultimately
a hybrid combination of both types ([2]) or a hierarchical
structuring from a coarse scale (topological) all the way to
a finer one (grid).

In the case of grid-based maps, a common method will
involve the calculation of either: fluid dynamics models [4];
snake models [5]; elastic band models [6][7]; or potential
fields [8], [9], and more effectively, harmonic potential fields
[10], [11], [12], which provide the most robust way to
generate paths. That is, while potential fields and other
models may be easier to calculate, they may also get stuck
in local minima. However, harmonic potentials can provide
a guarantee that a path will always be found - i.e. if one
exists.

Once again, the problem in using harmonic fields is that
it requires repeated updates of the potential values at every
cell of the grid. These updates are in turn a function of the
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potential of the neighboring cells, which leads to a recur-
sive and quite time-consuming algorithm. One simplification
of this recursion that usually translates into an algorithm
speedup is achieved by performing a sequential row-wise
update - starting from the upper-left corner of the grid [10]
and moving down to the bottom-right corner. Another form
of speedup is obtained by implementing the harmonic fields
using a closed-form and analytic solution, but this presents a
serious drawback since the number of primitives that must be
created to represent obstacles becomes limited [13]. Despite
the method used for speed up, the gains are usually not
justified given the loss of accuracy and the per-cell basis,
and therefore still time-consuming nature of any possible
solution.

As we know, a more effective way to speed up time
consuming algorithms is through the use of parallel com-
putation. Even more pertinent to our problem, since a fine
and detailed grid of the environment may require millions
of cells [14], we propose the parallelization through the use
of General Purpose Graphics Processor Units (or GPGPUs).
The use of GPGPUs together with the use of CUDA [15]
indeed translate into an easy and standard platform for the
implementation of harmonic fields.

After generating an initial path, it is common to optimize
such path in order, for example, to smoothen it [16]. Some
authors proposed the idea of neural networks, generic algo-
rithm [17], or even splines [18] in order to smoothen the path.
Our motivation to optimize the path comes from the use of
the algorithm to navigate a smart wheelchair. In that case, an
optimized solution must include: efficiency in avoiding static
as well as dynamic obstacles; smoothness of the path; and
total length of the path [19][20]. In the proposed method, the
optimization comes from a rubber band model that regards
the path as an elastic line [21]. This elastic path can reduce
unnecessary curves because of its internal tension forces,
which tends to pull the elastic back to a straight position.

In a nutshell, we assume that the path is made of small
segments and for each segment, the harmonic potential forces
compete with the tension forces from neighboring segments,
pulling the path at the same time away from obstacles and
along its tangential direction. By doing so, the segments will
move along the direction of summation of the force and will
stop moving when these forces reach a balance.

II. PATH PLANNING AND HARMONIC POTENTIAL FIELDS

In grid-based maps, the idea is to represent the envi-
ronment as a 2D grid. The grid is basically a ground
plane projection of any object detected by the robot, in our
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case using the laser range sensor. When potential fields are
applied on top of such grids, obstacles are described by
high potentials or hills that must be avoided, and source
and destination points are the zero potentials or valleys. The
path towards the destinations is defined along the valleys.
Unfortunately, due to interaction between multiple objects,
valleys are not unique in potential fields. On the other hand,
these same problem of local minima disappear when we use
harmonic potential fields [10], [12].

A. Harmonic Function

A harmonic function on a domain Ω ⊂ Rn is a function
which satisfies Laplace’s equation. That is:

∇
2φ =

n
∑

i=1

∂2φ

∂xi2
= 0

This same function can be discretized and the numerical
solution of Laplace’s equation becomes ([10]):

u(k+1)(x, y) =

+

1
4 [(u(k)(x + 1, y) + u(k)(x − 1, y)

u(k)(x, y + 1) + u(k)(x, y − 1)]
(1)

where u(x, y) represents the discrete sample of φ at
coordinates (x, y) of the R2 grid, and k is the iteration
number. That is, at each iteration, a grid cell of φ is updated
with the average value of its neighbors. On a sequential
computer, this solution is usually implemented as follows:

u(k+1)(x, y) = 1
4 [u(k)(x + 1, y) + u(k+1)(x − 1, y)

+ u(k)(x, y + 1) + u(k+1)(x, y − 1)]

That is, the next values of the top and left neighbors of
the current cell are updated and used in the calculation of
that same cell. This speed up of the algorithm allows for
the values of next iteration to quickly propagate through the
grid. However, it also distorts the real value of the harmonic
potentials.

B. Definitions

In order to explain the proposed method, a few basic
elements need to be defined [17]. A goal is a grid cell with
the lowest harmonic value (u(k)(x, y) = 0). This value is
fixed and it will never be affected by its neighbor’s values.
An obstacle is any cluster of cells blocking a potential path
towards the goal. Its value is maximum (u(k)(x, y) = 1) and
is also never affected by its neighbors. However, its position
may change as the environment is dynamic. Free space is any
grid cell that does not contain an obstacle or the goal. The
value of the harmonic potential in the free space is initialized
with the median range and it is updated at each iteration.

A path to the goal is given by an index matrix, Idx(x, y),
which for every position (x, y) contains the index of
the neighbor with the lowest harmonic potential. That is,
Idx(x, y) = min[u(k)(x+1, y), u(k+1)(x−1, y), u(k)(x, y+
1), u(k+1)(x, y − 1)].

Fig. 1. Flowchart of the algorithm for calculation of the harmonic potential
fields

III. PARALLEL IMPLEMENTATION

Due to the limitation on the number of pages, in this sec-
tion it will suffice to say that the above algorithm translates
quite nicely into the parallel paradigm of GPU computing
[15]. In that sense, a single CUDA program, namely a kernel
function, can be implemented to carry out the calculation of
each grid cell. This same kernel function is then multiply
instantiated by the CUDA platform and the calculations of
the various grid cells is performed in parallel by the GPU.
All that is left to be done by the CUDA host() function is
to perform the k iterations. A programmer in the CUDA
environment must only be cautious not to perform too many
CPU to/from GPU memory transfers as those can be very
time consuming. One such transfer is required when the
program needs to display the harmonic potentials for purpose
of user interfacing. For that reason, our algorithm limits
such display to a multiple of k iterations. Figure 1 depicts
the complete algorithm. The first block of the flowchart is
the initialization and involves transfer of data from CPU to
GPU memory. The next three blocks of the flowchart are
performed in parallel by the GPU and consist of the main
processing of the harmonic potential fields. The last block is
simply for display purposes.

IV. RUBBER BAND MODEL FOR PATH OPTIMIZATION

In this section we explain how the proposed rubber band
model is employed to optimize the path obtained by the
harmonic potential fields. This idea of a rubber band is not
totally new, but its use ([22]) has been mostly to define
obstacle contours. Here, we combine the ideal of rubber band
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Fig. 2. Tensions exerted by consecutive cells along the path

model and harmonic potentials to define the path, which we
regard as a linked list of grid cells. The two immediately
adjacent cells in the link, i.e. the previous and the next cells
along the link from the current cell, exert internal forces on
that same cell. Figure 2 illustrates this idea for the cell i
and its previous and next cells in the path, i − 1 and i + 1,
respectively.

Every cell in the path is affected by two kinds of forces:
the internal tension (rubber band) forces

−→
T i±1, and the

potential force
−→
F . The position of a cell in the path is given

by the pair (x, y) that leads to the resultant forces to be
minimum. That is:

(x̂,ŷ) = arg(x,y)min(
∥

∥

∥

−→
F +

−→
T i+1 +

−→
T i−1

∥

∥

∥
) (2)

P k+1
i = P k

i + δ ∗ (x̂,ŷ)

where δ represents a small step (0 < δ < 1) used to move
the position of the current cell in the path at each iteration.
That is, let us assume that the current coordinates of the ith

cell is (xi, yi), and the coordinates of the two neighbors are
(xi−1, yi−1) and (xi+1, yi+1), respectively. The resultant of
the forces on the cell i, as shown by Figure 3, provides the
direction and intensity with which the cell should be moved
in order for the forces to reach equilibrium. This direction
and intensity are multiplied by δ so that the cell is moved
only a fraction of that value at each iteration.

The last component of these calculations is the force
−→
F

derived from the harmonic potential. This force is calculated
using:

F = 1/(1 − uk(x̂,ŷ)) − 1/(1 − uk(xi, yi))

where u(xi, yi) represents the harmonic potential at the
current position of the cell in the path given by eq. (1), and
u(x̂,ŷ) represents the harmonic potential of the position to
which the cell i is being dragged.

Figure 3 summarizes the complete idea of the harmonic
potentials and the internal tension (elastic) forces of the
model. In the figure, red blocks represent obstacles (walls)

Fig. 3. Here, it shows the resultant forces on cell i, as well as the harmonic
potential path (blue) being optimized by the rubber band model (green).

and the black dot is the desired destination of the smart
wheelchair. The darker is the color in free space, the lower
is the harmonic potential value. The figure also shows how
the path obtained from the simple application of harmonic
fields (blue path) compares to the one being optimized by
the rubber band model (green path).

A. Parallel Computation of the Rubber Band Model

As before, the algorithm for optimizing the path using the
rubber band model was also implemented under CUDA and
executed in parallel by a GPU. For that, we also defined a
single kernel function that was once again instantiated for
each cell in the grid. This algorithm, which replaces the
fourth block in the original flowchart in Figure 1, is presented
in more detail in Figure 4.

V. EXPERIMENTAL RESULTS

We conducted various tests of the algorithm for indoor
navigation using a robot simulator for the Pioneer P3-DX
(MobileSim). The actual control of the robot is carried out by
setting its speed constant and providing constant adjustments
for its heading according to the path calculated by the GPU
module. That is, 1) the laser data from the simulator is
used to define obstacles on the grid; 2) the GPU module
calculates the path according to such obstacles and computes
the turning angles necessary to follow that path; and 3)
the commands with the turning angles are sent back to the
simulator. The tests used four different scenarios, which are
presented in Figure 5. The same figure depicts the paths
resulting from the application of the harmonic potentials
alone (left column) and the same paths optimized by the
rubber band model (right column).

In order to measure the effect of the optimization on the
lengths of the paths, we calculated such lengths with and
without the optimization. Table I summarize these results.
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Fig. 4. Flowchart of the algorithm for optimization of the path obtained
by the harmonic potentials.

Length
(pixels) Scene1 Scene2 Scene3 Scene4

Harmonic
Path 2.34m 3.80m 2.85m 3.22m

Optimized
Path 2.34m 3.72m 2.75m 3.26m

TABLE I

STATISTICS OF THE LENGTH FOR THE PATHS FOR THE HARMONIC

POTENTIALS ONLY VERSUS THE OPTIMIZED PATH

Finally, in order to appreciate how much smoother the op-
timized path is in comparison with the original path obtained
by the harmonic potentials, we computed the histogram of
turning angles used during the navigation following each of
the two paths. As Figure 6 indicates, the turning angles of
the optimized path concentrates on the small angular values,
namely around 20o, whereas the concentration of turning
angles for the non-optimized path peaks at higher values and
spreads up to 50o, 60o, or even 70o. It should go without
saying that a large turning angle makes it difficult for the
wheelchair to follow the path. So, as it can be inferred
from these histograms, the optimized path is a smoother and
therefore more comfortable path for the passenger.

A. Dynamic Environments

In order to test our algorithm in terms of its real time
performance, we also built a scenario where the mobile robot
would have to avoid moving obstacles. For these scenarios,
we programed MobileSim to simulate up to 10 robots at

Fig. 5. Path obtained by the use of harmonic potentials alone (left column)
and the optimized rubber band model (right column)
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Fig. 6. Histograms of turning angles used during navigation of the path
given by harmonic potentials and by the rubber band model
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Fig. 7. Path-planning in Dynamic Environments

the same time. We then controlled one of these robots using
our algorithm, while the other robots were controlled using
random paths – that is, the other robots were programed to
wander randomly inside the same environment. Finally, the
main robot would use the laser range sensor to detect these
moving obstacles, which were represented on the grid as
squares centered at the detected location. Figure 7 presents
the calculated path on the GPU for one such experiment. The
tests consisted of recording the time to reach the destination,
the length of the final path, and how many times the path had
to be interrupted and recreated due to unavoidable obstacles.
If the robot collided with any obstacle before reaching the
destination, this would be considered as failed attempt and
so recorded. This test was repeated 100 times and results
recorded and averaged.

As shown in Figure 7, the mobile robot attempted to follow
as much as possible the optimized path (blue line), but due to
the dynamic nature of the environment, that was not always
possible. The black dotted curve recorded the actual path
followed by the robot. The reader should keep in mind that
the figure displays simply a snapshot of the environment at
a certain time t when the obstacles (red blocks) occupied
the displayed positions. However, the same obstacles may
have caused the path to shift, which cannot be easily seen
by this snapshot. A mpeg video with the actual sequence
of motions of the mobile robot as well as the obstacles is
being submitted with this paper and will be available in the
proceedings of the conference.

Without any obstacles, the mobile robot required 14
seconds to navigate the 2.21m of the path from source to
destination. After introducing 3 moving obstacles, the mean
time to reach the goal increased to 18.33 seconds; the mean
length of the path went up to 2.73m; and the average number
of times the path was interrupted and recreated was 0.42
times. With 3 moving obstacles, the mobile robot reached its
destinations 100% of the time. After introducing 10 moving
obstacles, the same numbers became: 27.08 seconds to com-
plete, path length of 3.85m, average number of interruptions

Fig. 8. Sample of a test scenario: on the left, the information sensed by
the robot and calculated path; on the right, the simulator screen.

was 2.36 times, and in 87% of the trials the robot succeeded
in reaching the destination.

Finally, 8 shows a snapshot of the computer screen with
two windows: on the left side, we present the internal repre-
sentation (GPU) of the sensed information used to calculate
the path; and on the right side, we see the simulator screen,
with the actual robots, the laser range sensor information,
and the walls of the environment.

VI. CONCLUSIONS

We describe a path planning approach based on harmonic
fields and optimized by a rubber band model. Both methods
were successfully implemented in real time using a parallel
algorithm. Both methods efficiently avoid obstacles and are
capable of reaching the final goal, unless an large number
of moving obstacles systematically block their path. The
optimized path reduced drastically the sharp angles obtained
with the original harmonic fields alone.

The major problem of the proposed algorithm was ob-
served during the dynamic tests. In those cases, if a moving
obstacle crosses the path of the robot, a new path is always
calculated, even when the path is interrupted far ahead in
front of the current position of the robot. This, some times,
leads to the robot to move sideways or even backwards, when
the best solution in those cases would obviously be just to
halt the motion and await for the obstacle to move again out
of the way. This problem will be approached in the future by
incorporating a predictive model to the harmonic potentials.
That is, instead of computing the harmonic potentials (high
or low values) based on the current snapshot of the occu-
pancy of the environment, we will incorporate an occupancy
map that will reflect the state of the environment after a
certain time window into the future.
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