
Models of Motion Patterns for Mobile Robotic Systems

Stephan Sehestedt, Sarath Kodagoda and Gamini Dissanayake

Abstract—Human robot interaction is an emerging area
of research with many challenges. Knowledge about human
behaviors could lead to more effective and efficient interactions
of a robot in populated environments. This paper presents a
probabilistic framework for the learning and representation
of human motion patterns in an office environment. It is
based on the observation that most human trajectories are
not random. Instead people plan trajectories based on many
considerations, such as social rules and path length. Motion
patterns are learned using an incrementally growing Sampled
Hidden Markov Model. This model has a number of interesting
properties which can be of use in many applications. For exam-
ple, the learned knowledge can be used to predict motion, infer
social rules, thus improve a robot’s operation and its interaction
with people in a populated space. The proposed learning method
is extensively validated in real world experiments.

I. INTRODUCTION

Operating effectively in dynamic environments is one of

the big challenges of mobile robotics with the unpredictabil-

ity of human motion requiring sudden changes to planned

tasks. Thus far, a common approach is to employ a method

to minimize the impact of such events. This may be done by

using sensors which are unaffected by moving objects, such

as a camera which observes the ceiling [1]. Alternatively,

tracking of dynamic objects allows segmentation of any

sensor observations so that sensor data that is detrimental to

the operation of tasks such as localization can be discarded

[2]. This paper takes the view that prior knowledge of the

motion of dynamic objects can be exploited in tasks such as

path planning and human robot interaction.

Extracting motion patterns has attracted significant atten-

tion in the video surveillance literature where the interest

is to identify suspicious behaviors by observing a scene.

Here, one of the fundamental underlying assumptions is that

the observer is stationary. Another common assumption is

the observability of the whole trajectory. Algorithms based

on these notions have been successfully implemented and

presented in a range of publications including [3], [4] and

[5].

In the field of mobile robotics the above assumptions

usually do not hold thus requiring different strategies. The

greater difficulty stems from the fact that mobile robots

need to operate in expansive environments and are likely to

encounter more diverse motion patterns. The problem will

be further complicated by the location uncertainty of the

moving observer. Furthermore, it is essential that incomplete

observations of trajectories can be effectively incorporated.
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Fig. 1. a) The IRobot Create in its environment. b) The office space.

To our knowledge there are only a few publications that

address these issues. Bennewitz et al. [6] developed a method

to learn a model of dynamics in an office environment

which was used for a mobile robot. It assumes the observer

to be stationary and complete observability of trajectories.

Furthermore, the models are learned off-line and knowledge

of start and end locations is required. Vasquez et al. [5]

proposed Growing Hidden Markov Models (GHMM) to

incrementally learn motion patterns in an area. While this

method allows for on-line learning, the method still relies

on the strong assumption of utilizing a stationary observer.

This paper presents and discusses our approach to learn

typical motion patterns in an environment based on Sampled

Hidden Markov Models (SHMM). Here, a sample set is

used to represent the dynamics in the environment, which is

used to incrementally learn and dynamically update a Hidden

Markov Model (HMM). In particular, we will focus on the

SHMMs properties and possible applications. A strength of

this method is that it is suitable for on-line learning on a

moving observer, Consequently all presented experiments

have been conducted using the mobile robot LISA (see Fig.

1(a)) in the office shown in 1(b).

The remainder of this publication is organized as follows.

Section II briefly outlines a sampling procedure to learn a

probability distribution of motion patterns. In section III we

propose SHMMs to represent common motion patterns in an

environment which can be learned on-line and unsupervised

on a mobile robot. Key properties of the proposed model

are discussed and experimentally demonstrated in Section

IV. Finally, Section V presents a discussion, conclusions and

future work.

II. SAMPLING MOTION PATTERNS

In a 2D environment, motion patterns can be described as a

probability distribution over the x-y-θ location and velocity

v. Discretizing the state space into a spatial grid followed
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by building a motion histogram [7] and then normalizing

the values of the grid cells would result in an approximation

of the joint probability distribution

P (x, y, θ, v) (1)

which represents the probability of the simultaneous oc-

currence of x-y-θ and v. This distribution constitutes the

knowledge of all motion patterns in the environment inde-

pendent of time. The distribution is very complex and thus

a significant amount of data is required to estimate its pa-

rameters accurately using this simple strategy. Therefore, in

[8] we proposed a sampling algorithm to incrementally learn

an approximation of Eq. 1. Here we extend the idea to an

efficient representation of motion patterns. In the following

we briefly outline the proposed sampling procedure.

A mobile robot equipped with sensors for localization

and object tracking, observes a person’s trajectory. Tracking

algorithms commonly represent each piece of a trajectory

as a probability distribution from which it is possible to

sample. In Fig. 2(a) a person (green rectangle) walks from

the left to the right while being tracked. The samples are

taken from the predictions of the tracking algorithm and are

weighed according to the noisy observation. In Fig. 2(a),

a 2D projection of the samples is shown along with the

95% confidence ellipses in x and y (green ellipses). Fig.

2(b) shows the sample set after more people moved along a

similar trajectory.

(a)

(b)

Fig. 2. a) The object (green rectangle) moved from the left to the right.
The dark points denote samples generated from the tracker’s prediction. The
green ellipses denote the covariance after weighing the samples according
to the most recent observation of the target b) The sample set after more
objects were observed.

III. SAMPLED HIDDEN MARKOV MODELS

In this section we present our approach to learn Sampled

Hidden Markov Models (SHMM) using the sampling algo-

rithm outlined above. The challenge is to derive a model

which can be learned and utilized by a mobile robot to

improve its operation in a populated environment. Even

though the sample based representation given in Section II is

already computationally more efficient than a conventional

grid based approach, the proposed SHMM reduces com-

putational complexity even further by exploiting a sparse

representation.

A. Hidden Markov Models

A Hidden Markov Model is a statistical model that repre-

sents a system as a directed graph. Here we briefly outline

HMMs following the notation used by Rabiner [9]. HMMs

are defined by N states of a system S = s1, s2, ..., sN ,

observation symbols V = v1, v2, ..., vK with K being the

number of symbols and state transition probability distribu-

tion A = aij , which is given as

a(ij) = P (qt+1 = s(j)|qt = s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ N
(2)

Furthermore, the observation probabilities in state j, B =
bij are formulated as

b(ij) = P (v(i)|s(j)), 1 ≤ i ≤ K

1 ≤ j ≤ N
(3)

Finally, the initial state distribution π = πi is defined as

π(i) = P (q1 = s(i)), 1 ≤ i ≤ N (4)

A common problem of HMMs is that there is no easy

way to update these models over time [9]. A great variety of

derivatives have been presented in the past to relax the issue

and here we will briefly refer to the ones most relevant to

the presented work

The idea of using HMMs to model trajectories is not new,

however, only few publications are found in the domain of

mobile robotics. The use of a hierarchy of HMMs to describe

motion patterns on different levels was proposed by Liao

et al. [10]. However, it requires the topology to be given

and learning is done off-line. Vasquez et al. [5] propose

Growing Hidden Markov Models for incremental learning

of topology. However, its practical applicability in mobile

robotics applications is limited due to the assumptions that

are made. In particular, the method requires the observation

of complete trajectories, meaning objects always have to be

seen from the start of the path to the very end and the

observer needs to be stationary at all times. In contrast, in the

following section we will present an approach which allows

to efficiently learn and update an HMM over time, which

does not assume full observability of trajectories and can be

used on mobile platforms.

B. Deriving a Sampled Hidden Markov Model

From the sampling algorithm given in Section II a particle

cloud is obtained (as shown in Fig. 3(a)), which has the

same temporal resolution as the sensor used for tracking,

along with clustering information (i.e. it is a series of

sample clusters, with each cluster representing the tracked

objects pose and velocity at one point in time). This set of

samples represents one persons trajectory as far as it has been

observed. It is assumed that the observed process is a first

order Markov process, i.e. motion at time t only depends on

motion at t− 1.
1) Sampling The States and Transitions: From the algo-

rithm given in Section II a vector of M clusters of weighted

samples is obtained which describes an observed trajectory

C =
[

c(0) c(1) ... c(M)
]

(5)

To extract an HMM each of those clusters in C can be

interpreted as a state of an HMM as
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S = s(i) =

[

µ(i)

Σ(i)

]

1 ≤ i ≤ N (6)

where µ(i) and Σ(i) are mean and covariance of the i-th
state and N is the number of states. Assuming zero states at

the beginning, N = M after adding C to the initially empty

model. µ(i) and Σ(i) are computed from the underlying

sample set and thus represent a 4-dimensional distribution

over x-y-θ−v. In Fig. 3(a) a 2D projection of SHMM states

is shown as red covariance ellipses in x and y. This figure

also shows the learned model based on a single observed

trajectory and the underlying samples.

The transition from state i to state j is given by the

sequence of sample clusters and thus the transition matrix

A consists of

A = a(ij) =

[

K(ij)

P (s(j)|s(i))

]

1 ≤ i ≤ N

1 ≤ j ≤ N

(7)

where K(ij) is the number of times the transition was

observed and P (s(j)|s(i)) is the probability of the transition.

Naturally, the probabilities of the newly learned transitions

in this example are 1.

(a) (b)

Fig. 3. SHMM based model learning. a) Based on a single observed
trajectory. b) Updated model after observing a second person. (real data)

2) Updating The Model: When observing another trajec-

tory, a sequence of sample clusters is produced and a data

association step will be carried out. This will associate the

observations to the learned model, while initializing new

nodes for previously unobserved parts. This data association

is realized by comparing the pdfs in C to the model using

the symmetrized Kullback-Leibler distance (KLD) [11]. The

KLD is commonly used in literature to compare two proba-

bility distributions. The symmetrized KL-distance is defined

as follows

KLDsym(s(i)|c(j)) = KLD(s(i)|c(j))

+KLD(c(j)|s(i)), 1 ≤ i ≤ N

1 ≤ j ≤ M

(8)

where KLDsym(s(i)|c(j)) denotes the symmetrized KL-

distance of state s(i) to cluster c(j) taking into account all N

states and all M clusters of a trajectory. If an association

is found between the i-th state and the j-th cluster, the

cluster’s samples belonging to j will be added to the state.

To keep the number of samples used to model a state

constant and to discard low weighted samples, a resampling

procedure is employed. This is done similar to a normal

particle filter with systematic resampling [12]. Finally, the

transition probabilities are updated as

P (s(j)|s(i)) =
K(ij)

∑N

j=0 K
(ij)

(9)

If a cluster could not be associated to an already existing

state of the SHMM, it is added as a new state and the state

transition matrix A gets extended accordingly.

(a) (b)

Fig. 4. SHMM based model learning for trajectory adding. a) A person is
tracked coming from the left and then walking along the previously learned
path. b) Same situation with another person coming from the right. The
robot (not visible) changed its location during observations. (real data)

To update the state transitions the knowledge about the

sequence of newly added and associated states can be

exploited. When a transition is already known K(ij) can

be incremented and the transition probabilities can updated

accordingly. It is to be noted that the second person was

only observed until the track lost point given in Fig. 3(b).

Therefore, only the observed states were updated.

In contrast, Fig. 4(a) shows the SHMM after another

person was observed coming from the left, again following

the trajectory indicated by the blue arrow. It can be seen

that new states were added coming from the left and that

a transition from the new part of the model to the former

model was learned. The situation is similar in Fig. 4(b) where

another person was tracked coming from the right and the

model is updated accordingly.

C. Using the SHMM On a Mobile Robot

In order to implement the SHMM on a mobile robot, sev-

eral other issues need careful investigation. Most importantly,

computational complexity should be kept at a minimum

and the model learning should not be affected by limited

observability.

1) Complexity Considerations: Here we consider the effi-

cient implementation strategies to manage the computational

complexity. In the proposed SHMM the pdf is of 4 dimen-

sions (x, y, θ, v). Processing Gaussian distributions with 4-
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dimensions can be a computationally demanding task espe-

cially for a mobile robot. Therefore, it is proposed to exploit

the structure of the SHMM to reduce the dimensionality to

2.

Firstly, there are two possible ways to exclude v from the

state estimate. It is possible to either sample the trajectory

data with a fixed frequency or by utilizing a binning ap-

proach. When using fixed frequency sampling, the distances

between clusters inherently capture the speed of the observed

object, thus implicitly representing v. In binning, speed do-

mains can be chosen and for each domain a distance between

successive clusters is defined. Our current implementation

uses the latter method as it is less vulnerable to timing

inaccuracies.

Secondly, the target orientation can be excluded from the

state estimate. Considering the 2 dimensional structure of

the SHMM as in Fig. 4(b), it can be seen that the expected

orientation can be derived from the relative locations of suc-

cessive states. Moreover, when there are multiple transitions

a probability for the matching headings can be obtained using

the transition probabilities. Hence, it is decided to drop the

explicit use of θ without loss of information. This results in

a 2-dimensional Gaussian distribution for describing a state.

2) Limited Observability: In general, mobile robots are

not capable of observing the whole operating environment

due to sensory limitations and occlusions. Depending on their

routes, some parts of the environment can be over exposed,

whereas the other parts can be poorly explored. Therefore,

determination of transition probabilities based on observation

alone are erroneous due to different exposure times of various

parts of the environment. Further, the value K(ij) cannot be

used as a measure of traffic density, as the relation between

the values of different transitions is not known.

To overcome this problem, the overall time of observation

of a part of the model has been added to the state’s transitions

as

aij =





∆T (ij)

K(ij)

P (s(j)|s(i))



 (10)

Where ∆T (ij) denotes the total time in which this tran-

sition could have been observed, i.e. the time this area was

inside the field of view of the observer. Consequently, the

transition probabilities are computed as

P (s(j)|s(i)) =
K(ij)/∆T (ij)

n
∑

k=0

K(ik)/∆T (ik)

(11)

Where n is the number of outgoing transitions from state

i.

IV. EXPERIMENTAL RESULTS

All Experiments were conducted using the LISA

(Lightweight Integrated Social Autobot), based on an iRobot

Create, which carries a Hokuyo UTM-30LX laser range

finder and a small Intel Atom based computer (see Fig.1(a))

for localization and people tracking. The environment is an

open office space of approximately 20 ∗ 25m as shown in

Fig. 1(b) and Fig. 8(a).

We first present experiments devised for analyzing the

model learning capability of the proposed SHMM. Then, we

briefly present possible applications of the learned models

of motion patterns for completeness. In the following figures

the pose of the robot is shown by a green arrow, states of an

SHMM are shown as red ellipses and the state transitions as

red lines between the means of states.

A SHMM model of a typical human trajectory while

navigating at a corner is shown in Fig. 5. The trajectory

is smooth and does not contain sharp corners, which agrees

with the human navigation literature [13].

Fig. 5. A typical curved human trajectory modeled as an SHMM.

The next experiment was devised to assess the adaptability

of the SHMM. In Fig. 6 the robot observed people walking

from the bottom to the top of the image. After observing

three people having a similar trajectory, an obstacle was

placed on the way (Fig. 6(b). This caused people to slightly

alter their trajectories. After observing 5 more persons, it was

noted that the previously learned model was automatically

adapted by the SHMM to accommodate the slight changes

(Fig. 6(c)).

(a) (b) (c)

Fig. 6. People are moving from the bottom to the top while a robot learns
the patterns. A) The initial model. b) An obstacle is introduced. c) The
model converged to a slightly different shape.

Next a larger obstacle was placed on the general human

trajectory, so that people have to take a substantial detour

(Fig. 7). Due to the notable differences in the observations

(decided by the KL-distance between the model and the

observation), it can be seen that a new trajectory is added to

the model as a separate branch (Fig. 7(b)). After a few more

observations, it could be noted that the transition probabilities

of A to C became larger than that of the previously learned A

to B transition. This is graphically represented in Fig. 7(b)

and Fig. 7(c), where the thickness of the line joining the

states A-C is thicker than that of A-B.
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(a) (b) (c)

Fig. 7. People are moving from the bottom to the top while a robot
learns the patterns. a) Initial trajectory without obstacles, b) An obstacle
is introduced, c) The model adapted and converged according to the new
information.

The next experiment was devised to demonstrate the capa-

bility of learning larger environments with complex motion

patterns. In an office type of environment consisting of cubi-

cals, LISA is used to observe various motion patterns while

moving around. Starting from the first most observation (Fig.

8(a)), the SHMM encompassed all of its observations to learn

a more complicated motion patterns as given in Fig. 8(c).

Although the model is learned with respect to the observa-

tions at any time, it may lack completeness. It happens due

to unobserved patterns or tracking failure. This phenomenon

can be seen in Fig. 8(b), where there is a discontinuity in

the model (inside the dashed rectangle). Once the unobserved

part of a trajectory has been observed, the model becomes

continuous as can be seen in Fig. 8(c). Another interesting

observation can be made inside the dashed circle in Fig.

8(c). It is an intersection with people arriving from two

directions leading to two clothoid trajectories. Although these

two trajectories seem to have a more complex structure than

necessary, it is a natural phenomenon which often occurs in

such narrow corners due to the phenomenon described in the

first experiment.

Fig. 8(d) shows the learned Gaussian distributions of

trajectories with which the states and transitions are rep-

resented. As the constraints of the structure (map) of the

environment is not taken into consideration, there are some

apparent overlaps of the distributions with obstacles, such

as walls. With more observations this effect would be re-

duced due to decreasing uncertainty. Fig. 9 shows the traffic

density as estimated by the model, where the magnitude is

represented by a color scheme. It shows traffic density is

higher in corridor areas rather than through cubicals, which

belong to other occupants. This behavior is expected in a

workplace where people avoid disturbing co-workers.

Finally, we briefly present path planning as a possible

application of a model of motion patterns. Interested read-

ers are referred to [14] for more detailed information. As

mentioned above, generally people take alternate routes to

avoid entering into others workspaces. If a robot needs

to be integrated with humans, such qualities need to be

learned. In long term deployment, this could be achieved by

observing and learning human motion patterns. Without this

Fig. 9. The observed traffic density; colors range from green (low traffic
density) to red (high traffic density).

(a) (b)

Fig. 10. Path planning results, a) A path generated using basic A∗

algorithm, b) Socially compliant path generated with the integration of the
learnt model.

knowledge, a robot will plan a path based on the shortest path

criteria using the common A∗ algorithm as shown in Fig.

10(a). However, it could be much more appropriate to use

the knowledge of how humans navigate in the environment

to plan the path. This could be achieved by extending the

A∗ algorithm to accommodate the learned model. More

precisely, we can alter the cost function of the A∗ algorithm

for socially acceptable path planning by taking traffic density

into account. The result of such a scenario is shown in

Fig. 10(b), where it could be noted that the planned path

is significantly longer than the shortest path, however the

robot will not cross desk areas disturbing occupants.

V. CONCLUSIONS

In this paper we presented a novel method to learn a

SHMM to represent motion patterns in an office like envi-

ronment. It provides an on-line and unsupervised learning

technique. Motion patterns can be described as a joint

probability distribution over pose and velocity from which

samples can be taken. To avoid the computational complexity

of using a sample distribution, a Hidden Markov Model

based representation to learn common motion patterns was

proposed.

The SHMM obviously has a lower memory footprint than

a sample distribution, since we can easily reduce the resolu-

tion of the model. This approach is valid as we are interested
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(a) (b)

(c) (d)

Fig. 8. Model evolution, a) The first observed trajectory in the model. b) The model after the robot observed 7 trajectories. c) The model after observing 25
trajectories. d) The final model after observing more than 60 trajectories. The red ellipses and red lines denote the covariance matrices and state transitions.

in motion patterns rather than detailed trajectories. Further,

the SHMM learning approach has the ability to change and

adapt the model to accommodate new observations, which is

crucial for any mobile robotic deployment.

Finally, the use of such a model for path planning was

briefly outlined. Above this, the ability to use the motion

pattern model for prediction of future poses of moving people

is of great interest in mobile robotics and is part of future

publications. Future work will focus on the use of such

predictions to improve tracking and interaction with human

peers in office spaces.
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