
  

  

Abstract— Razor clams (Ensis directus) are one of nature’s 
most adept burrowing organisms, able to dig to 70cm at nearly 
1cm/s using only 0.21J/cm. We discovered that Ensis reduces 
burrowing drag by using motions of its shell to fluidize a thin 
layer of substrate around its body. We have developed 
RoboClam, a robot that digs using the same mechanisms as 
Ensis, to explore how localized fluidization burrowing can be 
extended to engineering applications. In this work we present 
burrowing performance results of RoboClam in Ensis’ habitat. 
Using a genetic algorithm to optimize RoboClam’s kinematics, 
the machine was able to burrow at speeds comparable to Ensis, 
with a power law relationship between digging energy and 
depth of n = 1.17, close to the n = 1 achieved by the animal. 
Pushing through static soil has a theoretical energy-depth 
power law of n = 2, which means that Ensis-inspired digging 
motions can provide exponential energetic savings over existing 
burrowing methods. 

I. INTRODUCTION 
HE motivation behind this work is to generate compact, 
lightweight, low-energy, reversible, and dynamic 

burrowing systems for use in subsea applications such as 
anchoring, oil recovery, mine detonation, and sensor 
placement. As many organisms have evolved to embed 
themselves into undersea substrates [1-11], our hypothesis is 
that nature has found an optimized solution to subsea 
burrowing. We identified the Atlantic razor clam, Ensis 
direcuts, as the best candidate for biomimicry because of its 
performance and engineering merits. Ensis burrows at nearly 
1cm/s to 70cm deep using approximately 0.21J/cm [2, 9-11], 
which equates to being able to travel over a half kilometer 
on the energy in a AA battery [12]. Furthermore, razor clams 
are the size scale of a real engineering device (3.2cm 
diameter, 16cm long), and are packaged in a rigid shell with 
only one degree-of-freedom movement. Using the animal’s 
performance and geometry, we have calculated that an 
Ensis-based burrowing/anchoring system would provide a 
10X improvement over the best currently available 
anchoring technology, leading most by more than two orders 
of magnitude, in anchoring force developed per unit energy 
expended [13-15].  

The burrowing cycle of a razor clam is shown in Fig. 1a-f. 
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b) The animal starts with its foot - a soft, flexible organ - 
fully extended below the shell. Next, it uses a series of four 
shell motions to make downward progress: c) the foot 
extends to uplift the shell; d) the shell halves contract to 
force blood into the foot, inflating it to serve as an anchor; e) 
the foot muscles contract to pull the shell downwards; and f) 
the shell expands in order to begin the cycle again. To 
understand the soil mechanics during this cycle, we 
developed an experimental setup to visualize a razor clam 
burrowing in 1mm soda lime glass beads, which are similar 
in size and density to coarse sand [16]. A video of Ensis 
burrowing in our setup can be seen here [17]. Substrate 
deformation was tracked using particle image velocimetry 
(PIV) [18]. We discovered that the uplift and contraction 
movements of the shell draw water towards the animal’s 
body, unpacking and locally fluidizing the surrounding 
substrate, as shown in Fig. 1g.  

 

 

 
Fig. 1. Razor clam burrowing motions and localized fluidization. a-f) Razor 
clam digging kinematics. g) Localized fluidization generated during uplift 
and contraction shell motion. Colored regions denote fluidization, as 
measured by particle image velocimetry, plotted as current void fraction (φ) 
divided by initial void fraction (φo). 
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Moving through fluidized, rather than packed soil, reduces 
the amount of energy Ensis has to expend to reach full 
burrow depth by an order of magnitude when compared to a 
blunt body the same size and shape, as shown by Fig. 2. 
Furthermore, because Ensis moves through a fluidized 
medium, the drag force on its body should ideally remain 
constant with depth. In contrast, moving through a packed, 
static particulate medium, as in the case of the blunt body, 
requires pushing force that increases linearly with depth 
[19]. This means Ensis exponentially reduces burrowing 
energy from scaling with depth squared to linearly 
increasing with depth, even though some energy is required 
to locally fluidize the soil.  
 

 
Fig. 2. Burrowing energetics of Ensis and a blunt body the same size and 
shape as the animal. Blunt body data acquired during 15 tests in Ensis 
habitat off the coast of Gloucester, MA. Ensis data adapted from [9]. Ensis 
achieves an exponential reduction in burrowing energy by moving through 
locally fluidized, rather than packed soil.  
 

II. EXPERIMENTAL DESIGN 

A. RoboClam Design 
To verify that localized fluidization drag reduction could 

be transferred to engineering burrowing applications, we 
developed RoboClam, a robot that replicates Ensis digging 
kinematics. RoboClam was designed to yield insight into the 
relationships between environmental and engineering 
parameters, such as substrate type, depth, device size, 
burrowing velocity, and required power. Figure 3a shows the 
end effector of RoboClam – the part of the robot that digs by 
mimicking Ensis shell motions to locally fluidize 
surrounding substrate – during its burrowing cycle. In 
RoboClam, Ensis’ foot has been replaced by a pneumatic 
piston that pushes down on the end effector, as we have 
found from our experiments that only Ensis’ shell motions 
contribute to localized fluidization.  
 

 

 
Fig. 3. RoboClam. a) End effector mechanism, which moves with 
kinematics similar to razor clam burrowing to locally fluidize surrounding 
substrate. b) RoboClam burrowing in a mud flat off the coast of Gloucester, 
MA. Location of end effector relative to robot outlined in green. When 
burrowing, the end effector is covered by a neoprene boot to prevent soil 
from jamming the mechanism.  
 

A requirement of RoboClam was that it could be tested in 
real marine substrates, as to avoid wall effects caused by a 
container, and to capture the peculiarities of real soil with 
heterogeneous composition and the presence of organic 
matter. Figure 3b shows RoboClam burrowing in real Ensis 
habitat off Gloucester, MA. For saltwater compatibility, 
RoboClam’s main power source is an 80 ft3 scuba tank. 
Small lead acid batteries power four solenoid valves and 
digital pressure regulators that direct air to two pneumatic 
pistons, which control the end effector’s two degrees of 
freedom. A laptop controls the robot using a genetic 
algorithm, which is discussed in the following subsection. 

The end effector moves in two degrees of freedom: 
up/down and in/out. The in/out motion is accomplished with 
a sliding wedge between the two “shells” of the end effector, 
as shown in Fig. 4a. This mechanism is exactly constrained 
and has contact lengths/widths greater than two, as to 
prohibit jamming during any part of the stroke [20]. 
Furthermore, the wedge intersects the center of pressure on 
the shell regardless of its position. This prevents the shell 
from exerting moments on the wedge that could increase 
frictional losses. The rod used to actuate in/out movement is 
housed within the rod to move the end effector up and down, 
providing a compact coupling to RoboClam’s actuation and 
measurement systems. The end effector is surrounded by a 
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neoprene boot to prevent soil particles from entering the 
mechanism.  
 

 
Fig. 4. RoboClam’s end effector. a) Functional parts of the end effector and 
packaging to prevent soil from entering the mechanism. b) Free body 
diagram of the end effector during expansion/contraction.  
 

The end effector is made from alloy 932 (SAE 660) 
bearing bronze and 440C stainless steel. These materials 
were chosen because both are saltwater compatible and have 
a low coefficient of sliding friction when lubricated [21]. 
The dynamic coefficient of friction within the mechanism 
was measured to be 0.173 with 0.013 standard deviation, 
under horizontal loads ranging from 13.34N to 83.74N. 
Silicon oil was used as a lubricant because it is not absorbed 
by the neoprene boot. 

The transmission ratio (TR) for the mechanism, given in 
Eq. 1, can be derived from the free body diagram in Fig. 4b 
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where F and H are the input and output forces, respectively, 
θ is the wedge angle, and µ is the measured coefficient of 
friction. The efficiency of the mechanism, given in Eq. 2, 
can be calculated by computing the work done over a stroke 
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where E is energy and δ represents the displacements 
corresponding to the input and output forces.  

To determine whether Ensis-inspired digging provides 
and advantage over other methods, the energy expended in 
soil deformation while burrowing must be calculated. 
RoboClam’s end effector efficiency was measured to be 
39% with a minimum of 33% and a maximum of 46%, 
corresponding to 6σ friction measurements. Because this 
efficiency can be characterized, the energy expended 
deforming soil while burrowing can be deterministically 
calculated. This is important, as overall energy consumed is 
device dependent; we are interested in finding a new 
burrowing method that is more efficient than current 

methods. After this method is identified, machines used to 
exploit it can be designed for optimized efficiency.  

Soil deformation energy, Esoil, can be calculated by 
accounting for input energy, Ein, from the pneumatic pistons, 
minus losses in the system from friction in the mechanical 
elements, Efriction, and changes in potential energy, Epotential. 
For the up/down motion of RoboClam, the energy lost to soil 
deformation during one stroke is 
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where the subscript u designates the up/down piston, Δpu is 
the pressure difference over the piston, δ 1 and δ2 are the 
starting and ending displacements of the stroke, Au is the 
area of the piston, Fu,friction is the measured frictional force in 
the piston, and mu is the total mass moving up and down.  

The energy transferred to the soil during the in/out motion 
is represented by 
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where the subscript i represents the in/out piston, δ1 and δ2 
are the starting and ending displacements of the stroke, η is 
the efficiency defined in Eq. 2, Δpi is the pressure difference 
over the piston, Ai is the area of the piston, Fi,friction is the 
measured frictional force in the piston, and mi is the total 
mass moving up and down. Energy lost to deformation of 
the neoprene boot surrounding the end effector, Eboot, proved 
very difficult to measure. Since most of this energy results 
from elastic deflection of boot, it was taken to be zero over a 
full in/out cycle. This is a conservative assumption, as any 
energy lost to hysteresis caused by the viscoelasticity of the 
neoprene will appear as additional energy dissipated in the 
soil. 

B. Genetic algorithm design 
In testing RoboClam, the sequence of the machine’s 

motions (up stroke, contraction, down stroke, expansion) 
was never varied. The space of control parameters was 
reduced to the pneumatic force applied for each movement, 
as well as the duration or displacement of each movement. 
We experimentally found that time control of the upward 
and downward motion and displacement control of the 
inward and outward motions resulted in successful 
burrowing. This yielded eight independently-controllable 
parameters: upward and downward time, inward and 
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outward displacement, and upward, downward, inward, and 
outward pressure. 

We determined that the best optimization strategy for the 
robot's control parameters was a genetic algorithm (GA), as 
it could efficiently explore a large cost space in multiple 
dimensions and enable the RoboClam to learn how to dig 
most efficiently. The random mutation and recombination of 
traits used by a GA also tend to allow it to find a global 
minimum, even in situations in which other optimization 
methods would not [22]. MATLAB's GA was chosen for 
RoboClam testing, with a population of 10-20 individuals 
running for 10-20 generations. With the algorithm in direct 
control of the robot, the GA was able to generate parameters, 
run the RoboClam, collect data, and analyze the cost for 
each test, which in turn allowed for extensive testing of a 
variety of parameters. 

In quantifying optimized burrowing performance, two 
factors proved to be relevant: the overall energy expenditure 
per depth of the robot, β, and the power law relationship, n, 
between depth and energy expended. Minimizing only β 
resulted in low-energy burrowing for depths of 20-30cm, but 
with relatively high n (>2); at greater depths these burrowing 
techniques would be useless, as required energy would 
exponentially increase. As a result, we used the product of β 
and n for the GA cost, as given in Eq. 5, with the intent of 
minimizing n to 1 and β as small as possible.  

 
GAcost = !n  (5) 

III. EXPERIMENTATION, RESULTS, AND DISCUSSION 
Figures 5 and 6 show burrowing performance results from 

RoboClam testing in real razor clam habitat – a mud flat off 
the coast of Gloucester, MA. The results were obtained from 
125 separate trials using parameters generated by the GA.  
For each test, the robot dug into virgin soil. After the test, 
the robot was dragged ~6in down the shore to a new spot of 
virgin soil.  
 

 
 

Fig. 5. GA cost results from 125 trials of RoboClam burrowing in a 
Gloucester, MA mud flat. Each data point corresponds to the lowest cost 
achieved within the entire trial set, thus far, at each specific trail. Point A is 
the lowest cost trial measured (2.50 at test 80), in which RoboClam pushed 
straight into the soil, not using Ensis digging motions. Point B is the second 
lowest cost trial (2.52 at test 34), in which RoboClam did use Ensis digging 
motions. Results from this trial are shown in Fig. 6. Point C is the third 
lowest cost trial (2.59 at test 78), also in which RoboClam used Ensis 
digging motions.  
 

Figure 5 shows the lowest cost achieved within the entire 

trial set, thus far, at each specific trail. As can be seen from 
the figure, the GA successfully minimized the cost over the 
entire trial set, reaching an asymptote near GAcost = 2.5. The 
lowest cost measured, at trial 80 and shown at point A in 
Fig. 5, resulted from RoboClam pushing straight into the soil 
without using Ensis burrowing kinematics. This trail was not 
considered “best,” as the robot did not actually “dig”. 
Additionally, because penetration energy scales with depth 
squared in static soil, the GAcost associated with this trail 
would much larger at greater depths.  

The trial with the second lowest cost, shown by point B in 
Fig. 5, was obtained using Ensis burrowing kinematics. The 
associated digging parameters were: up stroke: 0.0854s at 
8.96kPa, contraction: 0.0057m at 288kPa, down stroke: 2s at 
352kPa, expansion: 0.0057m at 388kPa. Figure 6 shows the 
burrowing performance corresponding to this trial.   

 

 
Fig. 6. The second lowest cost mud flat trial, in which the robot used Ensis 
digging motions, corresponding to point B in Fig. 5. a) Burrowing velocity. 
b) Burrowing energy vs depth. c) Burrowing energy vs depth power law 
relationship. 
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In the second lowest cost trial, RoboClam was able to dig 

at 0.8cm/s, approximately the same speed as Ensis, as shown 
in Fig. 6a. Animal and machine differed in the amount of 
energy required to burrow (calculated in both cases by 
determining mechanical energy expended to the soil); Fig. 
6b shows that RoboClam required 230J/m, whereas Ensis 
expends only about 21J/m.  

Our proposed explanation for this discrepancy is that both 
animal and machine must operate on similar timescales and 
velocities (Ensis’ peak downward stroke velocity is 
10cm/s[9], RoboClam’s is 2-8cm/s), yet RoboClam has an 
order of magnitude more mass to move (2.5kg) than Ensis 
(~0.2kg). As a result, the excess kinetic energy in the 
machine during its downward stroke, which is >10X that of 
Ensis, must get dissipated, presumably in the packed soil 
below the locally fluidized zone. Ensis, with its low mass, 
can control its movements and only move within the 
fluidized zone. Thus, our explanation of the energetic 
discrepancy between animal and machine is due to excess 
kinetic energy that must be dissipated upon RoboClam’s 
impact with static soil.   

Figure 6c shows that RoboClam was able to dig with an 
energy-depth power law relationship of n = 1.17. This result 
constitutes an enormous energetic savings over simply 
pushing through static soil (which theoretically has n = 2), 
and is close to the ideal value predicted for Ensis of n = 1.  

IV. CONCLUSIONS AND FUTURE WORK 
We have shown that RoboClam is able to achieve 

exponential burrowing energy reductions over simply 
pushing through soil. The practical significance of this result 
is that Ensis-inspired devices may be able to dig deeper 
using less energy than devices that do not take advantage of 
localized fluidization. The measured energy-depth power 
law relationship of n = 1.17 is close to the ideal value of n = 
1 predicted for real Ensis. Repeated variation of the control 
parameters and selection for the smallest product of n and ß 
by the GA resulted in a nearly linear force/displacement 
relationship. Our assumption is that localized fluidization 
around RoboClam’s end effector, as observed during Ensis 
burrowing, is the cause of the measured energetic 
reductions.  

We continue to test RoboClam in various substrates using 
different size end effectors in order to further understand the 
limits of Ensis-inspired digging. Our aim is to understand 
the parametric relationships between different substrates, 
depths, and kinematic configurations. Concurrently with 
experimentation, we are developing theoretical soil/fluid 
constitutive models to describe the fluidized region of 
substrate around a contracting body, as well as the drag 
associated with moving through the substrate. Empirical and 
theoretical results will be combined to form design rules to 
enable engineers to deterministically design burrowing 
devices for any size scale, substrate type, and performance 
requirements.  

ACKNOWLEDGMENT 
The authors would like to thank Mario Bollini and Caitrin 

Jones for their assistance in testing the RoboClam.  

REFERENCES 
[1] Fager, E.W., Marine Sediments: Effects of a Tube-Building 

Polychaete. Science, 1964. 143(3604): p. 356-359. 
[2] Holland, A.F. and J.M. Dean, Biology of Stout Razor Clam 

Tagelus-Plebeius .1. Animal-Sediment Relationships, Feeding 
Mechanism, and Community Biology. Chesapeake Science, 1977. 
18(1): p. 58-66. 

[3] Aoyama, J., et al., First observations of the burrows of Anguilla 
japonica. Journal of Fish Biology, 2005. 67(6): p. 1534-1543. 

[4] Kelly, M.D., et al., Burrow extension by crack propagation. Nature, 
2005. 433(7025): p. 475. 

[5] Rosenberg, R. and K. Ringdahl, Quantification of biogenic 3-D 
structures in marine sediments. Journal of Experimental Marine 
Biology and Ecology, 2005. 326(1): p. 67-76. 

[6] Shin, P.K.S., A.W.M. Ng, and R.Y.H. Cheung, Burrowing 
responses of the short-neck clam Ruditapes philippinarum to 
sediment contaminants. Marine Pollution Bulletin, 2002. 45(1-12): 
p. 133-139. 

[7] Stanley, S.M., Bivalve Mollusk Burrowing Aided by Discordant 
Shell Ornamentation. Science, 1969. 166(3905): p. 634-635. 

[8] Trueman, E.R., Bivalve Mollusks: Fluid Dynamics of Burrowing. 
Science, 1966. 152(3721): p. 523-525. 

[9] Trueman, E.R., The Dynamics of Burrowing in Ensis (Bivalvia). 
Proceedings of the Royal Society of London. Series B, Biological 
Sciences, 1967. 166(1005): p. 459-476. 

[10] Trueman, E.R., The locomotion of soft-bodied animals. 1975, 
London: Edward Arnold. 

[11] Trueman, E.R., A.R. Brand, and P. Davis, The Dynamics of 
Burrowing of Some Common Littoral Bivalves. J Exp Biol, 1966. 
44(3): p. 469-492. 

[12] Energizer. Energizer E91 AA Battery Product Datasheet.  2009. 
http://data.energizer.com/PDFs/E91.pdf. 

[13] Hinz, E.R., The complete book of anchoring and mooring. 1 ed. 
1986, Centreville, Md: Cornell Maritime Press. 

[14] McCormick, M.E., Anchoring systems. 1 ed. 1979, New York: 
Pergamon Press. 

[15] Chance, A.B., Design Methodology: Chance Helical Anchor/Pile 
Bearing Capacity. 2006, Hubbell Power Systems. 

[16] Lambe, T.W. and R.V. Whitman, Soil Mechanics. 1969, New 
York: John Wiley & Sons. 

[17] Winter, A., Video of burrowing Ensis. 2008. 
http://techtv.mit.edu/videos/1334-roboclam 

[18] Sveen, J.K., MatPIV. 2004. http://folk.uio.no/jks/matpiv/  
[19] 19. Robertson, P.K. and R.G. Campanella, Interpretation of cone 

penetration tests. Part I: Sand. Canadian Geotechnical Journal, 
1983: p. 718-733. 

[20] Slocum, A.H., Precision machine design. 1992, Englewood Cliffs, 
N.J: Prentice Hall. 

[21] Avallone, E.A. and I. T. Baumeister, Marks' Standard Handbook 
for Mechanical Engineers. 10 ed. 1996, New York: McGraw-Hill. 

[22] RL Haupt, S.H., Practical Genetic Algorithms. 2004, Hoboken, NJ: 
John Wiley & Sons, Inc. 

4235




