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Abstract— Since the introduction of independent contact
regions in order to compensate for shortcomings in the po-
sitioning accuracy of robotic hands, alternative methods for
their generation have been proposed. Due to the fact that (in
general) such regions are not unique, the computation methods
used usually reflect the envisioned application and/or under-
lying assumptions made. This paper introduces a parallelizable
algorithm for the efficient computation of independent contact
regions, under the assumption that a user input in the form
of initial guess for the grasping points is readily available.
The proposed approach works on discretized 3D-objects with
any number of contacts and can be used with any of the
following models: frictionless point contact, point contact with
friction and soft finger contact. An example of the computation
of independent contact regions comprising a non-trivial task
wrench space is given.

I. INTRODUCTION

Evaluating the “goodness” of a given multifingered grasp

while accounting for the capabilities of the grasping device

is an important issue in dexterous manipulation. For a

large class of grasps the force closure property is desirable.

Loosely speaking, force closure means the ability of the

grasp to immobilize the grasped object influenced by an

arbitrary external disturbance, if the manipulator is capable

of exerting sufficiently large contact forces on the object [1].

Contact force vectors and resulting torque vectors are com-

monly concatenated to wrench vectors. Mishra et al. [2]

showed that a grasp is force closure, if the convex hull

spanned by the contact wrenches contains a neighborhood

of the origin.

However, in many cases force closure is just a necessary,

and not a sufficient requirement. Usually it is desirable to

specify additional conditions in order to evaluate a grasp.

There are many quality measures proposed in the literature

(see [3] for a survey). A good grasp should be able to

efficiently withstand forces, which are likely to occur during

the performed task. If nothing about the task is known, a

common measure is the radius of the largest origin-centered

insphere of the Grasp Wrench Space (GWS), which was

proposed by Kirkpatrick et al. [4]. The GWS is defined

as the convex hull over the set of all wrenches that the

manipulator can exert on the object for a given grasp. In this

definition it is presumed that the sum of the magnitude of the

grasping forces is bounded. Ferrari and Canny [5] introduced

the physically more relevant convex hull over the Minkowski

sum of the grasp wrenches. This implies that no more than

a force of a given magnitude is applied at each grasping

point. A way to incorporate the whole object geometry

into the grasp assessment was suggested by Pollard [6].

She introduces the Object Wrench Space (OWS) (which

represents the best possible grasp), and formulates a quality

measure as the scale of the largest OWS that fits entirely in

the GWS. Several works have integrated disturbance forces

on the object geometry in the grasp evaluation [6][7][8].

From the viewpoint of a mechanic manipulator, not only

the ability to resist disturbances, but also the robustness

of a grasp is an important factor. Grasps which are less

sensitive to modeling and positioning errors are desirable.

In this context, the notion of Independent Contact Regions

(ICR) was suggested by Nguyen [9]. He defined the set

of optimal independent regions with the largest minimal

radius, which yield a force closure-grasp if each finger is

placed anywhere within its respective region. The concept

was extended to the computation of independent regions for

three-finger grasps on planar objects [10], and four-finger

grasps of polyhedral objects by Ponce et al. [11]. The latter

approach has a number of drawbacks: (i) three conditions for

force closure are presented, however, two are disregarded in

the later analysis due to their nonlinear structure, leading to

the possibility of excluding viable candidate regions; (ii) it is

not clear, how to compute ICR given a bound on the possible

disturbance wrenches; (iii) it is unclear, how the approach

could be extended to five or more fingers. The above prob-

lems were addressed by Pollard in [12], where the synthesis

of grasps on 3-D objects with a large number of contacts

is discussed. Furthermore, a task related quality measure

is incorporated in the evaluation of ICR. The computation

is based on geometric reasoning in the wrench space and

requires the solution of a Linear Programming problem (LP).

Still, a detailed discussion of an efficient algorithm for the

generation of ICR is not presented. Roa and Suárez [13]

suggested an algorithm, which grows independent regions

for precision grasps on discretized objects. However, their

method is very sensitive to the choice of friction coefficient

and more restrictive than the approach presented in [12].

In this work, an in-depth analysis about the geometric

relations in the context of independent contact regions is pro-

vided, along with an extension of the approaches presented

in [12] and [13]. We introduce an efficient parallelizable

algorithm for determining ICR for a given fixed set of

contact points on discretized 3D-objects with any number

N of contacts which satisfy the force closure condition.

The algorithm is capable of determining the regions for a

non-trivial disturbance wrench set and can be used with:
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frictionless point contact, point contact with friction and soft

finger contact models.

The assumptions and required background are provided

in Section II. In Section III we present our efficient algo-

rithm for computing independent contact regions and finally

Section IV contains a numerical evaluation.

II. BACKGROUND

A. Nomenclature

N number of contact points in a grasp,

S number of points on the surface of an object,

L number of wrenches used in a contact model,

H number of hyperplanes bounding a convex hull,

n index used for points in a given grasp,

s index used for points on the surface of the object,

l index used for wrenches in a contact model,

h index used for hyperplanes.

Bold letters are used to denote matrices and vectors. The

ith element of a set C is denoted by C(i).

B. Assumptions & Problem Description

A sufficiently discretized representation of the target

objects surface, given as a polygonal mesh of points

ps (s = 1, ..., S) with corresponding inward-pointing unit

normals n̂s is required. The reference frame is fixed in the

Center of Mass (CoM) of the object. Each point ps has asso-

ciated neighboring points, defined as the ones connected to

ps by an edge of the mesh. We presume, that a “reasonable”

set of tasks Tt (t = 1, ..., T ) is specified as sets of disturbance

wrenches, which needs to be resisted by the grasp. An initial

force closure grasp, able to withstand the Minkowski sum of

the given sets of disturbance wrenches Tt is provided. Such

a grasp is defined as a set of N contact points on the objects

surface G = {p1, · · · , pN}. The necessary starting grasp

could be acquired by means of human demonstration or by

one of the algorithms proposed for the synthesis of force

closure grasps [13][14]. Furthermore, quasi-static conditions

are assumed.

We are interested in the computation of ICR, defined as

the N independent regions Cn, each one associated with a

contact point pn of the original force closure grasp. The

sets Cn contain points on the target objects surface, each

of which can replace pn in G. Any grasp composed of N
contact points, where one point is picked from each region

Cn, will be force closure and preserve the task requirements.

An example of ICR for a four-fingered frictional grasp on

the model of a cup is shown in Fig. 1.

C. Application

If expected disturbances are represented as a meaningful

set of tasks, the size of the independent regions can be

directly related to the required positioning accuracy. If each

finger “aims” at the center of its respective region, larger

ICR provide increased robustness to finger positioning errors.

Kim et al. [15] formalized this notion by introducing the

Uncertainty Grasp Index, which is described as the sum of

Fig. 1. Independent Contact Regions: Red squares represent the original
grasping points, blue squares the independent contact regions. The regions
are computed considering possible disturbances specified in Section IV-B,
utilizing frictional hard-finger contacts.

the distances between the grasping points and the center of

the corresponding independent region.

D. Contact Models

We first consider frictional point contacts between the

target object and the fingers of the gripper. The friction-

coefficient according the Coulomb friction model is denoted

as µ. In order to prevent slipping, a force fs applied at a

point ps has to fulfill the following constraint:

||fs − (f s · n̂s)n̂s|| ≤ µ(n̂s · fs). (1)

This describes a nonlinear friction cone, which can be

approximated by a L-sided convex polyhedron. The set

of forces with magnitude FG along the L edges of the

discretized cone located at contact point ps is denoted in

matrix notation as F s = [f1(ps), · · · , fL(ps)]. Thus, the

grasping force fs is given by:

fs = F sαs, αs ≥ 0, ||αs||L1 ≤ 1. (2)

The force fs creates a torque τ s = (ps × fs). Force and

torque vectors can be concatenated to a wrench vector ws:

ws =

(

fs

τ s/λ

)

, λ = max
s

(||ps||). (3)

Dividing the torque parts by the largest possible torque arm

λ guarantees scale invariance [6]. The wrenches generated

by forces f l along an edge of the discretized friction cone

are referred to as primitive wrenches. For a given contact

point ps, the set of primitive wrenches is defined as:

Ws = {w1(ps), · · · , wL(ps)}. (4)

The soft finger contact model according to [16] allows

for additional torsional moments around the local contact

normal n̂s. Here, the set of primitive wrenches in Equation 4
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needs to be supplemented by the according wrenches. In the

soft finger contact model, scaling the wrench vectors by the

largest possible torque arm λ does not grant scale-invariance

any more. This is due to the fact, that the additional wrenches

do not depend on the object geometry. Still, scaling imparts

invariance to the chosen units of length.

In the case of the frictionless point contact model, the

friction coefficient µ is zero and fs acts along the surface

normal. In this case, the set Ws just holds one wrench

generated by the respective normal force. Given a Grasp

G, the discrete GWS is described by the convex hull over

the union of the N primitive wrench sets belonging to the

grasping points pn:

GWS = CH
(

⋃

{W1, · · · ,WN}
)

. (5)

Equation (5) characterizes the space of wrenches, which

can be exerted to the grasped object when the sum of the

magnitudes of all finger forces is bounded by a value FG.

Since the applied forces are proportional to the current in the

actuators, this can be seen as a limitation due to a common

power source [5].

E. Task Model

Tasks are represented as sets of disturbance wrenches

which needs to be resisted. Given T tasks Tt, we denote

the Task Wrench Space (TWS) as the convex hull over the

Minkowski sum of the tasks:

TWS = CH
(

⊕

{T1, · · · , TT }
)

. (6)

One frequently used representation of the TWS is the largest

origin-centered insphere of the GWS. Yet, this gives only

weak protection against disturbance forces on the extreme

parts of the object geometry and might pose unnecessary

restrictions by protecting against disturbances which are

unlikely to occur. A physically better motivated way to

describe a task Tt, is by wrenches resulting from a maximum

number of S possible disturbance forces, which can act

on any point ps on the objects surface. The sum of the

magnitudes of all disturbance forces is denoted as FD , which

has to be smaller or equal FG. This way of modeling a

task is equivalent to a scaled OWS [6] and shall be denoted

as OWSD. It is presumed, that the disturbance forces are

caused by frictionless point contacts of the object with the

environment. Assuming a sufficiently high discretization of

the object, wrenches resulting from frictional contact may be

contained in OWSD nevertheless. Otherwise they can easily

be added [6].

Combining multiple independent tasks usually involves

the computationally expensive Minkowski sum according to

Equation (6). However, Borst et al. [8] have shown, that

disturbances caused by the gravitational force Fgrav can

easily be incorporated in the OWSD. If the CoM is used as

torque origin, the OWSD as well as the gravitational forces

are tightly enclosed by a sphere in the force domain. Thus,

it is possible to simply scale the force domain of the OWSD

by a factor (1+Fgrav/FD), in order to consider disturbances

caused by gravity as well.

III. INDEPENDENT CONTACT REGIONS

Let the H-representation of the convex hull defined in (5)

be given as (A, b), where A = [n1, ...,nH ]T ∈ R
H×K is

a matrix containing the inward-pointing unit normals to the

bounding hyperplanes. The vector b = [b1, ..., bH ]T ∈ R
H

contains the distances to the origin. K = 3 if the object

to be grasped is planar, and K = 6 when the object is

three dimensional. From our assumptions it follows that the

convex hull associated with the TWS will be contained in the

GWS of G. Hence, for all disturbance wrenches wd ∈ TWS,

Awd + b ≥ 0. We define bh − ǫh as the distance from

the hth hyperplane to the TWS, i.e. the hyperplane defined

by (nh, ǫh) is tangent to the TWS. The distances ǫh are

combined in the vector ǫ = [ǫ1, ..., ǫH ]T ∈ R
H .

In addition to the H-representation of the GWS, we need

to define sets of indices ̺n,v, one for each wl(pn) that is a

vertex in the GWS. Let Vn be a set containing the indices

of the vertices (in the GWS) associated with pn. Clearly, the

number of elements in Vn is smaller or equal to L.

̺n,v = {h : nT
h wv(pn) + bh = 0 , v ∈ Vn}. (7)

Thus, h ∈ ̺n,v and v ∈ Vn imply, that the wrench wv(pn)

is a vertex and lies on the hth hyperplane (Hh). Let us

denote the independent contact region associated with

pn by Cn. By definition, Cn will contain points each of

which can replace pn in G and still preserve the task

requirements. This implies that the convex hull spanned by

the wrenches associated with any point in Cn, combined

with the wrenches associated with N − 1 points, each

chosen from one of the other N − 1 independent regions,

will contain the task disturbances. Adding a new point ps

to Cn by using a brute-force approach and testing whether

bh − ǫh ≥ 0, ∀h (which requires the re-computation of

(5)), for all possible grasps with points already in the other

independent regions is not feasible. Instead, by defining

search regions directly in the wrench space, Pollard [12]

presented an easy to evaluate criterion for adding points

in a given independent contact region. Figure 2 illustrates

the core idea, which is based on geometric reasoning. It

shows the convex hull CH(X ), spanned by vectors xi

(X = {x1 · · ·xI}), containing the origin. By convexity,

CH(X ) is fully contained in one of the half-spaces defined

by the hyperplane Hf , corresponding to facet f . Facet f
is said to belong to the visible region of a point x̂i if that

point lies in the half-space of Hf not including the origin

(i.e. x̂i “sees” f ) [17]. Let Si be the intersection of all

half-spaces defined by hyperplanes corresponding to facets

which contain xi, so that Si does not contain the origin.

Proposition 1:

(a) CH(X ) ⊆ CH({X\xi, x̂i}) if all visible facets from

xi are visible from x̂i.

(b) The convex hull of multiple sets containing CH(X )
contains CH(X ).

Proposition 1-a states, that the convex hull resulting from

replacing a vertex xi with a point x̂i will fully contain
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x̂1

x1

x2 x3

x4

x5

S1

⋂

S2

S1

S2

S4Hf

Fig. 2. Visible Region: The yellow facets denote the visible region from
the point x̂1 on CH(X ). According to Proposition 1, point x1 can safely
be substituted by x̂1. Points x1 and x2 can simultaneously replaced by a
point lying in the intersection of search regions S1 and S2.

CH(X ), if the visible region of xi on CH(X ) is seen by

x̂i as well. This is the case for any x̂i ∈ Si [17]. Note

that it is possible for x̂i to see more facets of CH(X ) than

xi. Proposition 1-b is a direct consequence of convexity.

According to the above Proposition, point x̂1 in Fig. 2 can

safely substitute x1 while preserving CH(X ). One point in

the intersection S1

⋂

S2 is sufficient to replace x1 and x2

simultaneously.

In this light, the requirements for a point on a target

objects surface to be included in one of the independent

regions are illustrated in Fig. 3. Shown are the convex hulls

of a three-fingered frictional grasp and a respective task in

a hypothetical two-dimensional wrench space. In order for a

candidate point ps to qualify as a member of Cn, the TWS

has to be fully contained in the GWS resulting from replacing

the primitive wrenches wv(pn) with the primitive wrenches

corresponding to ps. For example, the condition for a point

ps to be included in the independent region C1 is that there

have to exist possible convex combinations of the primitive

wrenches wl(ps) inside both search regions S̺1,1 and S̺1,2 .

If this condition is satisfied, ps can replace the original

grasping point p1 according to Proposition 1. The search

region S̺1,1 is built by the intersection of the half-spaces

defined by hyperplanes parallel to facets containing w1(p1)
and tangent to the TWS, so that S̺1,1 does not contain the

origin (S̺1,2 is defined accordingly). Note that Proposition

1 is also satisfied if there exists a convex combination of the

primitive wrenches wl(ps) in the intersection S̺1,1

⋂

S̺1,2 .

The general definition of search spaces S̺n,v is as follows:

S̺n,v = {w ∈ R
K : A̺n,vw + ǫ̺n,v ≤ 0 , v ∈ Vn}. (8)

A̺n,v above denotes the ̺n,v rows of A, likewise for ǫ̺n,v .

Let W s be the matrix corresponding to Ws. A contact point

ps qualifies as a member of the independent contact region

Cn, if there exist convex combinations of primitive wrenches

W s inside each region S̺n,v , or formally:

Cn = {ps : ∃αv ∈ R
L s.t. (W sαv) ∈ S̺n,v

v ∈ Vn, αv ≥ 0, ||αv||L1 = 1}. (9)

w1(p1)

w2(p1)
w1(p2)

w2(p2)

w1(p3)

w2(p3)

TWS

H1

H2

H3

S̺1,1

S̺1,2

S̺1,1

⋂

S̺1,2

ǫ2

b2 − ǫ2

Fig. 3. Search regions for C1: Abstract 2-dimensional GWS, showing valid
locations for primitive wrenches, so that the associated point in task space ∈
C1. A friction cone discretization of L = 2 is assumed. The red lines denote
valid convex combinations of the primitive wrenches, which are shown as
red squares. Contact points associated with the primitive wrenches depicted
as blue squares, as well as the primitive wrench illustrated as a yellow square
also can replace p1 without violating the TWS. Note that all primitive
wrenches (with the possible exception of those stemming from torsional
moments in case of soft finger contact) lie on the boundary of the OWS,
which cannot be adequately represented in two dimensions. Furthermore,
the primitive wrenches wv(pn) corresponding to contact points pn are
connected by ridges of the convex hull, which are depicted in the same line
style as facets.

A. Previous approaches

Here, we want to provide a brief discussion of the sug-

gestions presented by Pollard [12] and Roa and Suárez [13]

and compare it to our approach. Pollard provides the idea

of spanning search spaces belonging to primitive wrenches

of the GWS. However, no algorithm for the computation of

independent regions is provided, and search spaces corre-

sponding to every wrench wl(pn) are defined. Compared

to the search regions formulated in Eq. (8), this is disad-

vantageous from a computational point of view, because not

necessarily every wl(pn) is a vertex of the GWS since some

may lie on the boundary or, in case of the soft finger contact

model, inside the GWS. Hence, the approach in [12] can

produce more search regions than necessary, which have to

be evaluated.

Roa and Suárez [13] simplify the search problem, by

exclusively checking primitive wrenches wl(ps) for the

inclusion in the respective search regions, instead of their

convex combination. This might lead to the exclusion of

some viable contact points, but is computationally more effi-

cient. However, they define only one search region associated

with each pn as the following intersection of half-spaces:
⋂

v∈Vn

S̺n,v (i.e. S̺1,1

⋂

S̺1,2 in Fig. 3). In this formulation

a point ps qualifies as a member of Cn, if at least one

of its primitive wrenches wl(ps) lies in this intersection.

This makes no difference in the frictionless case. However,

increasing the friction coefficient µ causes this intersection to

“move away” from the OWS and can result in smaller or even

empty contact regions Cn. To illustrate the influence of the

choice of search regions, an example of a four-fingered grasp

on a discretized ellipse is shown in Fig. 4 (the example is
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1

Original grasping points pn

Points ps with primitive wrenches in all S̺n,v

Points ps with at least one primitive wrench in
⋂

v∈Vn

S̺n,v

Fig. 4. ICR’s for a planar grasp on an ellipse: The ellipse is discretized
with 60 points. Each contact friction cone is approximated by two edges,
the friction coefficient µ = 0.2.

adapted from [13], Section IV-A). In fact, choosing a friction

coefficient of µ ≥ 0.27 is causing empty regions Cn for the

given example if search regions as
⋂

v∈Vn

S̺n,v are utilized.

B. Computation algorithm

Here we give an efficient algorithm for the computation

of ICR based on equation (9). Note that the sequence in

which candidate points are evaluated does not matter, since

the regions Cn are computed independently. The general

structure is presented in Algorithm 1, while two options for

the inclusion test in search regions S̺n,v are presented in

Algorithms 2 and 3. Algorithm 1 starts by evaluating the

GWS and ̺n,v from equation (7). Since we defined ̺n,v

only with respect to vertex points, it can be formed simply

by using the indices of points that comprise the facets of

the convex hull. In case of a non-trivial TWS, in line 3, ǫh

is computed by forming the dot products of all disturbance

wrenches with nh and setting ǫh equal to the largest one.

If the TWS is a sphere, the distances ǫh(h = 1, . . . , H) are

set to be equal to the radius of the sphere. Starting with the

grasping points pn of the original grasp, neighboring points

are evaluated according to equation (9). In order to keep

track of already explored points, we define the N sets En:

E(s)
n =

{

1 if ps has been explored for inclusion in Cn

0 if ps has not been explored for inclusion in Cn

Note that in the inclusion test given in Algorithm 3, in

step 4, we do not need to carry out the whole matrix vector

product, since if the product of one row of A̺n,v and wl(pg)
turns out to be positive, the rest of the computation can be

truncated for the current iterate l.

IV. NUMERICALLY EVALUATED RESULTS

The Algorithm was implemented in Matlab and tested on

a PC comprising a Core 2 Duo 2.9-GHz processor. As a test

object, the model of a cup in Fig 1 was used. It is sampled

with a number of S = 2911 vertices, which are meshed by

5822 triangles. The “GNU Linear Programming Kit” [18]

was used to solve the linear program in Algorithm 2, convex

hulls were computed using the “Qhull”-package [19].

Algorithm 1: ICR computation

Compute the GWS using equation (5)1

Generate the H-representation of the GWS2

Define ̺n,v , ∀v ∈ Vn3

Determine ǫh, h = 1, ...,H4

for n← 1 to N do /* i.e. for each contact point ∈ G */5

Initialize: E
(s)
n ← 0 for s = 1, ..., S, set i← 1, j ← 16

C
(i)
n ← pn (include pn in Cn)7

while i ≤ j do8

for all neighbors of C
(i)
n do9

g ← index of a neighbor of C
(i)
n10

if pg is not explored (i.e. E
(g)
n = 0) then11

E
(g)
n ← 1/* set the current point as explored */12

if InclusionTest (pg) then13

j ← j + 114

C
(j)
n ← pg15

i← i + 116

Algorithm 2: InclusionTest with a linear program

for all search regions S̺n,l associated with pn do1

Solve the following linear program:2

minimize
αg∈RL, z∈R

z

subject to A̺n,v Wgαg + ǫ̺n,v ≤ z[1, . . . , 1]T

||αg||L1
= 1, αg ≥ 0

if z > 0 then3

return false /* test for inclusion in Cn has failed */4

return true /* test for inclusion in Cn has succeeded */5

Algorithm 3: InclusionTest with primitive wrenches only

for all search regions S̺n,v associated with pn do1

set l← 1, f ← 12

while l ≤ L and f = 1 do3

r←A̺n,v wl(pg) + ǫ̺n,v4

if max(r) ≤ 0 then5

f ← 06

l← l + 17

if f = 1 then8

return false /* test for inclusion in Cn has failed */9

return true /* test for inclusion in Cn has succeeded */10

A. Benchmark

The benchmark was conducted by generating random 4-

fingered frictional force closure grasps while varying the

friction cone discretization L ∈ {6, 8, 10} and the friction

coefficient µ ∈ {0.2, 0.5, 0.8}. As a TWS, the largest

insphere of the GWS, scaled by a factor α = 0.75 was used.

We compared the performance of the inclusion tests utilizing

the linear programming approach (LPA) in Algorithm 2

and the primitive wrench approach (PWA) in Algorithm 3,

respectively. The results are summarized in Table I. For

low friction coefficients µ, there is not much difference

regarding the average number of total ICR-points. However,

with increasing friction coefficient the LPA is able to detect

significantly more points. Furthermore, the PWA is more

sensitive to the chosen friction cone discretization L. The

average computation times for the PWA are substantially

590



TABLE I

COMPARISON BETWEEN LP AND PW-APPROACH FOR 1000 RANDOMLY

GENERATED 4-FINGER FORCE CLOSURE GRASPS

L = 6

µ = 0.2

ICRLP = 18.74 ICRPW = 15.35

tLP = 0.94s tP W = 0.08s

max(tLP ) = 4.02s max(tP W ) = 0.12s

µ = 0.5

ICRLP = 36.04 ICRPW = 26.03

tLP = 1.47s tP W = 0.08s

max(tLP ) = 4.77s max(tP W ) = 0.14s

µ = 0.8

ICRLP = 47.78 ICRPW = 31.76

tLP = 1.77s tP W = 0.09

max(tLP ) = 5.86s max(tP W ) = 0.19s

L = 8

µ = 0.2

ICRLP = 19.14 ICRPW = 16.53

tLP = 1.61s tP W = 0.15s

max(tLP ) = 6.48s max(tP W ) = 0.22s

µ = 0.5

ICRLP = 40.52 ICRPW = 31.96

tLP = 2.75s tP W = 0.16s

max(tLP ) = 10.96s max(tP W ) = 0.27s

µ = 0.8

ICRLP = 52.43 ICRPW = 39.74

tLP = 3.68s tP W = 0.17s

max(tLP ) = 12.10s max(tP W ) = 0.26s

L = 10

µ = 0.2

ICRLP = 19.59 ICRPW = 17.49

tLP = 2.36s tP W = 0.25s

max(tLP ) = 8.89s max(tP W ) = 0.47s

µ = 0.5

ICRLP = 41.61 ICRPW = 34.69

tLP = 4.96s tP W = 0.27s

max(tLP ) = 16.53s max(tP W ) = 0.43s

µ = 0.8

ICRLP = 54.80 ICRPW = 44.00

tLP = 7.15s tP W = 0.29s

max(tLP ) = 22.48s max(tP W ) = 0.44s

ICRLP/P W − average number of overall ICR-points

tLP/P W − average computation time

max(tLP/P W ) − maximum computation time

lower than for the LPA. For the latter, especially the high

maximal computation times are significant. It is evident, that

choosing between LPA and PWA is a trade-off between

accuracy and computational effort. However, utilizing the

PWA with a high discretization L gives a good compromise.

B. Example

We give an example of ICR computation for a 4-fingered

frictional grasp of the cup in Fig. 1. The TWS was modeled

as the OWSD with scaled force domain in order to protect

against gravity as well (see Section II-E). In order to deter-

mine ICR, the PWA with following parameters was utilized:

µ = 0.8, L = 8, FG = 10, FD = 0.6 and Fgrav = 1.5. A

total number of 52 ICR-points were found. The computation

time evaluated to 0.41s. This shows, that even for non-trivial

task wrench spaces, independent regions can be efficiently

computed with the proposed algorithm.

V. CONCLUSION

In this work, an efficient and parallelizable algorithm

for the computation of independent regions on discretized

3-D objects is presented. The suggested method allows the

incorporation of disturbance wrench sets, corresponding to

a given task. Following contact models can be applied:

frictionless point contact, point contact with friction and soft-

finger contact. Furthermore, a geometrical analysis of search

regions in wrench space, suitable for the computation of in-

dependent regions, is provided. The computational efficiency

of the approach is shown by means of an example including

non-trivial disturbances.
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