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Abstract— A new uncalibrated visual servoing approach for
motion control of 6-DOF manipulators is presented. Instead of
image features, the elements of the scene-independent trifocal
tensor of three views is used as features for visual servoing.
These trifocal features depend only on the camera projection
matrices and can be retrieved from point correspondences
across the three views: initial, current, and desired. The
Jacobian matrix that relates joint velocities and variations of
the trifocal features is estimated online using least-squares. The
visual servoing performance is evaluated for various easy and
challenging motions, such as the translational motion along
the view axis and the large rotation around the view axis.
Simulations with a 6-DOF eye-in-hand manipulator show that
the proposed uncalibrated approach rapidly converges in all
cases.

I. INTRODUCTION

Uncalibrated visual servoing studies vision-based motion

control of robots without known intrinsic and extrinsic cam-

era/robot calibration parameters, or object models [1], [2].

This is a demanding problem with increasing applications

in unstructured environments, where no prior information

can be assumed. Most existing uncalibrated image-based

visual servoing methods consider the coordinates of interest

points as visual features [2]–[5] with a proportional control

law [6]. In this paper, the three-view projective geometry

of the initial, current, and desired views is exploited for

uncalibrated visual servoing of a 6-DOF manipulator. This

geometry is encapsulated by the trifocal tensor, which is

independent of the scene and depends only on the projective

relations between the cameras [7].

The control law is important in the performance of a visual

servo. Although pose-based [8] and hybrid [9] methods can

provide global stability, they are not generally suitable for

uncalibrated settings because they require a 3D quantity such

as depth or pose. Conventional image-based methods provide

local asymptotic stability [10], therefore are only safe to use

when the desired state is close to the initial state. There are

known degenerate cases, such as 180◦-rotation around the z-

axis, where the image-based control law makes the camera

retreat from the features. There does not seem to be a general

way to determine the basin of locality given an image-

based control law. Recent work has studied and analyzed

different image-based control laws [11], which highlights the

inherent problems in purely image-based control laws (local

asymptotic stability, local minima). The choice of visual

features has an equally important role in the performance and
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is one of the open problems in visual servoing. To increase

the stability region, image-moments have been proposed for

planar [12] and non-planar objects [13]. More recently, Hadj-

Abdelkader et al. have proposed features from a spherical

projection model for a decoupled hybrid visual servoing [14].

These methods are either purely image-based or hybrid.

Two-view geometry has been extensively studied in visual

servoing. Epipolar geometry can be used to estimate depth,

which appears in the interaction matrix [15] for an improved

stability [9]. Chesi et al. exploit the symmetry of epipolar

geometry without point correspondences to control a holo-

nomic mobile robot from a partially calibrated camera [16].

Mariottini et al. use epipolar geometry for visual servoing

of non-holonomic mobile robots [17]. Becerra and Sagues

develop a sliding mode control law using epipolar geometry

for non-holonomic mobile robots [18]. Homography-based

methods have also been studied in visual servoing. Benhi-

mane and Malis develop a homography-based approach with-

out reconstructing any 3D parameters [19]. Lopez-Nicolas et

al. design a homography-based controller which considers

the non-holonomic constraints [20]. These methods use the

two-view geometry between the observed and desired views

and ignore their relation with the initial view. In addition,

epipolar geometry is not well-conditioned if the features

are coplanar or the baseline is short. On the other hand,

homography-based approaches require dominant planes [21].

Projective geometry of three views can also be used

in vision-based motion control. The trifocal tensor relates

three views in a similar manner that the fundamental matrix

relates two views. The application of the trifocal tensor to

visual servoing has been neglected in the visual servoing

literature until very recently [21], [22]. Becerra and Sagues

use a simplified trifocal tensor as measurement and esti-

mate and track the pose of a non-holonomic mobile robot

with Extended Kalman Filter (EKF) [21]. Lopez-Nicolas et

al. also use the constrained camera motion on a mobile robot

and linearize the input-output space for control [22]. This

approach provides an analytic interaction matrix between

the features (9 elements of the trifocal tensor) and robot

velocities. To the best of our knowledge, the trifocal tensor

has not yet been used to control a 6-DOF robot. This is likely

due to the difficulty in linearizing the input-output space in

the case of generalized 6-DOF camera motions.

The main contribution of this paper is to propose a 6-

DOF uncalibrated visual servoing approach that uses the

trifocal features. The advantage of uncalibrated methods over

analytical methods is clear when the interaction matrix of a

set of features cannot be derived easily. The trifocal features

are a subset of the 27 elements of the 3 × 3 × 3 trifocal
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Fig. 1. The initial, current, and desired camera frames.

tensor. We estimate the interaction matrix, which relates

joint velocities to the rate of change of trifocal features.

This work does not fall into the conventional image-based,

pose-based, or hybrid classifications of visual servoing based

on the control law. There seems to be a missing visual

servoing class, projective visual servoing, where the control

loop is closed over projective measures (e.g., controlling the

epipoles [17], trifocal features [22], etc.). In essence, we

control one such projective measure, which is found directly

from images across three views, without explicitly recovering

the camera pose or directly closing the loop in the image

space.

This work is closely related to the recent works of Becerra

and Sagues [18] and Lopez-Nicolas et al. [22] with distinct

differences. First, we consider the 6-DOF motion of an eye-

in-hand camera, but they consider the planar motion of the

camera constrained to the non-holonomic motion model of

a mobile robot. Second, they derive an analytic form of the

Jacobian and use input-output linearization for control. In

contrast, we estimate the Jacobian matrix directly from mea-

surements of the trifocal features, because an analytic form

is cumbersome to derive for the general motion. Further, we

use a control law similar to the typical proportional control

law in image-based visual servoing.

II. BACKGROUND

A. The Geometry of Three Views

The initial, current, and desired camera frames for an eye-

in-hand visual servoing system is shown in Fig. 1. A 3D

point X ∈ R
3 in Euclidean space projects onto the image

plane by a 3 × 4 projection matrix P = K[R| − RC̃],
where K is the camera intrinsic matrix, R is the rotation

of the camera frame w.r.t. the world frame, and C̃ is the

coordinate of the camera frame expressed in the world frame.

The homogeneous coordinates of image point x can be found

from x = PX. Let the initial, current, and desired projection

matrices be Pi, Pc, and Pd. A 3D point X projects to

xi = PiX, xc = PcX, and xd = PdX across the three

views. The three-view point correspondence is denoted by

xi ↔ xc ↔ xd. In our case, the initial camera matrix Pi

and the desired camera matrix Pd are constant. It is only

the current camera matrix Pc and the image points in the

current view that change as the robot configuration changes.

B. The Trifocal Tensor

The trifocal tensor encapsulates the geometry of three

views in a similar manner that the fundamental matrix encap-

sulates the geometry of two views. They are independent of

the scene and depend only on the camera projection matrices.

Given one view and the fundamental matrix, image points

can be transferred to the second view. Similarly, given two

views and point (or line) correspondences across two-views,

image points (or lines) can be transferred to a third view. The

trifocal tensor is more general than combining the existing

epipolar geometries between views (1,2) (1,3) and (2,3).

For example, epipolar transfer fails for points lying on the

trifocal plane1 [7]. The trifocal tensor and its computation

is described in detail by Hartley and Zisserman [7]. A brief

description is presented here for the sake of completeness.

Consider the canonical representation Pi = [I|0], and

Pc = [A|a4], and Pd = [B|b4], where A and B are 3 × 3
matrices and vectors ak and bk are the k-th columns of Pc

and Pd, respectively. The set of three matrices {T1,T2,T3}
constitute the trifocal tensor in matrix notation [7]:

Ti = akb
⊤
4 − a4b

⊤
k .

The trifocal tensor is, in fact, a 3×3×3 cube of cells with 27

elements. The equivalent camera projections are specified, up

to a projective transformation, by only 18 parameters. This

enforces 8 additional internal algebraic constraints on the

elements of the trifocal tensor [7].

C. Estimation of the Trifocal Tensor

The trifocal tensor can be estimated from point or line

correspondences across three views. Each point correspon-

dence provides 4 independent equations. One may use the

normalized linear solution, however, this does not consider

the internal constraints and may lead to a geometrically

invalid tensor. A more elaborate solution uses the linear

solution as the initial condition of geometric minimization.

The geometric minimization algorithm provides a geomet-

rically valid tensor. However, these methods are vulner-

able to outliers as they consider all correspondences as

inliers. Robust estimation can be used to handle outliers.

In particular, RANSAC [23] can be used on the random

samples of 6 point correspondences across the three views,

from which the camera projections are found up to a

projectivity [24]. The trifocal tensor is then retrieved from

these camera projections. This ensures a geometrically valid

solution, while avoiding outliers. For the purpose of this

paper, we have avoided outliers in controlled laboratory

settings and estimate the trifocal tensor from the 6 point

algorithm [24]. This allows us to focus on the development

of the uncalibrated control law and Jacobian estimation (see

Section III). Generalizations to the robust trifocal estimation

would be straightforward.

1The trifocal plane is the plane passing through the three camera centers.
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Fig. 2. (a) A sample camera trajectory from the initial (top, blue) to the
desired (bottom, red) pose. An arbitrary camera on the trajectory is also
shown (middle, black). (b) The evolution of the elements of the trifocal
tensor along this trajectory. The elements are normalized with respect to
their maximum absolute value to fit in the same graph.

III. VISUAL SERVOING WITH TRIFOCAL TENSOR

A. Problem Formulation

The visual servoing problem is usually set up having

known initial and desired features and measuring current

features. The goal of visual servoing is to drive a robot to a

desired configuration by regulating a task function to zero.

The task function is defined on some relevant features. In our

case, these features are defined according to the projective

geometry of three views. Let F : R
6 → R

M denote the

sensory-motor function from configuration q ∈ R
6 of a robot

with 6 joints (Fig. 1), to the feature vector s ∈ R
M with M

features. For visual servoing, measurements with M ≥ 6
features is needed.

The trifocal tensor has 27 elements, which can be found

from point correspondences across the three views. A subset

of the elements of the trifocal tensor goes into vector s. Fig. 2

shows a sample camera trajectory with the evolution of the

trifocal features from the initial to desired pose.

The time derivative of the sensory-motor function leads to

the M × 6 sensory-motor Jacobian2, J(q):

∂s

∂t
=

∂F(q)

∂q

∂q

∂t
, (1)

ṡ = J(q)q̇. (2)

With an estimate Ĵ(q) for J(q), the discrete-time form of

(2) becomes

∆s ≃ Ĵ(q)∆q. (3)

The sensory-motor Jacobian is an integral part of the visual

servoing control law. A weighted Jacobian may be written

as follows [11]:

Ĵβ = βĴd + (1 − β)Ĵ(q), (4)

where Ĵd = Ĵ(qd) is the estimated Jacobian at the desired

state. The control law in uncalibrated visual servoing is

defined entirely in the feature space. To reach a visual goal

sd, the general Jacobian Ĵβ can be used in the following

control law:

q̇ = −λĴ
†
β(s− sd), (5)

where λ < 1 is a positive constant to make joint velocity

small, and Ĵ
†
β is the Moore-Penrose pseudoinverse of Ĵβ .

2This Jacobian is also called the interaction matrix. We use Jacobian and
interaction matrix interchangeably in this paper.

B. Online Jacobian Estimation

It is natural to assume that the robot keeps record of

the sensory-motor information while it operates in the en-

vironment. This information may be stored in the memory

for uncalibrated Jacobian estimation. Let the robot mem-

ory include P sensory-motor data pairs The uncalibrated

sensory-motor Jacobian at a new sensory-motor query point

dc = (sc,qc) can be estimated by solving the following

optimization problem [5]:

Ĵ(q)
∣∣∣
q=qc

= arg min
J

∑

k: qk∈N(qc)

ρ(∆sk − J∆qk), (6)

where N(qc) = {qp : ‖qc − qp‖ < r , p = 1, · · · , P} is

a neighborhood of qc in the joint space, ∆sk = sc − sk,

∆qk = qc − qk , and ρ(·) is a cost function such as the L2-

norm [4] or robust M-estimator [5]. This method fits the best

hyperplane to the sensory-motor data around qc and has been

validated for coordinates of interest points as visual features

in both eye-to-hand [4] and eye-in-hand [5] configurations.

C. Reference Jacobian

In order to evaluate the online Jacobian estimate in (6),

we need a reference Jacobian to compare against. Since the

analytic form of the Jacobian is not available, we will esti-

mate the value of the reference Jacobian by small orthogonal

exploratory motions [25]. Orthogonal exploratory motions

can be used to numerically estimate a Jacobian with reason-

able accuracy. Consider a small observable displacement δ

of a joint. The orthogonal motions can be measured from 6

observed feature displacements ∆s(1), · · · , ∆s(6):

∆s(1) ≃ Ĵ
[
δ 0 . . . 0

]⊤
(7)

...
...

∆s(6) ≃ Ĵ
[
0 . . . 0 δ

]⊤
,

The Jacobian can then be directly recovered:

JR ≃
1

δ

[
∆s(1) ∆s(2) . . . ∆s(6)

]
(8)

In simulations, we can choose a very small value for δ and

precisely measure ∆s(i), i = 1 · · · 6. The main difference be-

tween the reference Jacobian in (8) and the online estimates

in (6) is that there is no guarantee that the ∆sk’s in (6) are

measured after orthogonal motions.

The orthogonal motions is not practical for online estima-

tion of the Jacobian in real robotic systems, because of extra

undesired motions. However, it is a meaningful reference to

evaluate the accuracy of the Jacobian estimation and we use

it to evaluate the accuracy of the online Jacobian estimates.

Jacobian estimation error is measured by the Frobenius norm

of the online estimate, Ĵ, to the reference Jacobian, JR:

ν = ‖JR − Ĵ‖F =
∣∣∣
∣∣∣diag

(
(JR − Ĵ)

⊤
(JR − Ĵ)

)∣∣∣
∣∣∣
2
, (9)

where || · ||F is the Frobenius norm and || · ||2 is the L2-norm.
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IV. EXPERIMENTS

In this section, we experimentally evaluate the perfor-

mance of the new features with the proposed control law

in (5). Note that this control law uses a new Jacobian and is

specified in the space of the trifocal features. To evaluate

this new control law, we follow the recommendations in

Good Experimental Methodology in robotics prepared by

EURON [26]. Specifically, we limit this work to evaluations

through controlled simulations. The results for small (local)

motions include pure translation, translation along z-axis,

and an arbitrary motion including rotations. We also present

experimental results for the degenerate case of rotational

motion around the z-axis, which is one of the “hard” con-

figurations in visual servoing [6], [10], [11].

A. System Description

We consider the uncalibrated eye-in-hand visual servoing

set up with a 6-DOF PUMA 560. The camera is mounted

on the end-effector of the manipulator. We emphasize that

our proposed method is general to arbitrary camera/robot

configurations and the camera does not have to be on

the end-effector. No assumptions on camera calibration or

camera/robot calibration have been made. Simulations are

implemented in MATLAB using the Robotics Toolbox [27]

and the Epipolar Geometry Toolbox [28]. We use 6 points

in a general configuration to evaluate the performance. Gen-

eralization to more point correspondences is straightforward

by adopting the RANSAC robust estimation of the trifocal

tensor [7]. For a valid trifocal tensor estimation, these 6

points should not be collinear in any of the views. This is

somewhat limiting in translational motion experiments. We

have chosen the initial and desired states to avoid collinearity.

B. Visual Servoing - Translation Along x-axis, y-axis, and

z-axis

The first experiment considers a small translation of

[5.4, 5.4,−5.4]cm along the three axes. The control param-

eter is chosen β = 0.5 for this experiment. Fig. 3 (top-left)

shows the position of the initial and desired camera. The

robot is not shown in this figure. Other values of β result in a

similar trajectory in this case, because the initial and desired

states are very close. Fig. 3 (top-right) shows the evolution

of the projections in the image. Note that at the desired

image some of the features are collinear. Fig. 3 (bottom-left)

shows the evolution of the trifocal features during servoing.

Instead of showing all of the features, we normalize the

features and show their mean-square-error (MSE). Apart

from a discrepancy at the start, the features rapidly converge

to zero. The source of this discrepancy is most likely due

to the conditioning of the trifocal tensor estimation. Fig. 3

(bottom-right) shows the evolution of joint values during

servoing. Joints 1, 4, 5, and 6 have large motions and cancel

out each other to result in a linear end-effector motion.

C. Visual Servoing - Translation Along z-axis

Visual servoing along the z-axis is usually more challeng-

ing than along the xy-plane. This is due to poor motion
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trifocal feature errors. (Bottom-Right) Joint values in [rad].
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Fig. 4. Translation Along z-axis. (Top-Left) Initial/Desired cameras and the
camera trajectory. (Top-Right) Initial/Desired image coordinates and image
trajectory. (Bottom-Left) The normalized trifocal feature errors. (Bottom-
Right) Joint values in [rad].

resolvability when the camera moves towards the points [29].

Fig. 4 (top-left) shows the camera trajectory for a 17.9cm

translation along the z-axis. The initial and desired cam-

eras are parallel to the plane passing through three of

the six landmarks. The camera trajectory is almost linear

with control parameter β is 0.5 (other values have similar

performance). Fig. 4 (top-right) shows the image trajectories.

Note that 4 non-coplanar points have very similar initial and

desired values, but the trifocal features capture the geometry

adequately. Fig. 4 (bottom-left) shows a rapid convergence

of the trifocal features, and Fig. 4 (bottom-right) shows the

convergence of the joint values.

D. Visual Servoing - Arbitrary General Motion

The results for an arbitrary small general motion are

presented in Fig. 5. The desired camera frame is ro-

tated by [−35.2◦,−14.5◦,−12.8◦] and the translated by
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Section IV-D. For β = 1 the control law uses the constant desired Jacobian

Ĵd and for β = 0 the control law chooses the current estimate at each
iteration. (Left) β = 0.1, and (Right) β = 0.9.

[8.6, 8.6,−8.6]cm. In this experiment, the control parameter

is chosen to be β = 0.5. Other values of β also work. With

a larger β the robot moves a longer trajectory and the image

trajectory is more circular. Fig. 6 shows the image trajectory

for β = 0.1 and β = 0.9.

E. Visual Servoing - 85◦-Rotation Around and Translation

Along z-axis

This experiment includes a 85◦-rotation around the z-axis

and 25cm motion along the z-axis. During this experiment,

we noticed that some of the elements of the trifocal tensor are

constantly 0. This is because of the special type of camera

motion in this experiment. Specifically,

T 23
1 = T 33

1 = T 13
2 = T 33

2 = 0.

In this case, we use the remaining 23 elements of the tensor

in the trifocal feature vector s.

Fig. 7 summarizes this experiment. It can be seen that

camera translation is not entirely linear in the Euclidean

space, however, the image trajectories are rotational, which

is more desired than a linear image trajectory. Since we have

made no attempt to decouple the translation from rotation,

the non-linear camera trajectory is expected. Nonetheless,

the rapid convergence suggests that the trifocal tensor is a

suitable feature for uncalibrated visual servoing.
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Fig. 7. 85◦-rotation around the z-axis and 25cm motion along the z-axis.
(Top-Left) Initial/Desired cameras and the camera trajectory. (Top-Right)
Initial/Desired image coordinates and image trajectory. (Bottom-Left) The
normalized trifocal features errors. (Bottom-Right) Joint values in [rad].

F. Visual Servoing - Large Rotation Around and Translation

along z-axis

One of the most challenging image-based visual servoing

configurations is the 180◦ rotation around the z-axis [6], [10].

This is due to the nature of the image-based control law

which makes the camera to retreat from the object instead

of rotation around the view axis. It is important to evaluate

a visual servo for large z-axis rotations, close to 180◦, for

example a 170◦ rotation [6], [10], [11].

We consider a translation of 50cm and a 170◦-rotation to

provide a common ground to compare this method against

other approaches [11]. We use the same trifocal feature

vector of the previous experiment. The proposed trifocal

features successfully handle this case as illustrated in Fig. 8.

Note that the desired and initial camera frames are rotated

at 170◦ in Fig. 8 (top-left). The image trajectories show a

spiral motion in Fig. 8 (top-right), which is the desired case.

The results in Fig. 8 are obtained with control parameter

β = 0.05. For β = 0, which corresponds to using the current

Jacobian estimate in (5), control also converges, but with a

slight abrupt motion at the start of the control loop. Choosing

β = 1, which corresponds to using the constant value of the

desired Jacobian in (5), was not successful. This result is

expected as such a large motion is not local and the values

of the Jacobian matrices, at the initial and desired states, are

significantly different.

V. CONCLUSIONS

We presented a new uncalibrated visual servoing approach

based on the trifocal tensor. The trifocal tensor encapsulates

the geometry of the initial, desired, and current views and

can be estimated from point correspondences up to a projec-

tivity. We use the elements of the trifocal tensor as features

and construct a task function from the desired and current

estimation of the trifocal tensor. Such control laws may be

considered as projective visual servoing, where the control
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law uses projective measures instead of image-based, pose-

based, or hybrid. We also presented an online estimation

of the sensory-motor Jacobian. Unlike conventional image-

based methods, where the Jacobian relates the joint velocities

to image measurements (coordinates, moments, etc.), the

proposed Jacobian directly relates the joint velocities to

the rate of change in the elements of the trifocal tensor.

Experimental results show that the proposed method is very

promising and handles well “hard” configurations (such as

large rotation around the view axis).

The degenerate cases of image-based visual servoing [10]

do not necessarily translate to degenerate cases here as shown

by the large-rotation experiment (Section IV-F). Therefore,

this approach is different than the integration of online

calibration of the camera intrinsic parameters and using the

image Jacobian. In our approach, the feedback loop is closed

on the elements of the trifocal tensor, which are found from

further computation of the visually-tracked interest points.

The degenerate cases for the estimation of the trifocal tensor

could result in the failure of the visual servo and will be

studied in the future.
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estimation for uncalibrated visual servoing,” in Proc. IEEE Int. Conf.

Robot. Automat., Anchorage, AK, May 2010, pp. 5564–5569.

[6] F. Chaumette and S. Hutchinson, “Visual servo control. part I: Basic
approaches,” IEEE Robot. Automat. Mag., vol. 13, no. 4, pp. 82–90,
Dec. 2006.

[7] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, 2nd ed. Cambridge, UK: Cambridge University Press, 2003.
[8] W. J. Wilson, C. C. W. Hulls, and G. S. Bell, “Relative end-effector

control using cartesian position based visual servoing,” IEEE Trans.

Robot. Automat., vol. 12, no. 5, pp. 684–696, October 1996.
[9] E. Malis and F. Chaumette, “Theoretical improvements in the stability

analysis of a new class of model-free visual servoing methods,” IEEE

Trans. Robot. Automat., vol. 18, no. 2, pp. 176–186, Apr. 2002.
[10] F. Chaumette, “Potential problems of stability and convergence in

image-based and position-based visual servoing,” in The Confluence

of Vision and Control, D. Kriegman, G. . Hager, and A. Morse, Eds.
LNCS Series, No 237, Springer-Verlag, 1998, pp. 66–78.

[11] M. Marey and F. Chaumette, “Analysis of classical and new visual
servoing control laws,” in Proc. IEEE Int. Conf. Robot. Automat., May
19–23, 2008, pp. 3244–3249.

[12] F. Chaumette, “Image moments: a general and useful set of features
for visual servoing,” IEEE Trans. Robot., vol. 20, no. 4, pp. 713–723,
Aug. 2004.

[13] O. Tahri and F. Chaumette, “Point-based and region-based image
moments for visual servoing of planar objects,” IEEE Trans. Robot.,
vol. 21, no. 6, pp. 1116–1127, Dec. 2005.

[14] H. Hadj-Abdelkader, Y. Mezouar, and P. Martinet, “Decoupled visual
servoing based on the spherical projection of a set of points,” in Proc.

IEEE Int. Conf. Robot. Automat., May 12–17, 2009, pp. 1110–1115.
[15] E. Malis and F. Chaumette, “2 1/2 d visual servoing with respect

to unknown objects through a new estimation scheme of camera
displacement,” Int. J. Comput. Vision, vol. 37, no. 1, pp. 79–97, 2000.

[16] G. Chesi, D. Prattichizzo, and A. Vicino, “A visual servoing algorithm
based on epipolar geometry,” in Proc. IEEE Int. Conf. Robot. Automat.,
May 2001, pp. 737–742.

[17] G. Mariottini, G. Oriolo, and D. Prattichizzo, “Image-based visual
servoing for nonholonomic mobile robots using epipolar geometry,”
IEEE Trans. Robot., vol. 23, no. 1, pp. 87–100, Feb. 2007.

[18] H. M. Becerra and C. Sagues, “A sliding mode control law for epipolar
visual servoing of differential-drive robots,” in Proc. IEEE/RSJ Int.

Conf. Intell. Robots Syst., Sep. 2008, pp. 3058–3063.
[19] S. Benhimane and E. Malis, “Homography-based 2d visual servoing,”

in Proc. IEEE Int. Conf. Robot. Automat., May 15–19, 2006, pp. 2397–
2402.
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